EP0851720A1 - Indirektes Plasmatron - Google Patents
Indirektes Plasmatron Download PDFInfo
- Publication number
- EP0851720A1 EP0851720A1 EP97810823A EP97810823A EP0851720A1 EP 0851720 A1 EP0851720 A1 EP 0851720A1 EP 97810823 A EP97810823 A EP 97810823A EP 97810823 A EP97810823 A EP 97810823A EP 0851720 A1 EP0851720 A1 EP 0851720A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- plasma
- neutrodes
- channel
- gas
- neutrode
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000004157 plasmatron Methods 0.000 title claims description 42
- 239000007789 gas Substances 0.000 claims abstract description 41
- 239000011261 inert gas Substances 0.000 claims abstract description 7
- RYGMFSIKBFXOCR-UHFFFAOYSA-N Copper Chemical compound [Cu] RYGMFSIKBFXOCR-UHFFFAOYSA-N 0.000 claims description 2
- 229910000881 Cu alloy Inorganic materials 0.000 claims description 2
- 229910052802 copper Inorganic materials 0.000 claims description 2
- 239000010949 copper Substances 0.000 claims description 2
- 239000000463 material Substances 0.000 claims description 2
- 210000002381 plasma Anatomy 0.000 description 47
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 4
- 238000001816 cooling Methods 0.000 description 4
- 239000000498 cooling water Substances 0.000 description 4
- 230000008901 benefit Effects 0.000 description 3
- 238000009413 insulation Methods 0.000 description 3
- 239000000758 substrate Substances 0.000 description 3
- 229910052786 argon Inorganic materials 0.000 description 2
- 230000006641 stabilisation Effects 0.000 description 2
- 238000011105 stabilization Methods 0.000 description 2
- 230000008646 thermal stress Effects 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 1
- 239000001273 butane Substances 0.000 description 1
- 238000006243 chemical reaction Methods 0.000 description 1
- 239000011248 coating agent Substances 0.000 description 1
- 238000000576 coating method Methods 0.000 description 1
- 230000003247 decreasing effect Effects 0.000 description 1
- 230000001419 dependent effect Effects 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 239000011810 insulating material Substances 0.000 description 1
- 238000002955 isolation Methods 0.000 description 1
- 238000000034 method Methods 0.000 description 1
- IJDNQMDRQITEOD-UHFFFAOYSA-N n-butane Chemical compound CCCC IJDNQMDRQITEOD-UHFFFAOYSA-N 0.000 description 1
- OFBQJSOFQDEBGM-UHFFFAOYSA-N n-pentane Natural products CCCCC OFBQJSOFQDEBGM-UHFFFAOYSA-N 0.000 description 1
- 238000007750 plasma spraying Methods 0.000 description 1
- 230000008092 positive effect Effects 0.000 description 1
- 239000002244 precipitate Substances 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 230000000087 stabilizing effect Effects 0.000 description 1
- 239000000126 substance Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3431—Coaxial cylindrical electrodes
-
- H—ELECTRICITY
- H05—ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
- H05H—PLASMA TECHNIQUE; PRODUCTION OF ACCELERATED ELECTRICALLY-CHARGED PARTICLES OR OF NEUTRONS; PRODUCTION OR ACCELERATION OF NEUTRAL MOLECULAR OR ATOMIC BEAMS
- H05H1/00—Generating plasma; Handling plasma
- H05H1/24—Generating plasma
- H05H1/26—Plasma torches
- H05H1/32—Plasma torches using an arc
- H05H1/34—Details, e.g. electrodes, nozzles
- H05H1/3463—Oblique nozzles
Definitions
- the invention relates to an indirect plasmatron for treatment of surfaces according to claim 1.
- plasma generators are made with one a nozzle flowing, electrically non-current-carrying plasma jet referred to, the arc, as opposed to direct Plasmatrons, is not transferred to the workpiece.
- Plasmatrons are used to generate very high temperature plasmas, which are in the range of up to several 10,000 Kelvin can.
- the device has an elongated plasma chamber, which is limited by a one-piece body. on the one The front of the plasma chamber is the anode and on the other arranged the cathode.
- the device outlet nozzle or the plasma chamber is slit-shaped and runs parallel to the longitudinal axis of the plasma chamber.
- each electrode from a chamber is surrounded, via which an inert gas can be supplied, the thermal stress on the electrodes can be reduced by the latter is flushed with an inert gas, for example argon will.
- an inert gas for example argon
- the shape and position of the arc to be influenced.
- This is for a plasmatron in which the Plasma jet outlet opening parallel to the longitudinal axis of the plasma channel runs, very important because the arc through the gas flow running transversely to the burner axis into a curved Form is forced. Without the effect of a magnetic field the arc is deflected and curved to the extent that it is subject to strong fluctuations and even tears off.
- Through the Magnetic arrangements can prevent this by using the magnetic fields exert a force on the arc, which the by the flow of the plasma gas exerted on the arc Counteracts force.
- placement and field strength of the magnets used can depend on operating parameters such as for example, gas volume and gas velocity are taken into account and the arc in a predetermined position being held.
- the plasmatron consists essentially of a central neutrode arrangement 1, on each side of which there is an electrode body 2, 3, an insulation body 4, 5 and a connecting element 6, 7 connect.
- the connection elements 6, 7 are used for receiving of electrodes 9, 10, in the present example the left one Electrode 9 the cathode and the right electrode 10 the anode represents.
- the neutrode arrangement 1 has a plurality of plate-shaped trained neutrodes la to li, which have a plasma channel 8 limit.
- the two electrodes 9, 10 are coaxial with Longitudinal axis L of the plasma channel 8 is arranged.
- To the electrical To increase the longitudinal resistance of the neutrode arrangement 1 are individual neutrodes la to li electrically isolated from each other. Isolation between the neutrodes la to li inserted insulating washers, which favor a clear Representation are not shown.
- the neutrode arrangement 1 is on both sides of the electrode body 2, 3 delimited, on the outside of which the insulation body 4, 5 and the connecting element 6, 7.
- Both electrode bodies 2, 3 are made of an insulating material.
- Both the neutrodes la to li are used to cool the plasmatron as well as the two electrode bodies 2, 3 with cooling water channels 16, 21, 31 provided.
- the two electrodes 9, 10 are also over cooling water channels 38, 39 attached to one inside externally provided cooling water circuit connected.
- the two electrode bodies 2, 3 each have a central one bore 11, 12 narrowing towards plasma channel 8, into which the respective electrode 9, 10 protrudes in such a way that between the electrode 9, 10 and the bore wall a cavity in Form of an annular channel 19, 20 is formed.
- These two ring channels 19, 20 are arranged in the insulation bodies 4, 5 Bores 23, 24 each connected to a connection channel 14, 15, through which a gas G can be supplied.
- Fig. La shows a front view of the indirect plasmatron. Out this representation it can be seen that the plasma jet outlet opening 40 across the width of five neutrodes lc to 1g extends.
- FIG. 2 shows a cross section through the plasmatron or Neutrode la along the line A-A in Fig. 1.
- the neutrode la with a central Cross bore 26 is provided, which is a part of the plasma channel forms and serves to guide the arc.
- the last neutrodes la, li of the neutrode stack also the two neutrodes 1b adjoining the inside, lh each with a hole that part of the plasma channel 8 (Fig. 1) form and stabilization of the arc to serve. All neutrodes are for cooling with cooling channels 16 provided, which is connected to a cooling water circuit will.
- the neutrode 1c shown in FIG. 3 is instead of one central transverse bore with a slot-shaped recess 33 provided, which also part of the plasma channel 8th (Fig. 1) forms.
- the recess 33 leading to the outside forms at the same time part of the plasma jet outlet opening, which in the present example extend over the width of five with such recesses 33 neutrodes lc to lg (Fig. La) extends.
- the inside of the recess 33 will by a, seen in cross section, semicircular Wall 34 limited. In the center of this semicircular training Wall 34 opens the plasma gas channel 18 into the recess 33.
- FIG. 3a shows a front view of the section shown in FIG. 3 Neutrode 1c. From this illustration, both the Recess 33 as well as the mouth of the plasma gas channel 18 can be seen.
- the neutrode 1d shown in FIG. 4 largely corresponds that of Figure 3, with two additional permanent magnets 36, 37 are provided, of which one magnet below and the other are arranged above the recess 33.
- the North-south axes A of the respective magnets 36 and 37 coincide and run at least approximately under a right one Angle to the longitudinal axis L of the plasma channel 8, the magnets 36, 37, seen in the flow direction of the plasma jet, after the longitudinal axis L of the plasma channel 8 are arranged.
- This placement will cause the magnetic fields to hit the Arc opposite to the flow of the plasma gas Apply force, causing the arc to be in a predetermined Situation is stabilized.
- each is unequal Poles of the individual magnets 36, 37 lie opposite one another; thus N-S or S-N.
- the number of those neutrodes that have a permanent magnet pair can be provided by different operating parameters, such as. Arc current, amount of plasma gas, plasma gas velocity, as well as the geometrical dimensions of the neutrode arrangement etc. are made dependent. As another variation option can use magnets with different field strengths be used. In practice, it has proven useful, about two or three neutrodes with magnets, this number should not be restrictive in any way. Important is also that the neutrodes, in the proposed arrangement the magnet, made of a non-magnetizable material, preferably made of copper or a copper alloy are. The advantage of permanent over electromagnets is u. a. in that no external energy supply is necessary is that the structure can be made more compact and simpler can and that a more targeted influencing of the arc is possible.
- connection channels 14, 15 become coaxial to the longitudinal axis of the plasma channel 8 an inert gas is supplied, which via the ring channel 19, 20 of the respective electrode body 2, 3 from two sides in flows the plasma channel 8.
- This gas flows around the two electrodes 9, 10, which has a positive effect on their cooling.
- this gas shields the electrodes 9, 10 from the actual one Plasma beam, which is particularly important then can if a reactive via the central plasma gas channels 18 Gas is supplied.
- the base point of the arc which is applied to the electrodes 9, 10, especially that at the anode 10 varies, namely are enlarged, which decreased in a selective manner thermal stress on the electrodes 9, 10 precipitates.
- the provision of a plurality of central plasma gas channels 18 provided neutrodes lc to 1g allows the shape of the emerging plasma jet by changing the amount of gas and the gas velocity from plasma gas channel to plasma gas channel 18 is varied.
- the arc can be stabilized within the plasma channel 8 will. Among other things, this in a constant operating voltage and therefore a constant burner output, a very quiet operation and increased electrode life noticeable.
- the geometric dimension of the plasmatron in the simplest way can be changed by, for example, the number and / or the Training of neutrodes is changed. For example instead of five with a slot-shaped recess Neutrodes whose seven are used, increasing the width of the emerging plasma jet would be changed accordingly. It is also conceivable, for example, that neutrodes are used, whose slot-shaped recess is designed differently, or that neutrodes are used, their for arc stabilization provided holes designed differently are.
Landscapes
- Physics & Mathematics (AREA)
- Engineering & Computer Science (AREA)
- Plasma & Fusion (AREA)
- Spectroscopy & Molecular Physics (AREA)
- Plasma Technology (AREA)
- Transition And Organic Metals Composition Catalysts For Addition Polymerization (AREA)
Abstract
Description
- Fig. 1
- einen Längsschnitt durch das indirekte Plasmatron;
- Fig. 1a
- eine Frontansicht des indirekten Plasmatrons;
- Fig. 2
- einen ersten Querschnitt durch das indirekte Plasmatron entlang der Linie A-A in Fig. 1;
- Fig. 3
- einen zweiten Querschnitt durch das indirekte Plasmatron entlang der Linie B-B in Fig. 1;
- Fig. 3a
- eine Frontansicht einer Neutrode, und
- Fig. 4
- einen dritten Querschnitt durch das indirekte Plasmatron entlang der Linie C-C in Fig. 1.
Claims (11)
- Indirektes Plasmatron zur Behandlung von Oberflächen, gekennzeichnet durch die Kombination der folgenden Merkmale:es ist ein langgestreckter Plasmakanal (8) vorgesehen, der durch eine Neutrodenanordnung (1) gebildet ist;die zur Erzeugung des Lichtbogens erforderlichen Elektroden (9, 10) sind koaxial zur Längsachse (L) des Plasmakanals (8) angeordnet;die Neutrodenanordnung (1) umfasst eine Mehrzahl von elektrisch gegeneinander isolierten, plattenförmigen Neutroden (1a bis 1i);die Neutrodenanordnung (1) ist mit einer schlitzförmigen Plasmastrahl-Austrittsöffnung (40) versehen, welch letztere parallel zur Längsachse (L) des Plasmakanals (8) verläuft;jede Elektrode (9, 10) ist von einem Hohlraum (19, 20) umgeben, über welchen ein Inertgas zuführbar ist,es ist zumindest eine Permanentmagneten-Anordnung (36, 37) vorgesehen, deren Magnetfeld auf den Lichtbogen eine der Strömung des Plasmagases entgegengerichtete Kraft ausübt.
- Indirektes Plasmatron nach Anspruch 1, dadurch gekennzeichnet, dass zumindest einzelne Neutroden (1c-1g) mit einem Kanal (18) zur Zufuhr eines Gases in den Plasmakanal (8) versehen sind.
- Indirektes Plasmatron nach Anspruch 2, dadurch gekennzeichnet, dass die Längsachse des Kanals (18) zur Zufuhr eines Gases unter einem zumindest annähernd rechten Winkel zur Längsachse (L) des Plasmakanals (8) verläuft.
- Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Neutroden (1a-1i) aus einem nicht magnetisierbaren Material, vorzugsweise aus Kupfer oder einer Kupferlegierung bestehen, und dass zumindest eine Neutrode (ld) mit einem Permanentmagneten-Paar (36, 37) versehen ist.
- Indirektes Plasmatron nach Anspruch 4, dadurch gekennzeichnet, dass die Nord-Süd-Achsen der jeweiligen Magnete (36; 37) zusammenfallen und zumindest annähernd unter einem rechten Winkel zur Längsachse (L) des Plasmakanals (8) verlaufen, wobei die Magnete (36, 37), in Strömungsrichtung des Plasmastrahls gesehen, nach der Längsachse (L) des Plasmakanals (8) angeordnet sind.
- Indirektes Plasmatron nach einem der Ansprüche 2 bis 5, dadurch gekennzeichnet, dass zumindest drei Neutroden (1a-1i) vorgesehen sind und dass zumindest eine Neutrode (1c-1g) mit einem Kanal (18) zur Zufuhr eines Gases in den Plasmakanal (8) versehen sind.
- Indirektes Plasmatron nach einem der Ansprüche 2 bis 6, dadurch gekennzeichnet, dass die in einzelnen Neutroden (1c-1g) angeordneten Kanäle (18) an eine erste Gasquelle anschliessbar sind, währenddem die die Elektroden umgebenden Hohlräume (19, 20) mit einer zweiten Gasquelle verbindbar sind.
- Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass eine Mehrzahl der Neutroden (1c-1g), zur Bildung des Plasmakanals (8) und der Plasmastrahl-Austrittsöffnung (40), mit je einer schlitzförmigen Ausnehmung (33) versehen sind, wobei die Kanäle (18) zur Zufuhr eines Gases zentral in die jeweilige Ausnehmung (33) münden.
- Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Neutrodenanordnung (1) die Plasmastrahl-Austrittsöffnung (40) seitlich begrenzende Neutroden (1a, 1b, 1h, 1i) aufweist, welche mit einer Bohrung (26) versehen sind, die einen Teil des Plasmakanals (8) bilden und den Lichtbogen in einer vorbestimmten Lage zu stabilisieren bestimmt sind.
- Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Anode (10) eine im wesentlichen plane Endfläche aufweist, an welcher der Lichtbogen ansetzt.
- Indirektes Plasmatron nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, dass die Kathode (9) eine im wesentlichen kegelförmige Spitze aufweist, an welcher der Lichtbogen ansetzt.
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH317196 | 1996-12-23 | ||
CH3171/96 | 1996-12-23 | ||
CH317196 | 1996-12-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0851720A1 true EP0851720A1 (de) | 1998-07-01 |
EP0851720B1 EP0851720B1 (de) | 1999-10-06 |
Family
ID=4250164
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810823A Expired - Lifetime EP0851720B1 (de) | 1996-12-23 | 1997-11-03 | Indirektes Plasmatron |
Country Status (6)
Country | Link |
---|---|
US (1) | US5944901A (de) |
EP (1) | EP0851720B1 (de) |
JP (1) | JPH10189289A (de) |
AT (1) | ATE185465T1 (de) |
CA (1) | CA2225211A1 (de) |
DE (1) | DE59700524D1 (de) |
Cited By (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1132148A2 (de) * | 2000-03-08 | 2001-09-12 | Wolff Walsrode AG | Verfahren zur Oberflächenaktivierung bahnförmiger Werkstoffe |
EP1132195A2 (de) * | 2000-03-08 | 2001-09-12 | Wolff Walsrode AG | Oberflächenbehandlung oder Beschichtung bahnförmiger Werkstoffe mittels eines indirekten atmosphärischen Plasmatrons |
WO2003024716A1 (de) * | 2001-09-19 | 2003-03-27 | Wipak Walsrode Gmbh & Co. Kg | Verfahren zum zusammenfügen von materialien mittels atmosphärischem plasma |
DE102004015216B4 (de) * | 2004-03-23 | 2006-07-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Modul und Verfahren für die Modifizierung von Substratoberflächen bei Atmosphärenbedingungen |
Families Citing this family (18)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE10011274A1 (de) * | 2000-03-08 | 2001-09-13 | Wolff Walsrode Ag | Plasmabehandelte bahnförmige Werkstoffe |
DK1326718T3 (da) * | 2000-10-04 | 2004-04-13 | Dow Corning Ireland Ltd | Fremgangsmåde og apparat til dannelse af en belægning |
GB0208261D0 (en) * | 2002-04-10 | 2002-05-22 | Dow Corning | An atmospheric pressure plasma assembly |
TW200409669A (en) * | 2002-04-10 | 2004-06-16 | Dow Corning Ireland Ltd | Protective coating composition |
TW200308187A (en) * | 2002-04-10 | 2003-12-16 | Dow Corning Ireland Ltd | An atmospheric pressure plasma assembly |
NL1021185C2 (nl) * | 2002-07-30 | 2004-02-03 | Fom Inst Voor Plasmafysica | Inrichting voor het behandelen van een oppervlak van een substraat en een plasmabron. |
DE10239875B4 (de) * | 2002-08-29 | 2008-11-06 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zur großflächigen Beschichtung von Substraten bei Atmosphärendruckbedingungen |
GB0323295D0 (en) * | 2003-10-04 | 2003-11-05 | Dow Corning | Deposition of thin films |
WO2006048650A1 (en) * | 2004-11-05 | 2006-05-11 | Dow Corning Ireland Limited | Plasma system |
DE102004059549A1 (de) * | 2004-12-10 | 2006-06-22 | Mtu Aero Engines Gmbh | Verfahren zur Beschichtung eines Werkstücks |
GB0509648D0 (en) * | 2005-05-12 | 2005-06-15 | Dow Corning Ireland Ltd | Plasma system to deposit adhesion primer layers |
DE102008018589A1 (de) | 2008-04-08 | 2009-11-05 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Verfahren und Vorrichtung zum Zünden eines Lichtbogens |
TWI498053B (zh) * | 2008-12-23 | 2015-08-21 | Ind Tech Res Inst | 電漿激發模組 |
US10304665B2 (en) | 2011-09-07 | 2019-05-28 | Nano-Product Engineering, LLC | Reactors for plasma-assisted processes and associated methods |
US20130129937A1 (en) * | 2011-11-23 | 2013-05-23 | United Technologies Corporation | Vapor Deposition of Ceramic Coatings |
CH712835A1 (de) * | 2016-08-26 | 2018-02-28 | Amt Ag | Plasmaspritzvorrichtung. |
US11834204B1 (en) | 2018-04-05 | 2023-12-05 | Nano-Product Engineering, LLC | Sources for plasma assisted electric propulsion |
CN114189972A (zh) * | 2021-12-02 | 2022-03-15 | 华中科技大学 | 一种稳定等离子体放电装置、控制方法和系统 |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786306A (en) * | 1971-03-03 | 1974-01-15 | Soudure Electr Procedes Arcos | Plasma curtain of two or more plasmas |
EP0500491A1 (de) * | 1991-02-21 | 1992-08-26 | Sulzer Metco AG | Plasmaspritzgerät zum Versprühen von pulverförmigem oder gasförmigem Material |
EP0506552A1 (de) * | 1991-03-26 | 1992-09-30 | Agence Spatiale Europeenne | Verfahren zur Behandlung zum Beispiel einer Substratoberfläche durch Spritzen eines Plasmaflusses und Vorrichtung zur Durchführung des Verfahrens |
Family Cites Families (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4948485A (en) * | 1988-11-23 | 1990-08-14 | Plasmacarb Inc. | Cascade arc plasma torch and a process for plasma polymerization |
-
1997
- 1997-11-03 EP EP97810823A patent/EP0851720B1/de not_active Expired - Lifetime
- 1997-11-03 DE DE59700524T patent/DE59700524D1/de not_active Expired - Lifetime
- 1997-11-03 AT AT97810823T patent/ATE185465T1/de not_active IP Right Cessation
- 1997-11-10 JP JP9307037A patent/JPH10189289A/ja not_active Withdrawn
- 1997-12-18 CA CA002225211A patent/CA2225211A1/en not_active Abandoned
- 1997-12-19 US US08/994,091 patent/US5944901A/en not_active Expired - Fee Related
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3786306A (en) * | 1971-03-03 | 1974-01-15 | Soudure Electr Procedes Arcos | Plasma curtain of two or more plasmas |
EP0500491A1 (de) * | 1991-02-21 | 1992-08-26 | Sulzer Metco AG | Plasmaspritzgerät zum Versprühen von pulverförmigem oder gasförmigem Material |
EP0506552A1 (de) * | 1991-03-26 | 1992-09-30 | Agence Spatiale Europeenne | Verfahren zur Behandlung zum Beispiel einer Substratoberfläche durch Spritzen eines Plasmaflusses und Vorrichtung zur Durchführung des Verfahrens |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1132148A2 (de) * | 2000-03-08 | 2001-09-12 | Wolff Walsrode AG | Verfahren zur Oberflächenaktivierung bahnförmiger Werkstoffe |
EP1132195A2 (de) * | 2000-03-08 | 2001-09-12 | Wolff Walsrode AG | Oberflächenbehandlung oder Beschichtung bahnförmiger Werkstoffe mittels eines indirekten atmosphärischen Plasmatrons |
EP1132195A3 (de) * | 2000-03-08 | 2003-04-23 | Wipak Walsrode GmbH & Co. KG | Oberflächenbehandlung oder Beschichtung bahnförmiger Werkstoffe mittels eines indirekten atmosphärischen Plasmatrons |
EP1132148A3 (de) * | 2000-03-08 | 2003-04-23 | Wipak Walsrode GmbH & Co. KG | Verfahren zur Oberflächenaktivierung bahnförmiger Werkstoffe |
WO2003024716A1 (de) * | 2001-09-19 | 2003-03-27 | Wipak Walsrode Gmbh & Co. Kg | Verfahren zum zusammenfügen von materialien mittels atmosphärischem plasma |
DE10146295A1 (de) * | 2001-09-19 | 2003-04-03 | Wipak Walsrode Gmbh & Co Kg | Verfahren zum Zusammenfügen von Materialien mittels atmosphärischen Plasma |
DE102004015216B4 (de) * | 2004-03-23 | 2006-07-13 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung e.V. | Modul und Verfahren für die Modifizierung von Substratoberflächen bei Atmosphärenbedingungen |
Also Published As
Publication number | Publication date |
---|---|
CA2225211A1 (en) | 1998-06-23 |
ATE185465T1 (de) | 1999-10-15 |
DE59700524D1 (de) | 1999-11-11 |
US5944901A (en) | 1999-08-31 |
EP0851720B1 (de) | 1999-10-06 |
JPH10189289A (ja) | 1998-07-21 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0851720B1 (de) | Indirektes Plasmatron | |
DE2164270C3 (de) | Plasmastrahlgenerator | |
DE3878570T2 (de) | Verfahren und apparat zum hochleistungsplasmaspritzen. | |
DE69512247T2 (de) | Elektrode für einen lichtbogenplasmabrenner | |
DE68926923T2 (de) | Mikrowellenionenquelle | |
DE3522888A1 (de) | Vorrichtung zum erzeugen eines plasmastrahls | |
DE68927043T2 (de) | Plasma-schalter mit einer chrom-kathode mit strukturierter oberfläche | |
DE9215133U1 (de) | Plasmaspritzgerät | |
DE3429591A1 (de) | Ionenquelle mit wenigstens zwei ionisationskammern, insbesondere zur bildung von chemisch aktiven ionenstrahlen | |
DE2254504C2 (de) | Winkeldüsenelektrode für Plasmastrahlgeneratoren | |
DE69203127T2 (de) | Verfahren zur Behandlung zum Beispiel einer Substratoberfläche durch Spritzen eines Plasmaflusses und Vorrichtung zur Durchführung des Verfahrens. | |
DE112006001797B4 (de) | Plasmagasverteiler mit integrierten Dosier- und Strömungsdurchgängen | |
DE69312036T2 (de) | Wirbel-Lichtbogengenerator und Verfahren zur Steuerung der Lichtbogenlänge | |
DE2133173A1 (de) | Verfahren und Vorrichtung zum Abbeizen von oxydiertem Blech | |
DE3787804T2 (de) | Elektrodenstruktur für einen plasmabrenner vom non-transfer-typ. | |
DE69609191T2 (de) | Vierdüsen-plasmaerzeugungsvorrichtung zur erzeugung eines aktivierter strahles | |
DE19881726B4 (de) | Verfahren zum Sprühen von Plasma | |
DE1764978C3 (de) | Hochfrequenz-Plasmagenerator | |
DE10127013A1 (de) | Lichtbogen-Verdampfungsvorrichtung | |
DE2135207A1 (de) | Werkzeug zum elektrolytischen Bohren von Lochern | |
DE1589562B2 (de) | Verfahren zur Erzeugung eines Plasmastroms hoher Temperatur | |
DE1440618B2 (de) | ||
DE2609178A1 (de) | Plasmabrenner | |
DE1539691C2 (de) | Verfahren zur Inbetriebnahme des Lichtbogens eines Plasmastrahlerzeugers und Vorrichtung zu seiner Durchführung | |
DE2900715C2 (de) | Plasmastrahlgerät |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
AX | Request for extension of the european patent |
Free format text: AL;LT;LV;MK;RO;SI |
|
17P | Request for examination filed |
Effective date: 19980806 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
AKX | Designation fees paid |
Free format text: AT CH DE FR GB IT LI NL SE |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE FR GB IT LI NL SE |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
RBV | Designated contracting states (corrected) |
Designated state(s): AT CH DE FR GB IT LI NL SE |
|
17Q | First examination report despatched |
Effective date: 19990311 |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT CH DE FR GB IT LI NL SE |
|
REF | Corresponds to: |
Ref document number: 185465 Country of ref document: AT Date of ref document: 19991015 Kind code of ref document: T |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 19991013 Year of fee payment: 3 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG Ref country code: CH Ref legal event code: EP |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 19991018 Year of fee payment: 3 |
|
REF | Corresponds to: |
Ref document number: 59700524 Country of ref document: DE Date of ref document: 19991111 |
|
ET | Fr: translation filed | ||
ITF | It: translation for a ep patent filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 19991213 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20001103 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY Effective date: 20001129 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
EUG | Se: european patent has lapsed |
Ref document number: 97810823.1 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20011119 Year of fee payment: 5 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20011130 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20020601 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
NLV4 | Nl: lapsed or anulled due to non-payment of the annual fee |
Effective date: 20020601 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20021103 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20051103 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160129 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160129 Year of fee payment: 19 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59700524 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20170731 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20161130 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20170601 |