EP0844807A1 - Commande optimale de la puissance installée dans une foyer de cuisson par induction avec une topologie reconfigurable - Google Patents

Commande optimale de la puissance installée dans une foyer de cuisson par induction avec une topologie reconfigurable Download PDF

Info

Publication number
EP0844807A1
EP0844807A1 EP97500198A EP97500198A EP0844807A1 EP 0844807 A1 EP0844807 A1 EP 0844807A1 EP 97500198 A EP97500198 A EP 97500198A EP 97500198 A EP97500198 A EP 97500198A EP 0844807 A1 EP0844807 A1 EP 0844807A1
Authority
EP
European Patent Office
Prior art keywords
power
control
coils
coil
strategy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97500198A
Other languages
German (de)
English (en)
Inventor
Jose Andres Garcia Martinez
Jose Ramon Garcia Gimenez
Abelardo Martinez Iturbe
Jose Miguel Burdio Pinilla
Fernando Monterde Aznar
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BSH Balay SA
Original Assignee
Balay SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Balay SA filed Critical Balay SA
Publication of EP0844807A1 publication Critical patent/EP0844807A1/fr
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H05ELECTRIC TECHNIQUES NOT OTHERWISE PROVIDED FOR
    • H05BELECTRIC HEATING; ELECTRIC LIGHT SOURCES NOT OTHERWISE PROVIDED FOR; CIRCUIT ARRANGEMENTS FOR ELECTRIC LIGHT SOURCES, IN GENERAL
    • H05B6/00Heating by electric, magnetic or electromagnetic fields
    • H05B6/02Induction heating
    • H05B6/06Control, e.g. of temperature, of power
    • H05B6/062Control, e.g. of temperature, of power for cooking plates or the like
    • H05B6/065Control, e.g. of temperature, of power for cooking plates or the like using coordinated control of multiple induction coils

Definitions

  • the object of the present invention is the optimal control and the management of the power provided by a flexible and reconfigurable topology based on the three-phase bridge with non-symmetric legs.
  • This flexible and reconfigurable topology constitutes a module which is able to drive two loads, which in this preferred embodiment, are the two heating plates of an induction cooking hob ( Figure 1).
  • the goals achieved with the optimal control proposed are:
  • This invention relates to induction heating and more specifically to the optimal control of the installed power in induction cooking apparatus with re-configurable structure topology, which provides ultra-fast heating ability and optimised semiconductor switches power losses.
  • induction cooking is the eddy current and hysteretic losses in the surface of a metallic object therein, it has several advantages over heating by conventional techniques as convection or conduction. Induction heating is usually faster than convection or conduction heating because lower thermal mass is associated with induction heating systems. In addition, the induction heating focuses the heat within the heated object yielding higher energy transfer efficiency in contrast to convection or conduction heating wherein the heat is produced outside the heated object.
  • the domestic induction heating hobs are driven by an alternative current of medium frequency (25-65 kHz) applied to an induction coil which heats by induction a pot or a pan placed on the coil.
  • This current is generated by a power converter based on a solid-state power devices.
  • a new concept of the control strategy for the power converter used for induction heating hobs is presented. This control strategy lower the power losses in the electronic power switches of the converter and provides ultra-fast heating ability.
  • the transistorised full-bridge described in the afore mentioned Patent is activated by a control circuit which achieves the regulation and the self adaptation of the firing time for each leg of the transistorised full-bridge, scheduled in relation with the inductive-energy time-recovering of the flat coil, and stopping the powering of the coil when there is non-ferromagnetic load. In that way, when a ferromagnetic pot or pan is placed on the thermal plate, a thermal with self-firing ability is achieved.
  • the induction heating method is fast, the rising time necessary to reach the stationary thermal state can be shortened if the spare power drive capacity of an idle bridge which normally drives the induction heating plate are used to boost the bridge which drives the active induction plate.
  • Another application of the idle bridge is to help in the reduction of the overall conduction losses of the power semiconductor switches of the active bridge.
  • This invention provides several control strategies for driving the electronic power switches which feed the induction coils of an induction cooking hob. These strategies aim to perform a regulated power in the pot or pan placed on the coil and lowering the power losses in the electronic power switches. In this way, the working temperature of the electronic power devices is lowered, thus, either the heat sinking demands are reduced or the devices can work in an environment with higher room temperature.
  • the topology where these control strategies are designed for is the three-phase bridge with non-symmetric legs including one or two switches with a single-pole two-positions each.
  • This topology is obtained by modifying another one which is well-known as the tree-phase bridge. The later is frequently used as DC-AC converter to drive three-phase loads, but in this case, it has been modified by adding one or two switches with a single-pole two-positions each. In this way, a flexible and reconfigurable structure topology is obtained depending on the position of the switches.
  • a bridge is not symmetric if all their legs are not identical concerning the controllability of the power switches, the working zone of the voltagelcurrent quadrant or the handled power.
  • the modification introduced in the bridge consists in rating individually two of the legs with a power handling capacity fitted to the respective coil rating. These coils constitute two independent heating plates of an induction cooking hob.
  • the third leg, named as common leg, is rated with a power handling capacity equal to the added ratings of the other two legs.
  • the control strategy implemented allows separated driving of each of the two coils with regulated power up to their rated values.
  • the control strategy proposed determines the switch states as a function of the power demands yielding four cases: 1) Both coils off, 2) The first coil demands ultra-fast heating, 3) The second coil demands ultra-fast heating, and 4) Both coils demand power equal to or less than their rated power.
  • the ultra-fast heating ability consists in driving a single coil with a regulated power higher than its rated power and feeding it with constant frequency.
  • the control strategy proposed states a current-controlled voltage-polarity switching.
  • boundary power This is the maximum power that can be delivered to a load by using the energy control strategy, taking into account the limitations imposed by the Electromagnetic Compatibility Standard concerning the voltage fluctuations and flicker in low voltage supply systems.
  • the current-controlled voltage-cancellation is used for power demands within the boundary power and the rated power.
  • the energy control is used for power demands below the boundary power.
  • the proposed control strategy allows driving the two coils with power equal to or less than their respective rated values. If the demanded power is in both coils higher than the boundary power, it is applied the current-controlled voltage-cancellation strategy.
  • the activation time of the electronic power devices are co-ordinated for the sake of optimising their power losses.
  • This co-ordination applies a bipolar voltage to one of the coil at the start of a half-period and to the other coil at the end of a half-period. With this co-ordination it is avoided the simultaneous coil-current overlapping through the electronic power devices, thus minimising the root mean square (RMS) current circulating through the common leg. Consequently, the working temperature of the power electronic devices belonging to the common leg is lowered, improving the reliability and integrability of the system.
  • RMS root mean square
  • the foregoing control strategy allows simultaneously driving of both coils with power levels equal to or lower than their rated values.
  • the control strategy applied to that coil is the energy control, and for the other coil, is applied the current-controlled voltage-cancellation.
  • the energy control applied yields lower switching losses in the electronic power devices when compared to the current-controlled voltage-cancellation strategy.
  • both coils demand power equal to or lower than their rated power
  • the proposed control strategy states a common working frequency for both coils, consequently, there are not intemodulation or sub harmonic frequencies, thus, audible noise is avoided.
  • control strategy is that they are able to be implemented in integrated programmable logic devices, thus, allowing maximum integrability, flexibility, programmability and reliability of the control system.
  • This invention provides a control method for the power delivered by the flexible topology in Figure 1.
  • the control strategy is based on the power demand information requested for each load coil B1 and B2 which are used as heating plates of an induction cooking hob.
  • the positions of the switches R1 and R2 determines the power handling ability of each coil B1 and B2.
  • Table 1 shows the power availability for each coil B1 and B2 versus the activated or non-activated state of the switches R1 and R2.
  • the activated state is represented as "1" and the non-activated state represented as "0".
  • the first control strategy for the flexible topology depicted in Figure 1 consists in determining the positions of switches R1 and R2, thus, their respective activated or non-activated state versus the maximum power availability demanded. All possibilities are constrained to four cases stated in each of the four columns in Table 1.
  • the second control strategy is used for performing the ultra-fast heating and consist in applying to a single coil a regulated power higher than rated. To get it, it is applied a current-controlled voltage-polarity switching. This control is explained in Figure 2.
  • the first strategy in Table 1 determines that the switch R2 must be activated and the switch R1 must be non activated.
  • the second strategy shown in Figure 2 applies periodically a pulsed bipolar voltage to coil B2.
  • Figure 2e shows the wave shape of the pulsed bipolar voltage applied to B2.
  • Figures 2a, 2b, 2c, and 2d show schematically the control signals for the electronic power devices S3, S4, S2-S6 and S1-S5, respectively.
  • the devices S2-S4 and S1-S5 are activated as two switch pairs.
  • the activation of S3 and S2-S6 determines the current setting up through the coil B2 which comes out of the centre tap of leg S3-S4, as shown in Figure 1, and flows into the coil.
  • this applied voltage periodically inverts when the current peak iB2 through coil B2 reaches the maximum iP2. That is the reason because this control is named as current-controlled voltage-polarity switching.
  • the power level applied as ultra-fast heating is controlled by the amplitude value of the current iP2 used for implementing the current-controlled voltage-polarity switching.
  • This power level can be stated controllable with values within the rated power of B2 and the installed power obtained by adding the rated power of B1 and B2.
  • the half periods T are both equal and are determined by the working frequency specified. Once the frequency is selected, it is maintained constant.
  • the situation shown in Figure 1 corresponds to a fast-heating of B2 with a power corresponding to the power boost stated.
  • the period T and the selected power boost in the load coil B2 indirectly determines iP2.
  • the third control strategy is used for powering any of the coils alone with regulated power equal to or less than its rated power. Taking the demanded power level as reference, it will be applied two control strategies. These strategies are either current-controlled voltage-cancellation or duty ratio control. The later is also named energy control. The energy control is later explained using Figure 4.
  • the current-controlled voltage-cancellation is used for power demands within the boundary power and the rated power.
  • the energy control is used for power demands below the boundary power.
  • Figure 3 shows the current-controlled voltage-cancellation applied to coil B2.
  • the power electronic device S3 is activated with the control signal in Figure 3a which has a 50% duty ratio and a half period T1.
  • the device S4 belonging to the same leg is activated with the complementary of the foregoing signal as shown in Figure 3b.
  • all the installed power is applied to it by activating both S2 and S6 with the control signal in Figure 3c.
  • S1 and S5 are both activated with the control signal in Figure 3d.
  • the activation time of S2, S6, S1 and S5 is t2 and is lower than the half period T1.
  • the time t2 ends when the current through the coil iB2 reaches the reference level iP2 shown in Figure 3f. If this level varies, it is obtained a variable voltage wave shape applied to B2, and thus, a variable power.
  • the same objective can be achieved by increasing the reference level iP2, maintaining T1-t2 constant and increasing simultaneously both T1 and t1.
  • This method is proposed when the current-controlled voltage-cancellation strategy imposes large voltage-cancellation and the power demand is higher than the boundary power. This method maintains constant the voltage-cancellation time and varies the time without voltage-cancellation.
  • This alternative method works with variable frequency and allows the snubbers networks maintaining their functionality. Consequently, the power losses in the electronic power devices can be optimised and maintained low.
  • the energy control uses the afore mentioned current-control voltage cancellation but setting iP2 to that value corresponding to the boundary power.
  • the boundary power is selected lower than the maximum allowed by the Electromagnetic Compatibility Standard concerning the voltage fluctuations and flicker in low voltage supply systems, when the energy control strategy is applied. This Standard limits the switched power versus the switching ratio. In our case, the boundary power level depends on the selected value for 1/Tb.
  • the fourth control strategy is applied when both coils B1 and B2 are simultaneously powered with power levels equal to or lower than their rated power. If the power demands of both coils are higher than the boundary power, it will be applied the powering guidelines depicted in Figure 5.
  • Figures 5a, 5b, 5c, 5d and 5f show the control signal for the electronic power devices S3, S4, S6, S2, S5 and S1, respectively.
  • the device states of S6 and S5 determine the bipolar wave shape in Figure 5g used for powering the coil B1.
  • the device states of S2 and S1 determine the bipolar wave shape in Figure 5h used for powering the coil B2.
  • Figure 5i shows the currents iB1 and iB2 flowing through the coils B1 and B2, respectively.
  • the activation time of the electronic power devices are co-ordinated for the sake of optimising their power losses.
  • the bipolar voltage in Figure 5g is applied to coil B1 within a time t1 placed at the start of the half period T1.
  • the bipolar voltage in Figure 5h is applied to coil B2 within a time t2 placed at the end of the half period T1.
  • the power level for coil B1 is set by the current peak iP1 depicted in figure 5i.
  • iP2 limits the current level through the coil B2 and determines its power delivered.
  • the coil B2 delivers the boundary power (BP_B1) within time tc1
  • the working frequency is the same for both coils, thus, there are not intemodulation or sub harmonic frequencies and audible noise is avoided.
  • control strategies proposed are able to be implemented in integrated programmable logic devices, thus, allowing maximum integrability, flexibility, programmability and reliability of the control system.

Landscapes

  • Physics & Mathematics (AREA)
  • Electromagnetism (AREA)
  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)
EP97500198A 1996-11-21 1997-11-20 Commande optimale de la puissance installée dans une foyer de cuisson par induction avec une topologie reconfigurable Withdrawn EP0844807A1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
ES9602460 1996-11-21
ES9602460A ES2128958B1 (es) 1996-11-21 1996-11-21 Procedimiento de control de potencia en cocinas de induccion alimentadas mediante inversores multipuente reconfigurables.

Publications (1)

Publication Number Publication Date
EP0844807A1 true EP0844807A1 (fr) 1998-05-27

Family

ID=8296765

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97500198A Withdrawn EP0844807A1 (fr) 1996-11-21 1997-11-20 Commande optimale de la puissance installée dans une foyer de cuisson par induction avec une topologie reconfigurable

Country Status (2)

Country Link
EP (1) EP0844807A1 (fr)
ES (1) ES2128958B1 (fr)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986287A2 (fr) * 1998-09-08 2000-03-15 Balay, S.A. Circuit de commutation à deux sorties, son circuit électrique et son procédé de commande de la puissance fournie aux sorties du circuit de commutation
EP1194011A2 (fr) * 2000-09-29 2002-04-03 BSH Balay, S.A. Circuit convertisseur et son procédé de commande
WO2004014106A1 (fr) * 2002-08-01 2004-02-12 BSH Bosch und Siemens Hausgeräte GmbH Plaque de cuisson a induction a zones de chauffe de structure reconfigurable et procede permettant d'augmenter la puissance maximale de ces zones de chauffe
EP1931177A1 (fr) * 2006-12-04 2008-06-11 BSH Bosch und Siemens Hausgeräte GmbH Circuit de dispositif de chauffage
WO2008067999A1 (fr) * 2006-12-06 2008-06-12 E.G.O. Elektro-Gerätebau GmbH Procédé de commande de dispositifs de chauffage par induction dans un appareil de cuisson électrique
EP1951003A1 (fr) * 2007-01-23 2008-07-30 Whirlpool Corporation Procédé de commande d'induction d'une plaque de cuisson et d'induction d'une plaque de cuisson adaptée à un tel procédé
WO2010069825A1 (fr) * 2008-12-19 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Table de cuisson comprenant plusieurs éléments chauffants et au moins un module d'électronique de puissance
WO2010069616A1 (fr) * 2008-12-19 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Table de cuisson avec au moins trois zones de cuisson
WO2011113660A1 (fr) * 2010-03-16 2011-09-22 BSH Bosch und Siemens Hausgeräte GmbH Dispositif de table de cuisson
WO2012131563A1 (fr) * 2011-03-31 2012-10-04 BSH Bosch und Siemens Hausgeräte GmbH Dispositif d'appareil électroménager
WO2012131528A1 (fr) * 2011-03-30 2012-10-04 BSH Bosch und Siemens Hausgeräte GmbH Dispositif de chauffage par induction
WO2012131571A1 (fr) * 2011-03-31 2012-10-04 BSH Bosch und Siemens Hausgeräte GmbH Dispositif de chauffage par induction
WO2012134412A3 (fr) * 2011-03-16 2013-01-03 En-Ko Elektronik Kontrol Sistemleri Sanayi Ve Ticaret Limited Sirketi Gestion intelligente de la puissance dans des systèmes de commande d'appareil de cuisson
JP2017011835A (ja) * 2015-06-18 2017-01-12 高周波熱錬株式会社 熱処理用電力変換装置及び方法
EP3582587A1 (fr) * 2018-06-16 2019-12-18 Electrolux Appliances Aktiebolag Procédé de commande de deux zones de cuisson d'une table de cuisson à induction
EP2206407B2 (fr) 2007-10-31 2024-06-26 BSH Hausgeräte GmbH Dispositif de cuisson

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ES2392223B1 (es) * 2010-12-27 2013-10-09 BSH Electrodomésticos España S.A. Dispositivo de aparato de cocción y procedimiento para dicho dispositivo.

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100441A1 (fr) * 1982-07-02 1984-02-15 AEG - Elotherm GmbH Dispositif pour le chauffage à induction d'une pièce usinée au moyen d'inducteurs multiples
DE3601958A1 (de) * 1985-01-23 1986-07-24 Balay S.A., Zaragoza Induktionsheizvorrichtung zum heizen der elektrischen platten eines kochers
EP0286044A2 (fr) * 1987-04-10 1988-10-12 Thomson Electromenager S.A. Circuit pour l'alimentation en courant d'une plaque de cuisson par induction
US4920475A (en) * 1988-03-07 1990-04-24 California Institute Of Technology Integrated traction inverter and battery charger apparatus

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1555500A (en) * 1975-10-22 1979-11-14 Matsushita Electric Ind Co Ltd Multiple load induction heating apparatus with means for eliminating interference between two or more commution circuits
US4467165A (en) * 1979-09-17 1984-08-21 Matsushita Electric Industrial Co., Ltd. Induction heating apparatus
KR900007383B1 (ko) * 1988-05-31 1990-10-08 삼성전자 주식회사 4-버너 전자 유도 가열 조리기의 출력 제어 회로 및 출력제어방법
US5004881A (en) * 1989-11-22 1991-04-02 Goldstar Co., Ltd. Method and circuit for controlling power level in the electromagnetic induction cooker
ES2100812B1 (es) * 1994-11-24 1998-02-16 Balay Sa Sistema de calentamiento por induccion.
IT1281843B1 (it) * 1995-01-25 1998-03-03 Meneghetti Ampelio & C S N C Dispositivo di controllo particolarmente per fornelli ad induzione multipiastra

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0100441A1 (fr) * 1982-07-02 1984-02-15 AEG - Elotherm GmbH Dispositif pour le chauffage à induction d'une pièce usinée au moyen d'inducteurs multiples
DE3601958A1 (de) * 1985-01-23 1986-07-24 Balay S.A., Zaragoza Induktionsheizvorrichtung zum heizen der elektrischen platten eines kochers
EP0286044A2 (fr) * 1987-04-10 1988-10-12 Thomson Electromenager S.A. Circuit pour l'alimentation en courant d'une plaque de cuisson par induction
US4920475A (en) * 1988-03-07 1990-04-24 California Institute Of Technology Integrated traction inverter and battery charger apparatus

Cited By (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0986287A2 (fr) * 1998-09-08 2000-03-15 Balay, S.A. Circuit de commutation à deux sorties, son circuit électrique et son procédé de commande de la puissance fournie aux sorties du circuit de commutation
EP0986287A3 (fr) * 1998-09-08 2000-08-09 Balay, S.A. Circuit de commutation à deux sorties, son circuit électrique et son procédé de commande de la puissance fournie aux sorties du circuit de commutation
EP1194011A3 (fr) * 2000-09-29 2005-12-28 BSH Balay, S.A. Circuit convertisseur et son procédé de commande
EP1194008A3 (fr) * 2000-09-29 2005-12-28 BSH Balay, S.A. Circuit convertisseur et son procédé de commande
EP1194011A2 (fr) * 2000-09-29 2002-04-03 BSH Balay, S.A. Circuit convertisseur et son procédé de commande
EP1194008A2 (fr) * 2000-09-29 2002-04-03 BSH Balay, S.A. Circuit convertisseur et son procédé de commande
AU2003257459B2 (en) * 2002-08-01 2008-07-10 Bsh Bosch Und Siemens Hausgerate Gmbh Induction hot plate comprising heating regions having a reconfigurable structure, and method for increasing the maximum power of said heating regions
CN100450318C (zh) * 2002-08-01 2009-01-07 Bsh博施及西门子家用器具有限公司 具有可重新配置构造的加热区的感应电炉和提高该加热区的最大功率的方法
US7227103B2 (en) 2002-08-01 2007-06-05 Bsh Bosch Und Siemens Hausgeraete Gmbh Induction hot plate comprising heating regions having a reconfigurable structure, and method for increasing the maximum power of said heating regions
WO2004014106A1 (fr) * 2002-08-01 2004-02-12 BSH Bosch und Siemens Hausgeräte GmbH Plaque de cuisson a induction a zones de chauffe de structure reconfigurable et procede permettant d'augmenter la puissance maximale de ces zones de chauffe
EP1931177A1 (fr) * 2006-12-04 2008-06-11 BSH Bosch und Siemens Hausgeräte GmbH Circuit de dispositif de chauffage
WO2008067999A1 (fr) * 2006-12-06 2008-06-12 E.G.O. Elektro-Gerätebau GmbH Procédé de commande de dispositifs de chauffage par induction dans un appareil de cuisson électrique
EP1951003A1 (fr) * 2007-01-23 2008-07-30 Whirlpool Corporation Procédé de commande d'induction d'une plaque de cuisson et d'induction d'une plaque de cuisson adaptée à un tel procédé
EP2206407B2 (fr) 2007-10-31 2024-06-26 BSH Hausgeräte GmbH Dispositif de cuisson
US9113503B2 (en) 2008-12-19 2015-08-18 Bsh Bosch Und Siemens Hausgeraete Gmbh Cooking hob with several heating elements and at least one power electronics subassembly
CN102257876A (zh) * 2008-12-19 2011-11-23 Bsh博世和西门子家用电器有限公司 具有至少三个加热区的灶台
CN102257877A (zh) * 2008-12-19 2011-11-23 Bsh博世和西门子家用电器有限公司 具有多个加热元件和至少一个功率电子组件的灶台
CN105228280A (zh) * 2008-12-19 2016-01-06 Bsh家用电器有限公司 具有多个加热元件和至少一个功率电子组件的灶台
WO2010069616A1 (fr) * 2008-12-19 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Table de cuisson avec au moins trois zones de cuisson
CN102257876B (zh) * 2008-12-19 2016-03-02 Bsh家用电器有限公司 具有至少三个加热区的灶台
US9113502B2 (en) 2008-12-19 2015-08-18 Bsh Bosch Und Siemens Hausgeraete Gmbh Cook-top having at least three heating zones
WO2010069825A1 (fr) * 2008-12-19 2010-06-24 BSH Bosch und Siemens Hausgeräte GmbH Table de cuisson comprenant plusieurs éléments chauffants et au moins un module d'électronique de puissance
WO2011113660A1 (fr) * 2010-03-16 2011-09-22 BSH Bosch und Siemens Hausgeräte GmbH Dispositif de table de cuisson
WO2012134412A3 (fr) * 2011-03-16 2013-01-03 En-Ko Elektronik Kontrol Sistemleri Sanayi Ve Ticaret Limited Sirketi Gestion intelligente de la puissance dans des systèmes de commande d'appareil de cuisson
WO2012131528A1 (fr) * 2011-03-30 2012-10-04 BSH Bosch und Siemens Hausgeräte GmbH Dispositif de chauffage par induction
WO2012131563A1 (fr) * 2011-03-31 2012-10-04 BSH Bosch und Siemens Hausgeräte GmbH Dispositif d'appareil électroménager
RU2566682C2 (ru) * 2011-03-31 2015-10-27 Бсх Хаусгерете Гмбх Устройство для бытового прибора
CN103444261B (zh) * 2011-03-31 2016-02-10 Bsh家用电器有限公司 家用器具装置
CN103444261A (zh) * 2011-03-31 2013-12-11 Bsh博世和西门子家用电器有限公司 家用器具装置
WO2012131571A1 (fr) * 2011-03-31 2012-10-04 BSH Bosch und Siemens Hausgeräte GmbH Dispositif de chauffage par induction
JP2017011835A (ja) * 2015-06-18 2017-01-12 高周波熱錬株式会社 熱処理用電力変換装置及び方法
EP3582587A1 (fr) * 2018-06-16 2019-12-18 Electrolux Appliances Aktiebolag Procédé de commande de deux zones de cuisson d'une table de cuisson à induction
WO2019238448A1 (fr) * 2018-06-16 2019-12-19 Electrolux Appliances Aktiebolag Procédé de commande de deux zones de cuisson d'une plaque de cuisson à induction
CN112219448A (zh) * 2018-06-16 2021-01-12 伊莱克斯家用电器股份公司 用于控制感应烹饪灶具的两个烹饪区的方法
US20210212174A1 (en) * 2018-06-16 2021-07-08 Electrolux Appliances Aktiebolag Method for controlling two cooking zones of an induction cooking hob
AU2019284796B2 (en) * 2018-06-16 2023-07-06 Electrolux Appliances Aktiebolag Method for controlling two cooking zones of an induction cooking hob
CN112219448B (zh) * 2018-06-16 2023-09-22 伊莱克斯家用电器股份公司 用于控制感应烹饪灶具的两个烹饪区的方法

Also Published As

Publication number Publication date
ES2128958B1 (es) 2000-01-16
ES2128958A1 (es) 1999-05-16

Similar Documents

Publication Publication Date Title
EP0844807A1 (fr) Commande optimale de la puissance installée dans une foyer de cuisson par induction avec une topologie reconfigurable
US9326329B2 (en) Induction heating apparatus
EP2914059B1 (fr) Dispositif de chauffage à induction
Mishima et al. A new current phasor-controlled ZVS twin half-bridge high-frequency resonant inverter for induction heating
Saha et al. Commercial frequency AC to high frequency AC converter with boost-active clamp bridge single stage ZVS-PWM inverter
JP4909662B2 (ja) 電磁誘導加熱装置
EP4005081A1 (fr) Onduleur entrelacé à haute densité
Ahmed et al. Boost-half-bridge edge resonant soft switching PWM high-frequency inverter for consumer induction heating appliances
Ekkaravarodome et al. The simple temperature control for induction cooker based on Class-E resonant inverter
JP3831298B2 (ja) 電磁誘導加熱装置
EP0817531B1 (fr) Topologie flexible et reconfigurable
Pérez-Tarragona et al. Full-bridge series resonant multi-inverter featuring new 900-V SiC devices for improved induction heating appliances
JP3843528B2 (ja) 誘導加熱装置
JPH03192687A (ja) 誘導加熱装置
Sabahi et al. Bi-directional power electronic transformer with maximum power-point tracking capability for induction heating applications
Samart et al. An automatic half-bridge resonant inverter with three-phase three-switch buck-type rectifier
JP7349725B2 (ja) 誘導加熱調理器
EP4387392A1 (fr) Procédé de commande d'un convertisseur à découpage et convertisseur à découpage associé
JP2982364B2 (ja) 誘導加熱用インバータ
JP3592458B2 (ja) 電磁調理器
JPH11260542A (ja) 誘導加熱調理器
JP2008159505A (ja) 誘導加熱装置
Dong-Seok A new control scheme for a Class-D inverter with induction heating jar application by constant switching frequency
JP3024357B2 (ja) 誘導加熱調理器
WO2001052602A1 (fr) Appareil et procede de chauffage a induction

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;MK;RO;SI

17P Request for examination filed

Effective date: 19980921

AKX Designation fees paid

Free format text: DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB IT NL

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: BSH BALAY, S.A.

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Effective date: 20050606