EP0845910B1 - Circuit de séparation Y/C à 2 lignes - Google Patents

Circuit de séparation Y/C à 2 lignes Download PDF

Info

Publication number
EP0845910B1
EP0845910B1 EP97119035A EP97119035A EP0845910B1 EP 0845910 B1 EP0845910 B1 EP 0845910B1 EP 97119035 A EP97119035 A EP 97119035A EP 97119035 A EP97119035 A EP 97119035A EP 0845910 B1 EP0845910 B1 EP 0845910B1
Authority
EP
European Patent Office
Prior art keywords
detector
signal
circuit
correlation
band
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97119035A
Other languages
German (de)
English (en)
Other versions
EP0845910A2 (fr
EP0845910A3 (fr
Inventor
Hiroko Sugimoto
Atsuhisa Kageyama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Publication of EP0845910A2 publication Critical patent/EP0845910A2/fr
Publication of EP0845910A3 publication Critical patent/EP0845910A3/fr
Application granted granted Critical
Publication of EP0845910B1 publication Critical patent/EP0845910B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04NPICTORIAL COMMUNICATION, e.g. TELEVISION
    • H04N9/00Details of colour television systems
    • H04N9/77Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase
    • H04N9/78Circuits for processing the brightness signal and the chrominance signal relative to each other, e.g. adjusting the phase of the brightness signal relative to the colour signal, correcting differential gain or differential phase for separating the brightness signal or the chrominance signal from the colour television signal, e.g. using comb filter

Definitions

  • the present invention relates to comb-line filters for 2-line YC separation.
  • 2-line luminance-chrominance (YC) separation devices are increasingly drawing attention as inexpensive means for accurately separating luminance (Y) and chrominance (C) signals.
  • Fig. 11 is a block diagram of a 2-line YC separation device disclosed in Japanese Laid-open Patent Application No. H1-117494.
  • the 2-line YC separation device in Fig. 11 comprises a one horizontal scanning period delay circuit (1HDL) 2202, a subtractor 2203, another subtractor 2204, a band-pass filter (BPF) 2205, a switch circuit 2206, a chrominance subcarrier frequency trap circuit (T) 2207, a switch circuit 2208, a low-pass filter (LPF) 2211, a YL-correlation detector (YLC) 2212 (where the L component is the low-frequency luminance component), a band-pass filter (BPF) 2213, a chrominance detector (C) 2214, and an AND circuit 2215.
  • 1HDL 1HDL
  • the 2-line YC separation device separates a Y signal output 2209 and a chrominance signal output 2210 from a composite video signal 2201.
  • the Y signal is assumed to consist of a Y signal component YH in the chrominance frequency band and a Y signal YL other than YH.
  • the YL-correlation detector detects a line correlation (hereafter referred to as «correlation») between YL in a present line and YL in a signal delayed for one horizontal scanning period.
  • a signal after passing through the one horizontal scanning period delay circuit 2202, is subtracted from the current composite video signal. Then, this signal is made into a YL correlation output signal through the low pass filter circuit 2211.
  • the switch circuit 2208 is turned on and, at the same time, the switch circuit 2206 is switched to the current video signal 2201 side only when the YL-correlation detector 2212 determines that i) there is no correlation, and ii) the chrominance detector 2214 detects a chrominance signal or the Y signal in the frequency band of the chrominance signal (YH).
  • the switch circuit 2208 is turned off and the switch circuit 2206 is switched to the band-pass filter 2205.
  • YC in an input signal pattern as illustrated in Figs. 12A to 12J cannot be accurately separated.
  • Fig. 12A is the case when a Y signal, in a vertical direction on a screen, whose frequency is equivalent to that of the chrominance subcarrier frequency, exists up to the 3H line and disappears thereafter.
  • Fig. 12A is the composite video signal 2201; Fig. 12B is the output signal of the one horizontal scanning period delay circuit 2202; Fig. 12C is the output signal of the subtractor 2203; Fig. 12D is the output signal of the low-pass filter circuit 2211; Fig. 12E is the output of the YL-correlation detector 2212; Fig. 12F is the output of the chrominance detector 2214; Fig. 12G is the chrominance signal output from the chrominance output terminal 2210; and Fig. 12H is the Y signal output 2209 from the Y signal output terminal.
  • the output signal of the band-pass filter 2205 is the result of filtering the frequency component of the chrominance subcarrier in the output signal of the subtractor 2203, the output signal of the subtractor 2203 and the band-pass filter 2205 become identical when a video signal such as the signal of Fig. 12A is input.
  • the signal of Fig. 12E has the value «0» when there is a YL correlation, and «1» when there is no YL correlation.
  • the signal of Fig. 12F has the value «1» when a chrominance signal exists and «0» when there is no chrominance signal.
  • Fig. 12I shows the desirable chrominance signal to be output
  • Fig. 12 J shows the desirable Y signal to be output.
  • Figs. 12E and 12F there is no case when i) the YL-correlation detector 2212 does not detect a correlation, and ii) the chrominance detector 2214 detects the presence of the chrominance signal in lines of 1H, 2H, 3H, 4H, and 5H. Consequently, the switch circuit 2208 is turned off and the switch circuit 2206 is switched to the band-pass filter 2205.
  • the Y signal output becomes the same as the result of subtracting the output signal of the band-pass filter 2205, which is equal to the output signal of the subtractor 2203 in Fig. 12C, from the current composite video signal in Fig. 12A. Therefore, a signal in Fig. 12H is output.
  • the chrominance signal output is the output signal of the band-pass filter 2205 which is equal to the output signal of the subtractor 2203 in Fig. 12C, and therefore a signal in Fig. 12G is output.
  • a video image as illustrated in Fig. 12A in which the Y signal in a vertical direction on a screen (having a frequency equivalent to that of a chrominance subcarrier) exists up to the 3H line, and disappears thereafter, the Y signal displayed is as shown in Fig. 12H, and the chrominance signal displayed is as shown in Fig. 12G.
  • a desirable chrominance signal to be output is as shown in Fig. 12I and a desirable Y signal is as shown in Fig. 12J when the signal pattern shown in Fig. 12A is input.
  • the present invention reduces erroneous operation in comb-filters compared to the prior art, and provides an inexpensive 2-line YC separation device by reducing the number horizontal scanning period delay circuits.
  • a first delay circuit (1HDL1) 101 receives a composite video signal 100 and delays it for one horizontal scanning period.
  • a first band-pass filter (BPF 1) 102 receives the composite video signal 100, and passes through signals only in the frequency band of the chrominance signal.
  • a second band-pass filter (BPF2) 103 receives the output signal of the first delay circuit 101, and passes through signals only in the frequency band of the chrominance signal.
  • a C signal detector (C) 104 receives the output signal of the first band-pass filter 102 and the output signal 141 of the second band-pass filter 103, and detects a chrominance signal voltage.
  • a C-correlation detector (CC) 105 receives the output signal of the C signal detector 104.
  • a second delay circuit (1HDL2) 106A receives the output signal of the C-correlation detector 105, and delays it for one horizontal scanning period.
  • a third delay circuit (1HDL3) 106B receives the output signal of an AND circuit 125, and delays it for one horizontal scanning period.
  • a first inverter (INV1) 107 inverts the output signal of the first band-pass filter 102, and a second inverter (INV2) 108 inverts the output signal of the second band-pass filter 103.
  • a calculator (CAL) 109 receives the output signals of the first band-pass filter 102 and the second band-pass filter 103, and outputs a mean value of these signals.
  • a first switch determining circuit (SWD1) 110 receives the output signals 130, 131, 132 and 133 of the AND circuit 125, the third delay circuit 106B, the second delay circuit 106A, and the C-correlation detector 105, respectively, and produces a control signal for switching a first switch circuit (SW1) 112.
  • a second switch determining circuit (SWD2) 111 receives the output signals of the AND circuit 125, the third delay circuit 106B, the second delay circuit 106A, and the C-correlation detector 105, and produces a control signal for switching a second switch circuit (SW2) 113.
  • the first switch circuit 112 receives the output signal of the second inverter 108, second band-pass filter 103, and calculator 109, and switches the flow of signals responsive to the output of the first switch determining circuit 110.
  • a second switch circuit 113 receives the output signals of the second band-pass filter 103 and the calculator 109, and switches the flow of signals responsive to the output of the second switch determining circuit 111.
  • a 3-line-comb operational circuit (3 Line Comb) 114 receives the output signals 716, 715, and 714 of the first switch circuit 112, the second switch circuit 113, and the inverter 107, respectively, and performs an arithmetic operation.
  • a subtractor 115 subtracts the output signal of the 3-line-comb operational circuit 114 from the output signal of the first delay circuit 101, and outputs a Y output signal 117.
  • a filter circuit (F) 116 receives the output signal of the 3-line-comb operational circuit 114, filters it, and outputs a chrominance signal 118.
  • a difference detector (D) 119 receives the composite video signal 100 and the output signal of the first delay circuit 101, and detects and outputs a differential voltage from the difference of these two signals.
  • a YL difference detector (YLD) 120 detects an amplitude of the output signal of the difference detector 119 after removing its signal components having a frequency within the frequency band of the chrominance signal.
  • a YL-correlation detector (YLC) 121 receives the output signal of the YL difference detector 120, and determines the presence of a line correlation between the input signal and signal delayed for one horizontal scanning period (hereafter referred to as correlation).
  • a difference adaptive circuit (DA) 122 receives the output signal of the difference detector 119, and determines the presence of a correlation depending on the input signal.
  • the multiburst signal is assumed to be a successively transferred signal of a constant amplitude which is composed of a plurality of frequencies containing a chrominance subcarrier frequency in one line.
  • a multiburst detector (MB) 123 receives the output signals of the YL difference detector 120 and the difference adaptive circuit 122.
  • the multiburst detector 123 is turned on and passes through the output signal of the YL difference detector 120 to the C-correlation detector 105. If the output of the difference adaptive circuit 122 is no line correlation, the multiburst detector 123 turns off and does not pass through the output signal of the YL difference detector 120.
  • a YH-correlation detector (YHC) 124 receives the output signals of the first band-pass filter 102 and the second band-pass filter 103.
  • the AND circuit 125 receives the output signals of the YL-correlation detector 121 and the YH-correlation detector 124, and conducts the logical AND operation on these signals.
  • the first band-pass filter 102 and the second band-pass filter 103 are filters which pass signals in the frequency band of the chrominance signal.
  • the C signal detector 104 detects a chrominance signal voltage from the output signals of the first band-pass filter 102 and the second band-pass filter 103.
  • the C-correlation detector 105 refers to the results of the level of the chrominance signal detected by the C signal detector 104 and the output of the multiburst detector 123, and sets the logic output value to «1» if the logic output value exceeds a specified value based on the chrominance signal voltage detected by the C signal detector 104, and to «0» if the logic output value is below the specified value.
  • the difference detector 119 subtracts the output signal of the first delay circuit 101 from the composite video signal 100 to detect a Y input signal difference value.
  • the difference adaptive circuit 122 receives the output signal from the difference detector 119, and detects a correlation (line correlation) between both signals before the signal passes through the first band-pass filter 102 and the second band-pass filter 103.
  • the multiburst detector 123 is activated to control the threshold of the C-correlation detector 105 in order to heighten the correlation of the chrominance signal by adding the output signal of the YL difference detector 120 to the C-correlation detector 105.
  • the YH-correlation detector 124 is a circuit which detects a line correlation of a YH signal in the output signals from the first band-pass filter 102 and the second band-pass filter 103. When the YH-correlation detector 124 determines that there is a line correlation, the YH-correlation detector 124 outputs the value «1», and in other cases, YH-correlation detector 124 determines that there is no correlation.
  • the YL-correlation detector 121 outputs the value «1» if there is line correlation responsive to the output of the YL difference detector 120, and outputs the value «0» in other cases.
  • the Y correlation is determined by conducting the logical AND operation on the output signals of the YL-correlation detector 121 and the YH-correlation detector 124 in the AND circuit 125.
  • the first switch determining circuit 110 and the second switch determining circuit 111 receive the output signals of the C-correlation detector 105, AND circuit 125, second delay circuit 106A, and third delay circuit 106B, and produce a switching control signal in accordance with the logic as shown in Figs. 2A and 2B for switching the output signal of the first switch circuit 112 and the second switch circuit 113.
  • Fig. 2A shows the logic table for an output signal 716 of the switch circuit 112
  • Fig. 2B shows a logic table for an output signal 715 of the second switch circuit 113
  • Fig. 2A shows that the output signal 716 of the first switch circuit 112 is determined by an output signal 130 of the AND circuit 125, a signal 131 delayed for one horizontal scanning period by the third delay circuit 106B, a signal 132 delayed for one horizontal scanning period by the second delay circuit 106A, and an output signal 133 of the C-correlation detector 105.
  • Each value is set to 1 when there is a correlation, and 0 when there is no correlation.
  • the output signal 716 of the first switch circuit 112 is switched to one of input signals 140, 141, and 142 based on the combination of the signals 130, 131, 132, and 133.
  • Fig. 2B shows a logic table for an output signal 715 of the second switch circuit 113, and the output signal 715 is switched to one of input signals 141 and 142 based on the combination of the signals 130, 131, 132, and 133.
  • Fig. 3 shows the 3-line-comb operational circuit 114. It is a filter originally developed for 3-line-comb operational circuits.
  • the output signal 716 of the first switch circuit 112, the output signal 715 of the second switch circuit 113, and the output signal 714 of the first inverter 107 are input to the 3-line comb operational circuit 114.
  • the subtractor 115 subtracts the output signal of the 3-line-comb operational circuit 114 from the output signal of the first delay circuit 101, and produces the Y signal output 117.
  • the filter circuit 116 filters the output signal of the 3-line-comb operational circuit 114, and produces the chrominance signal output 118. It is possible that the subtractor 115 subtracts the chrominance signal output 118 from the output signal of the first delay circuit 101 and output Y signal output 117 instead of subtracting the output signal of the 3-line-comb operational circuit 114 from the output signal of the first delay circuit 101. This method can be applied not only to the first exemplary embodiment but also to the second to the sixth exemplary embodiments described below.
  • Figs. 4A to 4P show signal waveforms at each part.
  • Fig. 4A shows the current signal
  • Fig. 4B shows a signal after delaying the signal in Fig. 4A for one horizontal scanning period.
  • Figs. 4C and 4D show signals after filtering through signals in the frequency band of the chrominance signal from the signal in Fig. 4B and Fig. 4A.
  • Figure 4E shows the output of the YL-correlation detector 121. Looking at the Y signal YL in Figs. 4A and 4B, the value «1» is output when there is a line correlation in the YL correlation detector 121 and the value «0» is output when there is no correlation.
  • the value «1» is output when there is a correlation in the difference adaptive circuit 122, and the value «0» is output when there is no correlation.
  • Fig. 4F shows the output of the difference adaptive circuit 122.
  • Figure 4G shows the output of the Y-correlation detector 124.
  • the value «1» is output when there is a correlation in the Y-correlation detector 124, and the value «0» is output when there is no correlation.
  • Fig. 4H shows the output signal 133 of the C-correlation detector 105. Again, referring to Figs.
  • the multiburst detector 123 passes the output of YL difference detector 120 through the multiburst detector 123 and adds it to the C-correlation unit 105 when the output of the multiburst detector 123 is «1» because the output of the difference adaptive circuit 122 is «1».
  • the multiburst detector 123 controls the threshold of the C-correlation detector 105 in order to heighten the line correlation of the chrominance signal.
  • the C-correlation detector 105 outputs the value «1» when there is line correlation and outputs the value «0» when there is no correlation.
  • Fig. 41 shows the AND circuit 125 output of the YH-correlation detector 124 as shown in Fig.
  • Fig. 4G shows a signal formed by delaying the signal shown in Fig. 4H for one horizontal scanning period.
  • Fig. 4K shows a signal formed by delaying the signal shown in Fig. 4I for one horizontal scanning period.
  • Signals 133, 130, 132, and 131 shown in Figs. 4H, 4I, 4J, and 4K are input to the first switch determining circuit 110 and the second switch determining circuit 111.
  • the output signals 716 and 715 shown in Figs. 4L and 4M, respectively, of the first switch circuit 112 and the second switch circuit 113 are produced in accordance with the logic tables in Figs. 2A and 2B.
  • Fig. 4J shows a signal formed by delaying the signal shown in Fig. 4H for one horizontal scanning period.
  • Fig. 4K shows a signal formed by delaying the signal shown in Fig. 4I for one horizontal scanning period.
  • FIG. 4N shows an inverted signal of the signal shown in Fig. 4C.
  • the signals 716, 715, and 714 shown in Figs. 4L, 4M, and 4N are input to respective terminals of the 3-line-comb operational circuit shown in Fig. 3, and its output signal passes through filter circuit 116 to produce the chrominance signal 118 shown in Fig. 40.
  • the Y output signal 117 as shown in Fig. 4P is produced by subtracting the output signal of the 3-line-comb operational circuit 114 from the signal shown in Fig. 4B.
  • FIG. 5 A second exemplary embodiment of the present invention is explained with reference to Fig. 5. Blocks which are the same as the first exemplary embodiment shown in Fig. 1 are given the same numerals, and thus their explanation is not repeated.
  • a C-correlation detector (CC) 205 receives the output signal of the C signal detector 104, and outputs the signal to a second delay circuit 206A.
  • a third delay circuit 206B receives the output signals of a YL-correlation detector 221, and delays it for one horizontal scanning period.
  • a switch determining circuit 210 receives the output signals of the YL-correlation detector 221, third delay circuit 206B, second delay circuit 206A, and C-correlation detector 205, and produces a control signal for switching the first switch circuit 112.
  • a switch determining circuit 211 receives the output signals of the YL-correlation detector 221, third delay circuit 206B, second delay circuit 206A, and C-correlation detector 205, and produces a control signal for switching the second switch circuit 113.
  • the YL-correlation detector 221 determines the presence of line correlation responsive to the output signal of the YL difference detector 120. The remaining configuration is the same as the first exemplary embodiment.
  • the operation of a 2-line YC separation device configured as above is outlined next.
  • the first band-pass filter 102 and the second band-pass filter 103 are filters which pass signals in the frequency band of the chrominance signal.
  • the C signal detector 104 detects a chrominance signal voltage from the output signals of the first band-pass filter 102 and the second band-pass filter 103.
  • the C-correlation detector 205 outputs the value «1» if there is line correlation and outputs the value «0» in other cases based on the chrominance signal voltage detected by the C signal detector 104.
  • the difference detector 119 subtracts the output signal of the first delay circuit 101 from the composite video signal 100, and the YL difference detector 120 detects a Y signal difference value.
  • the YL-correlation detector 221 outputs the value «1» depending on the output of the YL difference detector 120. In other words, the YL-correlation detector 221 outputs the value «1» if a line correlation is detected based on the Y signal difference value, and outputs the value «0» in other cases.
  • the Y correlation is determined by the output signal of this YL-correlation detector 221.
  • the switch determining circuits 210 and 211 receive output signals of the C-correlation detector 205, YL-correlation detector 221, second delay circuit 206A, and third delay circuit 206B, and produce a switching control signal in accordance with the logic as shown in Figs. 2A and 2B to switch the output signal of the first switch circuit 112 and the second switch circuit 113, respectively.
  • the second exemplary embodiment produces waveforms shown in Figs. 4A to 4P, as in the first exemplary embodiment, and therefore is capable of separating the YC signals as in the first exemplary embodiment.
  • FIG. 6 A third exemplary embodiment of the present invention is explained with reference to Fig. 6. Blocks which have the same functions as the first exemplary embodiment shown in Fig. 1 are given the same numerals, and thus their explanation is not repeated.
  • a third delay circuit 306B receives the output signal of a YH-correlation detector 324, and delays it for one horizontal scanning period.
  • a first switch determining circuit 310 receives the output signals of a YH-correlation detector 324, a second delay circuit 306A, the third delay circuit 306B, and the C-correlation detector 105, and produces a control signal for switching the first switch circuit 112.
  • a second switch determining circuit 311 receives the output signals of the YH-correlation detector 324, second delay circuit 306A, third delay circuit 306B, and C-correlation detector 105, and produces a control signal for switching the second switch circuit 113.
  • the output signal of a YL difference detector 320 is input to a YL correlation detector 321 and a multiburst detector 323.
  • the multiburst detector 323 inputs the output signal of a YL difference detector 320 and the output signal of the YL correlation detector 321.
  • the YL correlation detector 321 output the value «1» the multiburst detector 323 passes the output signal of a YL difference detector 320 to the C-correlation detector 105.
  • the remaining configuration is the same as the first exemplary embodiment.
  • the operation of a 2-line YC separation device configured as above is outlined next.
  • the first band-pass filter 102 and the second band-pass filter 103 are filters which pass signals in the frequency band of the chrominance signal.
  • the C signal detector 104 detects a chrominance signal voltage from the output signals of the first band-pass filter 102 and the second band-pass filter 103.
  • the C-correlation detector 105 refers to the chrominance signal voltage detected by the C signal detector 104 and the output of the multiburst detector 323, and outputs the value «1» if there is line correlation and outputs the value «0» in other cases based on a value detected by the C signal detector 104.
  • the difference detector 119 subtracts the output signal of the first delay circuit 101 from the composite video signal 100, and the YL difference detector 320 detects a YL signal voltage.
  • the multiburst detector 323 is activated responsive to the output signal of the YL difference detector 320, and the output signal of the YL difference detector 320 is added to the C-correlation detector 105 to intensify the chrominance correlation.
  • the YH-correlation detector 324 detects the Y signal in the output signals of the first band-pass filter 102 and the second band-pass filter 103, and determines a signal to be correlated when the Y signal is input. In other cases, the Y-correlation detector 324 determines a signal to be not correlated.
  • the switch determining circuits 310 and 311 receive the output signals of the C-correlation detector 105, YH-correlation detector 324, third delay circuit 306B, and second delay circuit 306A, and produce a switching control signal in accordance with the logic as shown in Figs. 2A and 2B to switch the output signal of the first switch circuit 112 and second switch circuit 113, respectively.
  • the third exemplary embodiment produces waveforms as shown in Figs. 4A to 4P, as in the first exemplary embodiment, and therefore is capable of separating the YC signals as in the first exemplary embodiment.
  • FIG. 7 Blocks which have the same functions as the first exemplary embodiment shown in Fig. 1 are given the same numerals, and thus their explanation is not repeated.
  • a YL difference detector 420 detects the amplitude of the output signal of the difference detector 119 after removing the frequency component of the chrominance signal, and outputs it to the multiburst detector 123.
  • a YH-correlation detector 424 receives output signals from the first band-pass filter 102 and the second band-pass filter 103, and outputs a signal to a delay circuit 406B. The remaining configuration is the same as in the first exemplary embodiment.
  • the operation of a 2-line YC separation device configured as above is outlined next.
  • the first band-pass filter 102 and the second band-pass filter 103 are filters which pass signals in the frequency band of the chrominance signal.
  • the C signal detector 104 detects a chrominance signal voltage from the output signals of the first band-pass filter 102 and the second band-pass filter 103.
  • the C-correlation detector 105 refers to a chrominance signal voltage detected by the C signal detector 104 and the output of the multiburst detector 123, and determines a signal to be line correlated when a chrominance signal is input and a signal not to be line correlated in other cases.
  • the difference detector 119 subtracts the output signal of the first delay circuit 101 from the composite video signal 100, and detects a difference signal voltage.
  • the difference adaptive circuit 122 receives the output signal of the difference detector 119, and detects a correlation before the signal passes through the first band-pass filter 102 and the second band-pass filter 103.
  • the multiburst detector 123 is turned on when the difference adaptive circuit 122 determines the signal to be correlated, and the output signal of the YL difference detector 420 is added to the C-correlation detector 105 to intensify the chrominance correlation.
  • the YH-correlation detector 424 detects the Y signal in the output signals of the first band-pass filter 102 and the second band-pass filter 103, determines a signal to be correlated when the Y signal is input, and determines a signal to be not correlated in other cases.
  • Switch determining circuits 410 and 411 receive the output signals of the C-correlation detector 105, YH-correlation detector 424, third delay circuit 406B, and second delay circuit 406A, and produce a switching control signal in accordance with the logic as shown in Figs. 2A and 2B to switch the output signal of the first switch circuit 112 and the second switch circuit 113, respectively.
  • the fourth exemplary embodiment produces waveforms as shown in Figs. 4A to 4P, as in the first exemplary embodiment, and therefore is capable of separating the YC signals as in the first exemplary embodiment.
  • FIG. 8 A fifth exemplary embodiment of the present invention is explained with reference to Fig. 8. Blocks which have the same functions as the first exemplary embodiment shown in Fig. 1 are given the same numerals, and thus their explanation is not repeated.
  • a YL difference detector 520 detects an amplitude of the output signal of the difference detector 119 after removing signal components in the frequency band of the chrominance signal, and outputs it to the YL-correlation detector 521.
  • the remaining configuration is the same as in the first exemplary embodiment.
  • the operation of a 2-line YC separation device configured as above is outlined next.
  • the first band-pass filter 102 and the second band-pass filter 103 are filters which pass signals in the frequency band of the chrominance signal.
  • the C signal detector 104 detects a chrominance signal voltage from the output signals of the first band-pass filter 102 and the second band-pass filter 103.
  • the C-correlation detector 105 refers to a chrominance signal voltage detected by the C signal detector 104, and determines a signal to be correlated when a chrominance signal is input and a signal to be not correlated in other cases.
  • the difference detector 119 subtracts the output signal of the first delay circuit 101 from the composite video signal 100, and the YL difference detector 520 detects a difference signal voltage.
  • the YH-correlation detector 124 detects a Y signal in the output signals of the first band-pass filter 102 and the second band-pass filter 103. When the YH signal is input, the YH-correlation detector 124 determines that there is line correlation, and in other cases, the YH-correlation detector 124 determines that there is no line correlation.
  • the YL-correlation detector 521 determines line correlation from the output of the YL difference detector 520. In other cases, the YL-correlation detector 521 determines that there is no correlation.
  • the Y correlation is determined by conducting the logical AND operation on the output signals of the YL-correlation detector 521 and the YH-correlation detector 124 by the AND circuit 125.
  • the first switch determining circuit 110 and the second switch determining circuit 111 receive the output signals of the C-correlation detector 105, AND circuit 125, third delay circuit 106B, and second delay circuit 106A, and produce a switching control signal in accordance with the logic as shown in Figs. 2A and 2B to switch the output signal of the first switch circuit 112 and the second switch circuit 113.
  • the fifth exemplary embodiment produces waveforms as shown in Figs. 4A to 4P, as in the first exemplary embodiment, and therefore is capable of separating the YC signals as in the first exemplary embodiment.
  • FIG. 9 Blocks which are the same as the first exemplary embodiment shown in Fig. 1 are given the same numerals, and thus their explanation is not repeated.
  • a C-correlation detector 605 receives the output signal of the C signal detector 104.
  • a first correlation extension circuit 626A and a second correlation extension circuit extend the no-correlation state of the input signal with respect to time.
  • a second delay circuit 606A receives the output signal of the first correlation extension circuit 626A, and delays the input signal for one horizontal scanning period, and a third delay circuit 606B receives the output signal of the second correlation extension circuit 626B, and delays the input signal for one horizontal period.
  • a first switch determining circuit 610 receives the output signals of the second correlation extension circuit 626B, third delay circuit 606B, second delay circuit 606A, and the first correlation extension circuit 626A, and produces a control signal for switching the first switch circuit 112.
  • a second switch determining circuit 611 receives the output signals of the second correlation extension circuit 626B, third delay circuit 606B, second delay circuit 606A, and first correlation extension circuit 626A, and produces a control signal for switching the second switch circuit 113.
  • a YH-correlation detector 624 receives the output signals of the first band-pass filter 102 and second band-pass filter 103.
  • the operation of a 2-line YC separation device configured as above is outlined next.
  • the first band-pass filter 102 and the second band-pass filter 103 are filters which pass signals in the frequency band of the chrominance signal.
  • the C signal detector 104 detects a chrominance signal voltage from the output signals of the first band-pass filter 102 and the second band-pass filter 103.
  • the C-correlation detector 605 refers to the chrominance signal voltage detected by the C signal detector 104, and determines a signal to be correlated when a chrominance signal is input and a signal not to be correlated in other cases.
  • the YH-correlation detector 624 is a circuit which detects a Y signal in the output signals from the first band-pass filter 102 and the second band-pass filter 103. When the Y signal is input, the YH-correlation detector 624 determines that there is line correlation, and in other cases, the YH-correlation detector 624 determines that there is no line correlation.
  • Figs. 10A to 10E The operation of the first correlation extension circuit 626A and the second correlation extension circuit 626B are explained with reference to Figs. 10A to 10E. If an input signal, as shown in Fig. 10A, is sampled at the timing as shown in Fig. 10B, namely at a sampling frequency which is an even multiple of the input signal frequency, the output is changed to the values « 1 » and «0» alternately as shown in Fig. 10C. Fig. 10D shows a signal after extending the signal shown in Fig. 10C with respect to time. Fig. 10E shows the output signal of the logical AND operation of the signals shown in Figs. 10C and 10D. Consequently, instability of the correlation detection can be prevented.
  • the first switch determining circuit 610 and second switch determining circuit 611 receive a signal obtained by inputting the output signal of the C-correlation detector 605 to the correlation extension circuit 626A, a signal obtained by inputting the output signal of the Y-correlation detector 624 to the correlation extension circuit 626B, the output signal of the second delay circuit 606A, and the output signal of the third delay circuit 606B, and produce a switching control signal in accordance with the logic as shown in Figs. 2A and 2B to switch the output signal of the first switch circuit 112 and the second switch circuit 113, respectively.
  • the sixth exemplary embodiment produces the waveforms shown in Figs. 4A to 4P, as in the first exemplary embodiment, and therefore is capable of separating the YC signals as in the first exemplary embodiment.
  • the exemplary embodiments of the present invention relate to an NTSC system but may also be applied to a PAL system.
  • a PAL system two horizontal scanning period delay circuits are preferably used in Figs. 1, 5, 6, 7, 8, and 9 in place of the one horizontal scanning period delay circuits.

Claims (12)

  1. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes en vue d'une utilisation avec un signal vidéo d'entrée composite, ledit dispositif comprenant :
    un moyen à retard (101) destiné à retarder le signal vidéo d'entrée composite et générer un signal vidéo composite retardé,
    un moyen de filtre (102, 103) destiné à filtrer au moins l'un dudit signal vidéo composite retardé et dudit signal vidéo d'entrée composite afin de produire un signal vidéo filtré,
    un moyen de détecteur (104, 120, 221) couplé audit moyen de filtre destiné à détecter au moins l'un de
    i) une première tension d'une partie de chrominance dudit signal vidéo d'entrée composite, et
    ii) une corrélation de lignes dudit signal vidéo d'entrée composite,
    un moyen d'inverseur (107, 108) couplé audit moyen de filtre, destiné à inverser ledit signal vidéo filtré afin de produire un signal vidéo filtré inversé,
    un moyen de commutation (112, 113) pour coupler sélectivement l'un i) du signal vidéo filtré inversé et ii) dudit signal vidéo filtré à un moyen de filtre en peigne (114) en réponse à un signal de sortie dudit moyen de détecteur,
    ledit moyen de filtre en peigne (114) étant en outre couplé audit moyen d'inverseur (107), ledit moyen de filtre en peigne produisant un signal vidéo en peigne, et
    un second moyen de filtre (116) destiné à filtrer ledit signal vidéo en peigne afin de produire un signal de chrominance filtré.
  2. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 1, comprenant en outre un moyen de soustracteur (115) couplé audit moyen à retard (101) et audit moyen de filtre en peigne (114), destiné à soustraire ledit signal vidéo en peigne dudit signal vidéo composite retardé afin de produire un signal de sortie de luminance.
  3. Dispositif de séparation de luminance-chrominance (YC)à 2 lignes en vue d'une utilisation avec un signal vidéo d'entrée composite, ledit dispositif comprenant :
    un moyen à retard (101) destiné à retarder le signal vidéo d'entrée composite et générer un signal vidéo composite retardé,
    un moyen de filtre (102, 103) destiné à filtrer au moins l'un dudit signal vidéo composite retardé et dudit signal vidéo d'entrée composite afin de produire un signal vidéo filtré,
    un moyen de détecteur (104, 120, 221) couplé audit moyen de filtre, destiné à détecter au moins l'un de
    i) une première tension d'une partie de chrominance dudit signal vidéo d'entrée composite, et
    ii) une corrélation de lignes dudit signal vidéo d'entrée composite,
    un moyen d'inverseur (107, 108) couplé audit moyen de filtre, destiné à inverser ledit signal vidéo filtré afin de produire un signal vidéo filtré inversé,
    un moyen de commutation (112, 113) pour coupler sélectivement l'un i) du signal vidéo filtré inversé et ii) dudit signal vidéo filtré à un moyen de filtre en peigne (114) en réponse à un signal de sortie dudit moyen de détecteur,
    ledit moyen de filtre en peigne (114) étant en outre couplé audit moyen d'inverseur (107), ledit moyen de filtre en peigne produisant un signal vidéo en peigne, et
    un moyen de soustracteur (115) couplé audit moyen à retard (101) et audit moyen de filtre en peigne (114), destiné à soustraire ledit signal vidéo en peigne dudit signal vidéo composite retardé afin de produire un signal de sortie de luminance.
  4. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 1, 2 ou 3, comprenant en outre un moyen de calculateur (109) destiné à calculer une valeur moyenne sur la base de la sortie dudit moyen de filtre, et
    ledit moyen de commutation (112, 113) couplant en outre sélectivement la valeur moyenne audit moyen de filtre en peigne (114) en réponse audit signal de sortie dudit moyen de détecteur.
  5. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 4, dans lequel :
    le moyen à retard comprend un premier circuit à retard (101) destiné à retarder le signal vidéo d'entrée composite,
    le moyen de filtre comprend :
    un premier filtre passe-bande (102) destiné à filtrer ledit signal vidéo d'entrée composite, et
    un second filtre passe-bande (103) destiné à filtrer un signal de sortie dudit premier circuit à retard,
    le moyen de détecteur comprend :
    un détecteur de signal de chrominance (C) (104) couplé audit premier et audit second filtres passe-bande, destiné à détecter une tension d'un signal de chrominance,
    un détecteur de corrélation C (105 ; 205) couplé audit détecteur de signal de chrominance,
    un détecteur de différence (119) pour détecter une tension de signal de luminance (Y) à partir de la différence dudit signal vidéo d'entrée composite et du signal de sortie dudit premier circuit à retard,
    un détecteur de différence YL (120 ; 520) destiné à détecter une amplitude d'un signal de sortie dudit détecteur de différence après élimination d'une composante de fréquence dans une bande de fréquences du signal de chrominance,
    un détecteur de corrélation YL (121 ; 221 ; 521) destiné à détecter une corrélation de lignes en réponse à un signal de sortie dudit détecteur de différence YL,
    un second circuit à retard (106A ; 206A) destiné à retarder un signal de sortie dudit détecteur de corrélation C,
    un troisième circuit à retard (106B ; 206B) destiné à retarder un signal de sortie dudit détecteur de corrélation YL,
    le moyen d'inverseur comprend :
    un premier inverseur (107) destiné à inverser le signal de sortie dudit premier filtre passe-bande, et
    un second inverseur (108) destiné à inverser le signal de sortie dudit second filtre passe-bande,
    le moyen de calculateur comprend un calculateur (109) destiné à générer une valeur moyenne sur la base des signaux de sortie desdits premier et second filtres passe-bande,
    le moyen de commutation comprend :
    un premier circuit de détermination de commutateur (110 ; 210) couplé i) audit détecteur de corrélation YL, ii) audit détecteur de corrélation C, iii) audit second circuit à retard et iv) audit troisième circuit à retard,
    un second circuit de détermination de commutateur (111 ; 211) couplé i) audit détecteur de corrélation YL, ii) audit détecteur de corrélation C, iii) audit second circuit à retard et iv) audit troisième circuit à retard,
    un premier circuit de commutateur (112) qui fournit en sortie sélectivement l'un d'un signal de sortie i) dudit calculateur, ii) dudit second inverseur et iii) dudit second filtre passe-bande en réponse à un signal de sortie dudit premier circuit de détermination de commutateur, et
    un second circuit de commutateur (113) qui fournit en sortie sélectivement l'un des signaux de sortie dudit calculateur et dudit second filtre passe-bande en réponse à un signal de sortie dudit second circuit de détermination de commutateur,
    et le moyen de filtre en peigne comprend un circuit opérationnel en peigne à 3 lignes (114) couplé audit premier inverseur, audit premier circuit de commutateur et audit second circuit de commutateur.
  6. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 5, comprenant en outre :
    un détecteur de corrélation Y (124) couplé auxdits premier et second filtres passe-bande, et
    un circuit ET (125) pour combiner logiquement un signal de sortie dudit détecteur de corrélation Y et le signal de sortie dudit détecteur de corrélation YL,
    où ledit troisième circuit à retard (106B), ledit premier circuit de détermination de commutateur (110) et ledit second circuit de détermination de commutateur (111) sont couplés à une sortie dudit circuit ET (125).
  7. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 6, comprenant en outre :
    un circuit adaptatif de différence (122) couplé audit détecteur de différence pour déterminer la présence d'une corrélation de lignes, et
    un détecteur multisalve (123) couplé audit circuit adaptatif de différence et audit détecteur de différence YL, ledit détecteur multisalve faisant passer sélectivement le signal de sortie dudit détecteur de différence YL vers ledit détecteur de corrélation C lorsqu'une sortie dudit circuit adaptatif de différence indique la corrélation de lignes.
  8. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 5, dans lequel
    ledit premier circuit à retard (101) retarde le signal vidéo d'entrée composite pendant un multiple entier d'une période de balayage horizontal,
    ledit retard dudit second circuit à retard (106A ; 206A) est une période de balayage horizontal, et
    ledit retard dudit troisième circuit à retard (106B ; 206B) est une période de balayage horizontal..
  9. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 4, dans lequel :
    le moyen à retard comprend un premier circuit à retard (101) destiné à retarder le signal vidéo d'entrée composite pendant au moins une période de balayage horizontal,
    le moyen de filtre comprend :
    un premier filtre passe-bande (102) qui reçoit ledit signal vidéo d'entrée composite,
    un second filtre passe-bande (103) couplé audit premier circuit à retard,
    le moyen de détecteur comprend :
    un détecteur de signal de chrominance (C) (104) couplé audit premier et audit second filtres passe-bande, destiné à détecter une tension d'un signal de chrominance,
    un détecteur de corrélation C (105) couplé audit détecteur de signal C,
    un détecteur de différence (119) pour détecter une tension de signal de luminance (Y) à partir d'une différence dudit signal vidéo d'entrée composite et d'un signal de sortie dudit premier circuit à retard,
    un détecteur de différence YL (120 ; 320 ; 420) destiné à détecter une amplitude d'un signal de sortie dudit détecteur de différence après élimination d'une composante de fréquence dans une bande de fréquences du signal de chrominance,
    un détecteur multisalve (123 ; 323) couplé audit détecteur de différence YL, ledit détecteur multisalve faisant passer sélectivement un signal de sortie dudit détecteur de différence YL vers ledit détecteur de corrélation C,
    un détecteur de corrélation Y (124 ; 324 ; 424) couplé auxdits premier et second filtres passe-bande,
    un second circuit à retard (106A ; 306A ; 406A) destiné à retarder un signal de sortie dudit détecteur de corrélation C,
    un troisième circuit à retard (106B ; 306B ; 406B) destiné à retarder un signal de sortie dudit détecteur de corrélation Y,
    le moyen d'inverseur comprend :
    un premier inverseur (107) destiné à inverser un signal de sortie dudit premier filtre passe-bande, et
    un second inverseur (108) destiné à inverser un signal de sortie dudit second filtre passe-bande,
    le moyen de calculateur comprend un calculateur (109) destiné à générer une valeur moyenne sur la base des signaux de sortie desdits premier et second filtres passe-bande,
    le moyen de commutation comprend :
    un premier circuit de détermination de commutateur (110 ; 310 ; 410) couplé i) audit détecteur de corrélation Y, ii) audit détecteur de corrélation C, iii) audit second circuit à retard et iv) audit troisième circuit à retard,
    un second circuit de détermination de commutateur (111 ; 311 ; 411) couplé i) audit détecteur de corrélation Y, ii) audit détecteur de corrélation C, iii) audit second circuit à retard et iv) audit troisième circuit à retard,
    un premier circuit de commutateur (112) qui fournit en sortie sélectivement l'un des signaux de sortie i) dudit calculateur, ii) dudit second inverseur et iii) dudit second filtre passe-bande en réponse à un signal de sortie dudit premier circuit de détermination de commutateur,
    un second circuit de commutateur (113) qui fournit en sortie sélectivement l'un des signaux de sortie dudit calculateur et dudit second filtre passe-bande en réponse à un signal de sortie dudit second circuit de détermination de commutateur,
    et le moyen de filtre en peigne comprend un circuit opérationnel en peigne à 3 lignes (114) couplé audit premier inverseur, audit premier circuit de commutateur et audit second circuit de commutateur.
  10. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 9, comprenant en outre un circuit adaptatif de différence (122) couplé audit détecteur de différence pour i) déterminer la présence d'une corrélation de lignes et ii) fournir en sortie le résultat audit détecteur multisalve (123),
    ledit détecteur multisalve (123) étant couplé en outre audit circuit adaptatif de différence et faisant passer sélectivement le signal de sortie dudit détecteur de différence YL vers ledit détecteur de corrélation C (105) lorsque la sortie dudit circuit adaptatif de différence indique la corrélation de lignes.
  11. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 4, dans lequel :
    le moyen à retard comprend un premier circuit à retard (101) destiné à retarder le signal vidéo d'entrée composite,
    le moyen de filtre comprend :
    un premier filtre passe-bande (102) destiné à filtrer ledit signal vidéo d'entrée composite,
    un second filtre passe-bande (103) destiné à filtrer un signal de sortie dudit premier circuit à retard,
    le moyen de détecteur comprend :
    un détecteur de signal de chrominance (C) (104) couplé audit premier et audit second filtres passe-bande, destiné à détecter une tension d'un signal de chrominance,
    un détecteur de corrélation C (605) couplé audit détecteur de signal de chrominance C,
    un détecteur de corrélation Y (624) couplé auxdits premier et second filtres passe-bande,
    un premier circuit d'extension de corrélation (626A) destiné à retarder un signal de sortie dudit détecteur de corrélation C pendant un premier temps spécifié,
    un second circuit d'extension de corrélation (626B) destiné à retarder un signal de sortie dudit détecteur de corrélation Y pendant un second temps spécifié,
    un second circuit à retard (606A) destiné à retarder un signal de sortie dudit premier circuit d'extension de corrélation,
    un troisième circuit à retard (606B) destiné à retarder un signal de sortie dudit second circuit d'extension de corrélation,
    le moyen d'inverseur comprend :
    un premier inverseur (107) destiné à inverser un signal de sortie dudit premier filtre passe-bande, et
    un second inverseur (108) destiné à inverser un signal de sortie dudit second filtre passe-bande,
    le moyen de calculateur comprend un calculateur (109) destiné à générer une valeur moyenne sur la base des signaux de sortie desdits premier et second filtres passe-bande,
    le moyen de commutation comprend :
    un premier circuit de détermination de commutateur (610) couplé i) audit premier circuit d'extension de corrélation, ii) audit second circuit d'extension de corrélation, iii) audit second circuit à retard et iv) audit troisième circuit à retard,
    un second circuit de détermination de commutateur (611) couplé i) audit premier circuit d'extension de corrélation, ii) audit second circuit d'extension de corrélation, iii) audit second circuit à retard et iv) audit troisième circuit à retard,
    un premier circuit de commutateur (112) qui fournit en sortie sélectivement l'un des signaux de sortie i) dudit calculateur, ii) dudit second inverseur et iii) dudit second filtre passe-bande en réponse à un signal de sortie dudit premier circuit de détermination de commutateur,
    un second circuit de commutateur (113) qui fournit en sortie sélectivement un des signaux de sortie dudit calculateur et dudit second filtre passe-bande en réponse à un signal de sortie dudit second circuit de détermination de commutateur,
    et le moyen de filtre en peigne comprend un circuit opérationnel en peigne à 3 lignes (114) couplé audit premier inverseur, audit premier circuit de commutateur et audit second circuit de commutateur.
  12. Dispositif de séparation de luminance-chrominance (YC) à 2 lignes selon la revendication 4, dans lequel :
    le moyen à retard comprend un premier circuit à retard (101) destiné à retarder le signal vidéo d'entrée composite,
    le moyen de filtre comprend :
    un premier filtre passe-bande (102) destiné à filtrer ledit signal vidéo d'entrée composite,
    un second filtre passe-bande (103) destiné à filtrer un signal de sortie dudit premier circuit à retard,
    le moyen de détecteur comprend :
    un premier détecteur de corrélation (124) destiné à détecter une première corrélation de lignes entre des signaux de luminance respectifs dudit signal vidéo d'entrée composite et du signal vidéo composite retardé,
    un second détecteur de corrélation (105) destiné à détecter une seconde corrélation de lignes entre des signaux de chrominance respectifs dudit signal vidéo d'entrée composite et du signal vidéo composite retardé,
    le moyen d'inverseur comprend :
    un premier inverseur (107) destiné à inverser un signal de sortie dudit premier filtre passe-bande,
    un second inverseur (108) destiné à inverser un signal de sortie dudit second filtre passe-bande,
    le moyen de calculateur comprend un calculateur (109) destiné à générer une valeur moyenne des signaux de sortie dudit premier et dudit second filtres passe-bande,
    le moyen de commutation comprend un circuit de commutateur (112, 113) qui sélectionne au moins un signal entre i) un signal de sortie dudit calculateur, ii) un signal de sortie dudit second inverseur, iii) le signal de sortie dudit second filtre passe-bande et fournit en sortie le au moins un signal sélectionné audit moyen en peigne,
    où, en réponse à: i) un signal de sortie dudit premier détecteur de corrélation, ii) un signal de sortie dudit second détecteur de corrélation et iii) un signal de sortie retardé dudit second détecteur de corrélation, est présenté au moyen en peigne.
EP97119035A 1996-11-01 1997-10-31 Circuit de séparation Y/C à 2 lignes Expired - Lifetime EP0845910B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP291413/96 1996-11-01
JP29141396 1996-11-01
JP29141396 1996-11-01

Publications (3)

Publication Number Publication Date
EP0845910A2 EP0845910A2 (fr) 1998-06-03
EP0845910A3 EP0845910A3 (fr) 1999-08-11
EP0845910B1 true EP0845910B1 (fr) 2006-06-14

Family

ID=17768574

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97119035A Expired - Lifetime EP0845910B1 (fr) 1996-11-01 1997-10-31 Circuit de séparation Y/C à 2 lignes

Country Status (6)

Country Link
US (1) US5969771A (fr)
EP (1) EP0845910B1 (fr)
CN (1) CN1101110C (fr)
DE (1) DE69736101T2 (fr)
HK (1) HK1008804A1 (fr)
MY (1) MY123791A (fr)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE69928577T2 (de) * 1998-02-27 2006-05-18 Matsushita Electric Industrial Co., Ltd., Kadoma Luminanz und chrominanz trennschaltung
CN1297152C (zh) * 2002-12-06 2007-01-24 松下电器产业株式会社 图像信号处理装置及图像信号处理方法
TWI222836B (en) * 2003-03-21 2004-10-21 Mediatek Inc Video signal separating method and related apparatus
CN103453994B (zh) * 2012-05-29 2016-03-09 技嘉科技股份有限公司 色差测试治具、色差测试接口装置与色差测试方法

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5923972A (ja) * 1982-07-30 1984-02-07 Toshiba Corp デジタルテレビジヨン受像機
JPH01117494A (ja) * 1987-10-30 1989-05-10 Hitachi Ltd Y/c分離回路
US5025311A (en) * 1987-12-28 1991-06-18 Matsushita Electric Industrial Co., Ltd. Video signal separating apparatus
JPH0787594B2 (ja) * 1988-02-15 1995-09-20 日本ビクター株式会社 相関検出回路
JPH0271693A (ja) * 1988-09-06 1990-03-12 Sony Corp 輝度/クロマ分離回路
JP2674298B2 (ja) * 1990-10-12 1997-11-12 日本電気株式会社 輝度色分離回路
JP3263791B2 (ja) * 1992-09-30 2002-03-11 ソニー株式会社 Yc分離回路
KR0123768B1 (ko) * 1992-10-20 1997-11-26 윤종용 적응형이차원휘도/색신호분리방법및장치
JP3216364B2 (ja) * 1993-10-21 2001-10-09 松下電器産業株式会社 Y/c分離装置
JP3480477B2 (ja) * 1995-07-26 2003-12-22 ソニー株式会社 動き検出回路および動き検出方法、並びに輝度・色信号分離装置

Also Published As

Publication number Publication date
EP0845910A2 (fr) 1998-06-03
DE69736101D1 (de) 2006-07-27
CN1101110C (zh) 2003-02-05
HK1008804A1 (en) 1999-05-21
MY123791A (en) 2006-06-30
DE69736101T2 (de) 2006-12-21
EP0845910A3 (fr) 1999-08-11
CN1189062A (zh) 1998-07-29
US5969771A (en) 1999-10-19

Similar Documents

Publication Publication Date Title
EP1217844B1 (fr) Circuit de séparation d'un signal de luminance et d'un signal de chrominance
EP0845910B1 (fr) Circuit de séparation Y/C à 2 lignes
US5959695A (en) 2-line YC separation device
KR940000414Y1 (ko) 화상신호의 휘도 신호 및 색신호 분리장치
JP3216364B2 (ja) Y/c分離装置
KR100355322B1 (ko) 2라인와이씨분리장치
JPH0346634Y2 (fr)
KR19980079061A (ko) 휘도 및 색 신호 분리 방법 및 이를 수행하기 위한 휘도 및 색 신호 분리 회로
JP3503442B2 (ja) 2ラインyc分離装置
JP2699488B2 (ja) コムフィルタ
JP3572198B2 (ja) 映像信号処理回路
JPH03187697A (ja) Yc分離回路
JPH0454436B2 (fr)
KR100244519B1 (ko) 운동 적응 휘도 및 색 신호 분리 회로
JP3399167B2 (ja) 2ラインyc分離回路
KR100250874B1 (ko) 색 및 휘도 신호 분리 방법 및 이를 수행하기 위한 회로
KR100238801B1 (ko) 휘도 및 색 신호 분리 방법 및 이를 수행하기 위한 휘도 및 색 신호 분리 회로
JPS62125792A (ja) Y/c分離用くし型フイルタ−
JP2938274B2 (ja) 動き検出回路
JPH01117494A (ja) Y/c分離回路
JPH0380395B2 (fr)
KR19980056045A (ko) 에너지 감지 휘도 및 색신호 분리 회로
JPH09271034A (ja) 映像信号処理回路
JPH01284089A (ja) Y/c分離装置
JPH0752933B2 (ja) テレビジヨン受像機

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19991020

AKX Designation fees paid

Free format text: DE FR GB

17Q First examination report despatched

Effective date: 20050208

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REF Corresponds to:

Ref document number: 69736101

Country of ref document: DE

Date of ref document: 20060727

Kind code of ref document: P

REG Reference to a national code

Ref country code: HK

Ref legal event code: GR

Ref document number: 1008804

Country of ref document: HK

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20070315

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20081027

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20081014

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20081029

Year of fee payment: 12

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091102

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100501

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20091031