EP0841687A2 - Keramisches Entladungsgefäss - Google Patents

Keramisches Entladungsgefäss Download PDF

Info

Publication number
EP0841687A2
EP0841687A2 EP97117480A EP97117480A EP0841687A2 EP 0841687 A2 EP0841687 A2 EP 0841687A2 EP 97117480 A EP97117480 A EP 97117480A EP 97117480 A EP97117480 A EP 97117480A EP 0841687 A2 EP0841687 A2 EP 0841687A2
Authority
EP
European Patent Office
Prior art keywords
discharge vessel
ceramic
ceramic discharge
contour
wall
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97117480A
Other languages
English (en)
French (fr)
Other versions
EP0841687A3 (de
EP0841687B1 (de
Inventor
Dieter Lang
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Osram GmbH
Original Assignee
Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH filed Critical Patent Treuhand Gesellschaft fuer Elektrische Gluehlampen mbH
Publication of EP0841687A2 publication Critical patent/EP0841687A2/de
Publication of EP0841687A3 publication Critical patent/EP0841687A3/de
Application granted granted Critical
Publication of EP0841687B1 publication Critical patent/EP0841687B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/02Details
    • H01J61/30Vessels; Containers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J61/00Gas-discharge or vapour-discharge lamps
    • H01J61/82Lamps with high-pressure unconstricted discharge having a cold pressure > 400 Torr

Definitions

  • the invention is based on a ceramic discharge vessel according to the preamble of claim 1.
  • Ceramic discharge vessels for Metal halide lamps or high pressure sodium lamps exist usually made of aluminum oxide, which may be provided with dopants can. But also other well-known materials such as sapphire, aluminum nitride or similar can be used.
  • DE-A 31 37 076 describes elongated cylindrical or in the middle bulged discharge vessels for high pressure sodium discharge lamps, wherein the inside diameter of the discharge volume is larger than that of the Ends is. In particular, it is recommended that the inside diameter be in height the electrode tip at least 60% of the inner diameter in the middle is.
  • a discharge vessel which consists of a straight cylindrical tube is formed, the ends with reduced diameter owns.
  • the cylindrical tube can have an elliptical cross section.
  • EP-A 587 238 is a cylindrical discharge vessel with a right angle attached end faces known, in which the electrodes recessed into the ends are used.
  • Such cylindrical discharge vessels do indeed allow a universal burning position, but its temperature distribution is also inhomogeneous, so that a very high hot spot temperature is also generated here.
  • a high temperature gradient as seen in both elongated elliptical as well as in cylindrical discharge vessels, encourages corrosion on the ceramic during the life of the lamp.
  • the principle given with the use of ceramics Possibility to increase the cold spot temperature compared to quartz glass and thus to improve the lighting data for these geometries limited by the very high hot spot temperature that occurs there.
  • the hot-spot temperature of the ceramic is limited to a maximum of about 1250 ° C, when lifetimes of 6,000 to 10,000 hours are desired.
  • the present invention describes a special "bulbous" geometry of the discharge vessel, which are almost equivalent in every burning position
  • photometric lamp data leads with elongated cylindrical or elliptical geometry. This geometry leads in particular to a reduced hot spot temperature and a very even temperature distribution.
  • the present invention is a ceramic Discharge vessel for a high-pressure discharge lamp, which has a light-emitting Filling contains.
  • the contour of the inner wall of the discharge vessel defines an internal volume V.
  • the discharge vessel has one Longitudinal axis and two ends with openings, electrical in the ends Feedthroughs are attached gastight, with two electrodes are electrically connected, which are in the internal volume in a given Face the electrode gap EA.
  • the contour of the inner wall has the following geometry:
  • the inner contour of the discharge vessel can be composed of three parts think, namely an essentially straight cylindrical one Middle part with the length L and with the inner radius R and two on it adjoining both sides, essentially hemispherical end pieces with the same radius R.
  • the basic condition is that the length of the cylindrical central part is less than or equal to its inner radius: L ⁇ R.
  • the inside diameter of the discharge vessel be at least 2/3 of the total length of the discharge vessel. Especially preferably L ⁇ 0.8 R.
  • L and R should be chosen so that certain boundary conditions for the electrode spacing EA are complied with. These define an upper and lower limit for the insertion length of the electrodes in the internal volume.
  • the total inside length of the discharge vessel must be at least 10% larger than the electrode gap EA. Otherwise the electrodes come too close to the end area and heat the lead-through area too much: 2R + L ⁇ 1.1 EA.
  • the diameter (2R) of the discharge vessel must have a length of at least 80% of the electrode spacing EA, otherwise the discharge vessel in the middle is heated unnecessarily strongly by the curvature of the arc. At the same time, the diameter must have a maximum length of 150% of the electrode spacing EA, otherwise the middle section remains too cold: 1.5 EA ⁇ 2R ⁇ 0.8 EA.
  • the wall load of the discharge vessel (that is the nominal power based on the inner surface) can be set to values between 25 and 45 W / cm 2 , preferably to values between 25 and 35 W / cm 2 , and more so for small-watt lamps at 35 (for values around 20 W nominal power even up to 45 W / cm 2 ), with higher wattages rather at 25 W / cm 2 .
  • the wall load is about 10% lower than with conventional lamps according to the prior art cited above.
  • the wall load of the discharge vessel (in W / cm 2 ) for lamps with a nominal output of between 35 and 250 W is dependent on the nominal output P (in W) and the sizes R and L (each in cm) of the discharge vessel , chosen so that 25 ⁇ P / (4 ⁇ R 2nd + 2 ⁇ RL) ⁇ 35.
  • the volume V of the discharge vessel for a 35 W lamp is approx. 100 - 150 ⁇ l and increases by approx. 7 - 10 ⁇ l per watt of additional nominal power. Accordingly, it decreases with lower performance.
  • a 20 W lamp has one Discharge volume of approximately 35 ⁇ l.
  • the internal volume V of the discharge vessel (in ⁇ l) is selected as a function of the nominal power P (in W) using the following formula: 0.16 ⁇ P 5/3 ⁇ V ⁇ 0.32P 5/3 ; especially 0.22 ⁇ P 5/3 ⁇ V ⁇ 0.32P 5/3 .
  • L ⁇ 0.6 R is selected. This is particularly important for small-watt lamps, where the heat losses at the ends are highest, in relative terms.
  • the wall thickness of the discharge vessel is advantageously at least in the Center of the discharge vessel between 5 and 15% of the inner radius R.
  • Special a discharge vessel is suitable in which the wall thickness corresponds to the Ends increasing and at the ends up to twice the wall thickness is in the middle.
  • the discharge vessel is usually made of aluminum oxide, which may can be doped with magnesium oxide and other oxides or from other materials such as aluminum nitride or sapphire.
  • the present invention also relates in particular to a high-pressure discharge lamp with a ceramic discharge tube as above described.
  • Separate ceramic are preferably at the ends of the discharge vessel Plug (possibly also designed as a cermet) for receiving the current feedthroughs appropriate.
  • the ends can also be integral parts of the discharge vessel.
  • the feedthroughs can be made from the known set of shapes (e.g. a tube or pin made of niobium or molybdenum or a conductive cermet) is selected will, in particular, be designed as capillaries into which a suitable Electrode system is soldered.
  • a tube or pin made of niobium or molybdenum or a conductive cermet e.g. a tube or pin made of niobium or molybdenum or a conductive cermet
  • the inner contour of the discharge vessel is described here.
  • the outer contour that is less important for the present invention is then more or less predetermined by the wall thickness.
  • the outer contour is due to a uniform wall thickness given.
  • the wall thickness is between 5% and 15% of the inner radius of the discharge vessel.
  • the wall thickness increases by typically 10% of the inner radius in the Center of the discharge vessel up to twice this value in the end area. This also prevents quick corrosion of the ceramic during the lifespan most likely to occur in the end area.
  • an electrode system (not shown) is inserted in each of the plugs, the electrode spacing being 7.5 mm.
  • the filling contained in the discharge volume contains a mixture of the metal halides NaJ and TlJ with rare earth iodides, such as DyJ 3 , TmJ 3 and HoJ 3 , as are usually used for lamps with high wall loads.
  • An initial color temperature of 3030 ⁇ 80 K in the vertical and 2980 ⁇ 80 K in the horizontal burning position is thus achieved.
  • the temperature difference between cold spot and hot spot is only 20 ° with this lamp, in contrast to 70 ° with conventional cylindrical lamps with right-angled end faces.
  • the wall load of this discharge vessel is approximately 28 W / cm 2 .
  • the internal volume of the discharge vessel is 370 ⁇ l.
  • FIG. 2 shows a discharge vessel 1 for a 35 W lamp.
  • the Length of the cylindrical middle part 2 but 1.9 mm, while the radius of the hemispherical end pieces 3 is now 2.55 mm.
  • the total length of the Internal volume is 7.0 mm.
  • the wall thickness of the discharge vessel 1 increases from the center (0.8 mm) towards the outside to a maximum of 0.95 mm.
  • the maximum outside diameter is 6.8 mm.
  • the lamp power is in further similarly constructed exemplary embodiments chosen higher.
  • the ratio for the semi-axes of the ellipsoid is: b / a ⁇ 1.25.
  • the end pieces 11 are integrally made together with the plugs 12 from a single ceramic molded part, which consists of aluminum oxide.
  • the wall thickness increases twice from the center, where it is 0.8 mm, to the ends.

Landscapes

  • Vessels And Coating Films For Discharge Lamps (AREA)
  • Discharge Lamps And Accessories Thereof (AREA)
  • Re-Forming, After-Treatment, Cutting And Transporting Of Glass Products (AREA)

Abstract

Ein keramisches Entladungsgefäß für eine Hochdruckentladungslampe ist aus einem zylindrischen Mittelteil und zwei halbkugelförmigen Endstücken gebildet, wobei die Länge des Mittelteils kleiner oder gleich dem Radius der Endstücke gewählt ist. Dadurch wird die Isothermie des Entladungsgefäßes verbessert. <IMAGE>

Description

Die Erfindung geht aus von einem keramischen Entladungsgefäß gemäß dem Oberbegriff des Anspruchs 1.
Es handelt sich dabei insbesondere um keramische Entladungsgefäße für Metallhalogenidlampen oder auch Natriumhochdrucklampen. Sie bestehen üblicherweise aus Aluminiumoxid, das mit Dotierstoffen versehen sein kann. Aber auch andere bekannte Materialien wie Saphir, Aluminiumnitrid o.ä. können verwendet werden.
Die DE-A 31 37 076 beschreibt langgestreckte zylindrische oder in der Mitte ausgebauchte Entladungsgefäße für Natriumhochdruckentladungslampen, wobei der Innendurchmesser des Entladungsvolumens größer als der an den Enden ist. Insbesondere wird empfohlen, daß der Innendurchmesser in Höhe der Elektrodenspitze mindesten 60 % des Innendurchmessers in der Mitte beträgt.
Aus der EP-A 34 056 ist ein Entladungsgefäß bekannt, das aus einem geraden zylindrischen Rohr gebildet ist, das Enden mit reduziertem Durchmesser besitzt. Das zylindrische Rohr kann einen elliptischen Querschnitt aufweisen. Alternativ ist ein sehr langgestrecktes elliptisches Entladungsgefäß beschrieben, wobei das Achsverhältnis 1:4 bis 1:8 beträgt.
Bei derart langgestreckten Entladungsgefäßen ist für den Fall, daß die Füllung Metallhalogenide enthält, keine universelle Brennlage möglich. In vertikaler Brennstellung ist nämlich die cold-spot-Temperatur, die sich dann im Bereich der unteren Elektrode befindet, deutlich niedriger als bei horizontal brennender Lampe. Dies hat eine ausgeprägte Farbverschiebung zwischen horizontaler und vertikaler Brennlage zur Folge. Weiterhin ist die Temperaturverteilung bei derart langgestreckten Geometrien des Entladungsgefäßes relativ inhomogen, so daß ein starker Temperaturgradient auftritt. Bei vorgewählter cold-spot-Temperatur (die zum Erreichen der angestrebten lichttechnischen Werte notwendig ist) stellt sich bei langgestreckter Geometrie eine sehr hohe hot-spot-Temperatur ein, was zu einer Überlastung der Keramik des Entladungsgefäßes führen kann.
Aus der EP-A 587 238 ist ein zylindrisches Entladungsgefäß mit rechtwinklig angesetzten Endflächen bekannt, bei dem die Elektroden vertieft in die Enden eingesetzt sind. Derartige zylindrische Entladungsgefäße erlauben zwar eine universelle Brennlage, ihre Temperaturverteilung ist aber ebenfalls inhomogen, so daß auch hier eine sehr hohe hot-spot-Temperatur entsteht.
Ein hoher Temperaturgradient, wie er sowohl in langgestreckten elliptischen als auch in zylindrischen Entladungsgefäßen entsteht, begünstigt Korrosionserscheinungen an der Keramik während der Lebensdauer der Lampe.
Weiterhin wird die mit der Verwendung der Keramik gegebene prinzipielle Möglichkeit, die cold-spot-Temperatur im Vergleich zu Quarzglas zu erhöhen und damit die lichttechnischen Daten zu verbessern, bei diesen Geometrien durch die dort auftretende sehr hohe hot-spot-Temperatur begrenzt. Die hot-spot-Temperatur der Keramik ist auf maximal etwa 1250 °C begrenzt, wenn Lebensdauern von 6 000 bis 10 000 Stunden angestrebt sind.
Es hat sich zudem herausgestellt, daß bei derartigen langgestreckten zylindrischen oder elliptischen Entladungsgefäßen wegen ihrer sehr inhomogenen Temperaturverteilung die lichttechnischen und elektrischen Lampendaten stark von der Brennlage abhängig sind. Derartige Entladungsgefäße können daher nur zum Einsatz kommen, wenn keine Unabhängigkeit dieser Lampendaten von der Brennlage gefordert ist. Dies ist nur für zweiseitig gesockelte Lampen möglich. Bei ihnen ist normalerweise nur eine horizontale Brennlage zulässig.
Es ist Aufgabe der vorliegenden Erfindung, ein keramisches Entladungsgefäß gemäß dem Oberbegriff des Anspruchs 1 bereitzustellen, das eine sehr homogene Temperaturverteilung besitzt und daher für jede Brennlage geeignet ist. Insbesondere soll auch der Einsatz bei einseitig gesockelten Lampen möglich sein.
Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruchs 1 gelöst. Besonders vorteilhafte Ausgestaltungen finden sich in den abhängigen Ansprüchen.
Die vorliegende Erfindung beschreibt eine spezielle "bauchige" Geometrie des Entladungsgefäßes, die bei jeder Brennlage zu nahezu gleichwertigen photometrischen Lampendaten führt, im Gegensatz zu den bekannten Entladungsgefäßen mit langgestreckter zylindrischer oder elliptischer Geometrie. Diese Geometrie führt insbesondere zu einer reduzierten hot-spot-Temperatur und zu einer sehr gleichmäßigen Temperaturverteilung.
Im einzelnen handelt es ich bei der vorliegenden Erfindung um ein keramisches Entladungsgefäß für eine Hochdruckentladungslampe, das eine lichtemittierende Füllung enthält. Die Kontur der Innenwand des Entladungsgefäßes definiert ein Innenvolumen V. Das Entladungsgefäß besitzt eine Längsachse sowie zwei Enden mit Öffnungen, wobei in den Enden elektrische Durchführungen gasdicht angebracht sind, die mit zwei Elektroden elektrisch verbunden sind, die sich im Innenvolumen in einem gegebenen Elektrodenabstand EA gegenüberstehen.
Die Kontur der Innenwand weist die folgende Geometrie auf:
Die Innenkontur des Entladungsgefäßes kann man sich aus drei Teilen zusammengesetzt denken, nämlich ein im wesentlichen gerades zylindrisches Mittelteil mit der Länge L und mit dem Innenradius R sowie zwei daran auf beiden Seiten anschließende, im wesentlichen halbkugelförmige Endstücke mit demselben Radius R.
Es hat sich herausgestellt, daß eine ausreichende Brennlagenunabhängigkeit durch die gleichzeitige Einhaltung mehrerer geometrischer Randbedingungen gewährleistet wird.
Grundlegende Bedingung ist, daß die Länge des zylindrischen Mittelteils kleiner oder gleich seinem Innenradius ist: L ≤ R.
Anders ausgedrückt, muß der Innendurchmesser des Entladungsgefäßes mindestens 2/3 der Gesamtlänge des Entladungsgefäßes betragen. Besonders bevorzugt gilt L ≤ 0,8 R.
L und R sind so zu wählen, daß bestimmte Randbedingungen für den Elektrodenabstand EA eingehalten werden. Diese definieren einen oberen und unteren Grenzwert für die Einsetzlänge der Elektroden im Innenvolumen.
Die gesamte Innenlänge des Entladungsgefäßes muß um mindestens 10 % größer sein als der Elektrodenabstand EA. Sonst kommen die Elektroden dem Endenbereich zu nahe und erhitzen den Durchführungsbereich zu stark: 2R + L ≥ 1,1 EA.
Der Durchmesser (2R) des Entladungsgefäßes muß mindestens eine Länge von 80 % des Elektrodenabstands EA besitzen, sonst wird das Entladungsgefäß in der Mitte durch die Krümmung des Lichtbogens unnötig stark erhitzt. Gleichzeitig darf der Durchmesser höchstens eine Länge von 150 % des Elektrodenabstands EA besitzen, da ansonsten das Mittelteil zu kalt bleibt: 1,5 EA ≥ 2R ≥0.8 EA.
Insgesamt ergibt sich aus diesen Bemessungen für das Entladungsgefäß ein Verhältnis zwischen der Gesamtlänge und dem maximalen Innendurchmesser von höchstens 1,5, bevorzugt kleiner gleich 1,3.
Mit dieser Geometrie kann die Wandbelastung des Entladungsgefäßes (das ist die auf die innere Oberfläche bezogene Nennleistung) auf Werte zwischen 25 und 45 W/cm2, bevorzugt auf Werte zwischen 25 und 35 W/cm2 eingestellt werden, und zwar bei kleinwattigen Lampen eher bei 35 (bei Werten um 20 W Nennleistung sogar bis 45 W/cm2), bei höherwattigen eher bei 25 W/cm2. Dies gilt insbesondere im Bereich von etwa 20 W bis ca. 250 W Lampenleistung. Damit ist die Wandbelastung um etwa 10 % niedriger als bei konventionellen Lampen gemäß dem oben zitierten Stand der Technik.
In einer besonders bevorzugten Ausführungsform ist die Wandbelastung des Entladungsgefäßes (in W/cm2) für Lampen mit einer Nennleistung zwischen 35 und 250 W, abhängig von der Nennleistung P (in W) und den Größen R und L (jeweils in cm) des Entladungsgefäßes, so gewählt, daß 25 ≤ P/(4πR2 + 2πRL) ≤ 35.
Das Volumen V des Entladungsgefäßes liegt bei einer 35 W-Lampe bei ca. 100 - 150 µl und steigt je Watt zusätzlicher Nennleistung um ca. 7 - 10 µl. Entsprechend nimmt es bei geringerer Leistung ab. Eine 20 W-Lampe hat ein Entladungsvolumen von etwa 35 µl.
In einer besonders bevorzugten Ausführungsform ist das Innenvolumen V des Entladungsgefäßes (in µl) abhängig von der Nennleistung P (in W) nach folgender Formel gewählt: 0,16·P5/3 ≤ V ≤ 0,32·P5/3 ; insbesondere 0,22·P5/3 ≤ V ≤ 0,32·P5/3.
Für das Erzielen einer möglichst homogenen Temperaturverteilung hat es sich als vorteilhaft herausgestellt, wenn L ≤ 0.6 R gewählt wird. Dies ist besonders für kleinwattige Lampen von Bedeutung, bei denen die Wärmeverluste an den Enden, relativ gesehen, am höchsten sind. In diesem Fall kann die Innenkontur in guter Näherung durch ein Rotationsellipsoid mit der kleinen Halbachse a und der großen Halbachse b beschrieben werden, wobei R ≤ a ≤ 1.1 R und b = R + L/2.
Vorteilhaft beträgt die Wandstärke des Entladungsgefäßes zumindest in der Mitte des Entladungsgefäßes zwischen 5 und 15 % des Innenradius R. Besonders geeignet ist ein Entladungsgefäß, bei dem die Wandstärke zu den Enden hin zunimmt und an den Enden bis zum Doppelten der Wandstärke in der Mitte beträgt.
Normalerweise besteht das Entladungsgefäß aus Aluminiumoxid, das evtl. mit Magnesiumoxid und anderen Oxiden dotiert sein kann oder auch aus anderen Materialien wie Aluminiumnitrid oder Saphir.
Die vorliegenden Erfindung bezieht sich insbesondere auch auf eine Hochdruckentladungslampe mit einem keramischen Entladungsgefäß wie oben beschrieben.
An den Enden des Entladungsgefäßes sind bevorzugt separate keramische Stopfen (evtl. auch als Cermet ausgeführt) zur Aufnahme der Stromdurchführungen angebracht. Die Enden können aber auch integrale Bestandteile des Entladungsgefäßes sein.
Die Durchführungen können aus dem an sich bekannten Formenschatz (z.B. ein Rohr oder Stift aus Niob oder Molybdän oder ein leitendes Cermet) ausgewählt werden, insbesondere als Kapillaren ausgeführt sein, in die ein geeignetes Elektrodensystem eingelötet wird,.
Beschrieben wird hier im wesentlichen die Innenkontur des Entladungsgefäßes. Die für die vorliegende Erfindung weniger wichtige Außenkontur ist dann durch die Wandstärke mehr oder weniger vorbestimmt.
Die Außenkontur ist im einfachsten Fall durch eine gleichmäßige Wandstärke vorgegeben. Die Wandstärke beträgt zwischen 5 % und 15 % des Innenradius des Entladungsgefäßes. Zweckmäßiger ist es jedoch, eine von der Mitte zu den Enden hin leicht ansteigende Wandstärke zu haben. Dies wirkt erstens als Maßnahme für Wärmestau und leitet außerdem verstärkt Wärme von der Mitte zu den Enden hin, was die Wärmeverluste durch das Elektrodensystem und den Durchführungsbereich teilweise kompensiert. Somit wird eine weitere Homogenisierung der Temperaturverteilung erzielt. Die Wandstärke steigt in diesem Fall von typisch 10 % des Innenradius in der Mitte des Entladungsgefäßes bis auf das Doppelte dieses Wertes im Endbereich. Dies verhindert außerdem eine schnelle Korrosion der Keramik während der Lebensdauer, die im Endbereich am ehesten auftritt.
Im folgenden soll die Erfindung anhand mehrerer Ausführungsbeispiele näher erläutert werden. Es zeigen:
Figur 1
das keramische Entladungsgefäß einer Metallhalogenidlampe im Schnitt
Figur 2
ein weiteres Ausführungsbeispiel eines keramischen Entladungsgefäßes im Schnitt
Figur 3
das Prinzip der elliptischen Näherung für kleine Längen L
Figur 4
ein weiteres Ausführungsbeispiel eines keramischen Entladungsgefäßes im Schnitt, basierend auf der Näherung gemäß Fig. 3
Das in Fig. 1 gezeigte keramische Entladungsgefäß 1 ist für eine 70 W-Lampe gedacht. Es besteht aus einem zylindrischen geraden Mittelteil 2 mit der Länge L = 2 mm und zwei halbkugelförmigen Endstücken 3 mit dem Radius R = 4 mm. Die Gesamtlänge des Innenvolumens ist 10 mm. Die Wandstärke des Entladungsgefäß ist konstant 0,9 mm. Der maximale Außendurchmesser ist 9,8 mm. An den Endstücken 3 erstrecken sich axial jeweils zylindrische, integrale etwa 1,5 mm lange Ansatzstücke 4 nach außen. In ihnen sind keramische langgezogene Stopfen 5 eingesetzt. Sie sind etwas vertieft in die Ansatzstücke 4 eingesetzt, so daß sie die Idealform der halbkreisförmigen Innenkontur noch besser annähern. Im einfachsten Fall haben sie innere Stirnseiten 6, die gerade sind (Fig. 1 linke Hälfte). Vorteilhaft ist die Innenstirnseite 6' des Stopfens abgeschrägt oder selbst konkav gebogen und daher der halbkreisförmigen Innenkontur noch besser angepaßt (Fig. 1, rechte Hälfte). Auf diese Weise wird eine ideale Isothermie erzeugt.
In den Stopfen ist, ähnlich wie in EP-A 587 238 beschrieben, jeweils ein Elektrodensystem (nicht dargestellt) eingesetzt, wobei der Elektrodenabstand 7,5 mm beträgt. Die im Entladungsvolumen enthaltene Füllung enthält eine Mischung der Metallhalogenide NaJ und TlJ mit Seltenerd-Jodiden, wie z.B. DyJ3, TmJ3 und HoJ3, wie sie üblicherweise für Lampen mit hoher Wandbelastung eingesetzt werden. Damit wird eine anfängliche Farbtemperatur von 3030 ± 80 K in vertikaler und 2980 ± 80 K in horizontaler Brennlage erzielt. Der Temperaturunterschied zwischen cold-spot und hot-spot beträgt bei dieser Lampe nur noch 20° im Gegensatz zu 70° bei konventionellen zylindrischen Lampen mit rechtwinklig angesetzten Endflächen.
Die Wandbelastung dieses Entladungsgefäßes beträgt etwa 28 W/cm2. Das Innenvolumen des Entladungsgefäßes ist 370 µl.
In Fig. 2 ist ein Entladungsgefäß 1 für eine 35 W-Lampe gezeigt. Hier ist die Länge des zylindrischen Mittelteils 2 aber 1,9 mm, während der Radius der halbkugelförmigen Endstücke 3 jetzt 2,55 mm beträgt. Die Gesamtlänge des Innenvolumens ist 7.0 mm.
Die Wandstärke des Entladungsgefäßes 1 nimmt von der Mitte (0,8 mm) nach außen hin auf maximal 0,95 mm zu. Der maximale Außendurchmesser ist 6,8 mm. Auch hier sind wieder integrale Ansatzstücke 4 und separate Stopfen 5 vorgesehen.
In weiteren ähnlich aufgebauten Ausführungsbeispielen ist die Lampenleistung höher gewählt. Bei 100 W Leistung ist L = 2,5 mm und R = 4,5 mm. Bei 150 W Leistung ist L = 2 mm und R = 6 mm. Bei 250 W Leistung ist L = 6 mm und R = 7,0 mm.
Um die Erfordernisse, denen die oben dargestellte Kontur genügt, noch befriedigend zu erfüllen, genügt auch eine näherungsweise Einhaltung der oben angegebenen Abmessungsvorschriften mit maximal 15 % Abweichung.
Daher ist für den Grenzfall kleiner Längen des Mittelteils (L ≈ 0,5 R) die Beschreibung der Innenkontur mittels einer elliptischen Formel mit den Halbachsen a und b möglich, da diese Näherung auf 15 % genau ist.
Unter der Voraussetzung, daß die kleine Halbachse a der Ellipse so gewählt ist, daß die Abweichung von der idealen Kontur (mit Radius R und Länge L des Mittelteils) höchstens 15 % ist: R ≤ a ≤ 1,1 R, und unter Berücksichtigung der Tatsache, daß die große Halbachse b als b = R + L/2 dargestellt werden kann, ist in Fig. 3 ein Vergleich der beiden Konturen gezeigt. Es ergibt sich dabei ein Verhältnis für die Halbachsen des Ellipsoids von: b/a ≤ 1,25.
Die restlichen Bemessungsregeln hinsichtlich Elektrodenabstand und Wandbelastung gelten dabei unverändert weiter.
In Fig. 4 ist das Beispiel einer 70 W-Lampe dargestellt, bei der die Innenkontur 10 des Entladungsgefäßes 9 als geschlossenes Ellipsoid geformt ist mit den Abmessungen a = 4,4 mm sowie b = 5 mm, ausgehend von einem Design mit R =4 mm. Somit ist b/a =1,14. Die Endstücke 11 sind zusammen mit den Stopfen 12 integral aus einem einzigen Keramikformteil hergestellt, das aus Aluminiumoxid besteht. Die Wandstärke nimmt von der Mitte, wo sie 0,8 mm beträgt, zu den Enden kontinuierlich auf das Doppelte zu.
Alle derartigen Lampen zeigen auch nach 9000 Stunden noch keinerlei Korrosion des Entladungsgefäßes. Dagegen haben die besten konventionellen Lampen gemäß dem eingangs vorgestellten Stand der Technik bereits nach 8000 Stunden eine Ausfallrate von 50 %.

Claims (11)

  1. Keramisches Entladungsgefäß für eine Hochdruckentladungslampe, wobei die Kontur der Innenwand des Entladungsgefäßes ein Innenvolumen V definiert, das eine lichtemittierende Füllung enthält, und das eine Längsachse sowie zwei Enden mit Öffnungen besitzt, wobei in den Öffnungen elektrische Durchführungen gasdicht angebracht sind, die mit zwei Elektroden elektrisch verbunden sind, die sich im Innenvolumen in einem gegebenen Elektrodenabstand EA gegenüberstehen, dadurch gekennzeichnet, daß die Kontur der Innenwand die folgende Geometrie aufweist:
    die Kontur besitzt ein im wesentlichen gerades zylindrisches Mittelteil der Länge L und dem Innenradius R sowie zwei im wesentlichen halbkugelförmige Endstücke mit demselben Radius R,
    die Länge des zylindrischen Mittelteils ist kleiner oder gleich seinem Innenradius: L ≤ R,
    die Innenlänge des Entladungsgefäßes ist mindestens 10 % größer als der Elektrodenabstand EA: 2R + L ≥ 1.1 EA,
    der Durchmesser (2R) des Entladungsgefäßes entspricht mindestens 80 % des Elektrodenabstands EA; gleichzeitig darf er höchstens eine Länge von 150 % des Elektrodenabstands EA besitzen: 1.5 EA ≥ 2 R ≥ 0.8 EA
  2. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß die Wandbelastung des Entladungsgefäßes zwischen 25 und 45 W/cm2 liegt.
  3. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß die Wandbelastung des Entladungsgefäßes (in W/cm2) abhängig von der Nennleistung P (in W) des Entladungsgefäßes so gewählt ist, daß 25 ≤ P/(4πR2 + 2πRL) ≤ 35
  4. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß das Innenvolumen V des Entladungsgefäßes für eine Nennleistung von mindestens 35 W mindestens 100 µl beträgt.
  5. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß das Innenvolumen des Entladungsgefäßes (in µl) abhängig von der Nennlweistung P (in W) nach folgender Formel gewählt ist: 0,16·P5/3 ≤ V ≤ 0,32·P5/3, insbesondere 0,22·P5/3 ≤ V ≤ 0,32·P5/3.
  6. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß L ≤ 0.5 R.
  7. Keramisches Entladungsgefäß nach Anspruch 6, dadurch gekennzeichnet, daß die Innenkontur durch ein Rotationsellipsoid mit den Halbachsen a und b beschrieben wird, wobei R ≤ a ≤ 11 R und b = R + L/2.
  8. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß die Wandstärke des Entladungsgefäßes zumindest in der Mitte des Entladungsgefäßes zwischen 5 und 15 % des Innenradius R beträgt.
  9. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß die Wandstärke zu den Enden hin zunimmt und dort bis zum Doppelten der Wandstärke in der Mitte beträgt.
  10. Keramisches Entladungsgefäß nach Anspruch 1, dadurch gekennzeichnet, daß in den Öffnungen Stopfen angebracht sind, deren entladungsseitige Stirnseiten abgeschrägt sind oder konkav gebogen sind.
  11. Hochdruckentladungslampe mit einem keramischen Entladungsgefäß nach einem der vorhergehenden Ansprüche.
EP97117480A 1996-11-07 1997-10-09 Keramisches Entladungsgefäss Expired - Lifetime EP0841687B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19645960 1996-11-07
DE19645960A DE19645960A1 (de) 1996-11-07 1996-11-07 Keramisches Entladungsgefäß
US08/949,523 US5936351A (en) 1996-11-07 1997-10-14 Ceramic discharge vessel

Publications (3)

Publication Number Publication Date
EP0841687A2 true EP0841687A2 (de) 1998-05-13
EP0841687A3 EP0841687A3 (de) 1998-06-17
EP0841687B1 EP0841687B1 (de) 2003-01-08

Family

ID=26031070

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97117480A Expired - Lifetime EP0841687B1 (de) 1996-11-07 1997-10-09 Keramisches Entladungsgefäss

Country Status (7)

Country Link
US (1) US5936351A (de)
EP (1) EP0841687B1 (de)
JP (1) JP3723676B2 (de)
CN (1) CN1102798C (de)
CA (1) CA2218639C (de)
DE (1) DE19645960A1 (de)
HU (1) HU220258B (de)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0926703A2 (de) * 1997-12-26 1999-06-30 Matsushita Electronics Corporation Metalldampfentladungslampe
EP0935278A1 (de) * 1997-07-25 1999-08-11 Toshiba Lighting & Technology Corporation Hochspannungs-entladungslampe, hochspannungsentladungslampen vorrichtung, und leuchtvorrichtung
EP1041603A1 (de) * 1998-07-24 2000-10-04 Toshiba Lighting & Technology Corporation Hochspannungentladungslampe und leuchtvorrichtung
US6137229A (en) * 1997-09-26 2000-10-24 Matsushita Electronics Corporation Metal halide lamp with specific dimension of the discharge tube
US6307321B1 (en) 1999-07-14 2001-10-23 Toshiba Lighting & Technology Corporation High-pressure discharge lamp and lighting apparatus
EP1755145A2 (de) * 2005-06-24 2007-02-21 Osram-Sylvania Inc. Metallhalogenidlampe mit keramischem Entladungsgefäss
WO2008129466A2 (en) * 2007-04-20 2008-10-30 Koninklijke Philips Electronics N.V. Metal halide lamp comprising a shaped ceramic discharge vessel
WO2008129486A2 (en) 2007-04-20 2008-10-30 Koninklijke Philips Electronics N.V. Metal halide lamp comprising an ionisable salt filling
DE202006021014U1 (de) 2005-03-21 2011-12-29 Osram Ag Metallhalogenidlampe

Families Citing this family (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1998049715A1 (en) * 1997-04-25 1998-11-05 Koninklijke Philips Electronics N.V. High-pressure discharge lamp
US6620272B2 (en) 2001-02-23 2003-09-16 Osram Sylvania Inc. Method of assembling a ceramic body
US6731066B2 (en) * 2001-02-23 2004-05-04 Osram Sylvania Inc. Ceramic arc tube assembly
EP1271614B1 (de) * 2001-06-27 2005-09-21 Matsushita Electric Industrial Co., Ltd. Metallhalogenidlampe
JP2003016998A (ja) * 2001-06-28 2003-01-17 Matsushita Electric Ind Co Ltd メタルハライドランプ
JP3990582B2 (ja) 2001-06-29 2007-10-17 松下電器産業株式会社 メタルハライドランプ
US6873108B2 (en) 2001-09-14 2005-03-29 Osram Sylvania Inc. Monolithic seal for a sapphire metal halide lamp
US6774566B2 (en) * 2001-09-19 2004-08-10 Toshiba Lighting & Technology Corporation High pressure discharge lamp and luminaire
US6661173B2 (en) * 2001-09-26 2003-12-09 Osram Sylvania Inc. Quartz arc tube for a metal halide lamp and method of making same
US7034461B2 (en) * 2002-09-19 2006-04-25 Osram Sylvania Inc. Ceramic arc tube with internal ridge
US6812644B2 (en) * 2003-02-04 2004-11-02 Osram Sylvania Inc. Reduced mercury ceramic metal halide lamp
US7262553B2 (en) * 2003-06-26 2007-08-28 Matsushita Electric Industrial Co., Ltd. High efficacy metal halide lamp with configured discharge chamber
US7030543B2 (en) * 2004-02-24 2006-04-18 Osram Sylvania Inc. Reflector lamp having reduced seal temperature
US7503825B2 (en) * 2004-05-21 2009-03-17 Osram Sylvania Inc. Aluminum nitride arc discharge vessel having high total transmittance and method of making same
US7211954B2 (en) 2005-03-09 2007-05-01 General Electric Company Discharge tubes
US7279838B2 (en) * 2005-03-09 2007-10-09 General Electric Company Discharge tubes
US20060211568A1 (en) * 2005-03-16 2006-09-21 Osram Sylvania Inc. High Total Transmittance Alumina Discharge Vessels Having Submicron Grain Size
US7245075B2 (en) * 2005-04-11 2007-07-17 Osram Sylvania Inc. Dimmable metal halide HID lamp with good color consistency
JP4743847B2 (ja) * 2005-05-18 2011-08-10 株式会社小糸製作所 自動車用前照灯
US7247591B2 (en) * 2005-05-26 2007-07-24 Osram Sylvania Inc. Translucent PCA ceramic, ceramic discharge vessel, and method of making
US7414366B2 (en) * 2005-06-20 2008-08-19 Osram Sylvania Inc. Single-ended discharge vessel with diverging electrodes
US7420331B2 (en) * 2005-06-24 2008-09-02 Osram Sylvania Inc. Doped dysprosia discharge vessel
US20070072762A1 (en) * 2005-09-29 2007-03-29 Osram Sylvania Inc. Method of Making Ceramic Discharge Vessels Using Stereolithography
US20070138963A1 (en) * 2005-12-19 2007-06-21 General Electric Company Ceramic arc chamber having shaped ends
JP4915909B2 (ja) * 2006-06-27 2012-04-11 パナソニック株式会社 無電極放電灯及び照明器具
US7799269B2 (en) * 2007-09-25 2010-09-21 Osram Sylvania Inc. Method of sintering AIN under a methane-containing nitrogen atmosphere
DE202008007162U1 (de) 2008-05-28 2008-08-07 Osram Gesellschaft mit beschränkter Haftung Hochdruckentladungslampe
WO2011015246A1 (de) 2009-08-06 2011-02-10 Osram Gesellschaft mit beschränkter Haftung HOCHDRUCKENTLADUNGSLAMPE MIT KERAMISCHEM ENTLADUNGSGEFÄß
DE102009047753A1 (de) 2009-12-09 2011-06-16 Osram Gesellschaft mit beschränkter Haftung Entladungsgefäß aus Keramik für eine Hochdruckentladungslampe
CN102299040A (zh) * 2010-06-24 2011-12-28 上海亚明灯泡厂有限公司 陶瓷放电管金属卤化物灯
US9552976B2 (en) 2013-05-10 2017-01-24 General Electric Company Optimized HID arc tube geometry
CN103606510A (zh) * 2013-11-25 2014-02-26 辽宁爱华照明科技股份有限公司 一种70-100w灯具电器通用金属卤化物灯
EP2988318A1 (de) 2014-08-19 2016-02-24 Flowil International Lighting (HOLDING) B.V. Metallhalogenidlampe mit hoher farbwiedergabe

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2085650A (en) * 1980-09-17 1982-04-28 Matsushita Electronics Corp High-pressure discharge lamp
EP0128551A1 (de) * 1983-06-09 1984-12-19 GTE Products Corporation Einseitig mit Elektroden versehene Metallhalogenid-Entladungslampen und Verfahren zur Herstellung
EP0156385A2 (de) * 1984-03-27 1985-10-02 GTE Products Corporation Elektrodenaufstellung und Kapselentwurf für einseitig gesockelte Niederleistungsmetallhalogenidlampen
US4643690A (en) * 1983-05-10 1987-02-17 North American Philips Electric Corporation Method of manufacturing metal halide lamp
EP0290043A2 (de) * 1987-05-07 1988-11-09 Gte Products Corporation Metall-Halogenidlampe mit Wärmeabteilungsmitteln
RU2079181C1 (ru) * 1995-05-30 1997-05-10 Правление научно-технического общества энергетиков и электротехников Мордовии Газоразрядная лампа

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1401293A (en) * 1972-04-19 1975-07-16 Gen Electric Co Ltd Electric discharge lamps
US4161672A (en) * 1977-07-05 1979-07-17 General Electric Company High pressure metal vapor discharge lamps of improved efficacy
JPS57115754A (en) * 1981-01-12 1982-07-19 Matsushita Electronics Corp High pressure sodium lamp
US5138228A (en) * 1990-12-31 1992-08-11 Welch Allyn, Inc. Bulb geometry for low power metal halide lamp
DE4115077A1 (de) * 1991-05-08 1992-11-12 Patent Treuhand Ges Fuer Elektrische Gluehlampen Mbh Hochdruckentladungslampe
US5239230A (en) * 1992-03-27 1993-08-24 General Electric Company High brightness discharge light source
US5497049A (en) * 1992-06-23 1996-03-05 U.S. Philips Corporation High pressure mercury discharge lamp
EP0587238B1 (de) * 1992-09-08 2000-07-19 Koninklijke Philips Electronics N.V. Hochdruckentladungslampe
US5486737A (en) * 1994-04-12 1996-01-23 Osram Sylvania Inc. Heavily loaded double-ended arc lamp

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB2085650A (en) * 1980-09-17 1982-04-28 Matsushita Electronics Corp High-pressure discharge lamp
US4643690A (en) * 1983-05-10 1987-02-17 North American Philips Electric Corporation Method of manufacturing metal halide lamp
EP0128551A1 (de) * 1983-06-09 1984-12-19 GTE Products Corporation Einseitig mit Elektroden versehene Metallhalogenid-Entladungslampen und Verfahren zur Herstellung
EP0156385A2 (de) * 1984-03-27 1985-10-02 GTE Products Corporation Elektrodenaufstellung und Kapselentwurf für einseitig gesockelte Niederleistungsmetallhalogenidlampen
EP0290043A2 (de) * 1987-05-07 1988-11-09 Gte Products Corporation Metall-Halogenidlampe mit Wärmeabteilungsmitteln
RU2079181C1 (ru) * 1995-05-30 1997-05-10 Правление научно-технического общества энергетиков и электротехников Мордовии Газоразрядная лампа

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0935278A4 (de) * 1997-07-25 2002-10-09 Toshiba Lighting & Technology Hochspannungs-entladungslampe, hochspannungsentladungslampen vorrichtung, und leuchtvorrichtung
EP0935278A1 (de) * 1997-07-25 1999-08-11 Toshiba Lighting & Technology Corporation Hochspannungs-entladungslampe, hochspannungsentladungslampen vorrichtung, und leuchtvorrichtung
US6137229A (en) * 1997-09-26 2000-10-24 Matsushita Electronics Corporation Metal halide lamp with specific dimension of the discharge tube
EP0926703A2 (de) * 1997-12-26 1999-06-30 Matsushita Electronics Corporation Metalldampfentladungslampe
US6208070B1 (en) 1997-12-26 2001-03-27 Matsushita Electronics Corporation Metal vapor discharged lamp with specific angle between electrodes and tapered envelope wall
EP0926703A3 (de) * 1997-12-26 1999-09-08 Matsushita Electronics Corporation Metalldampfentladungslampe
EP1041603A4 (de) * 1998-07-24 2001-11-07 Toshiba Lighting & Technology Hochspannungentladungslampe und leuchtvorrichtung
EP1041603A1 (de) * 1998-07-24 2000-10-04 Toshiba Lighting & Technology Corporation Hochspannungentladungslampe und leuchtvorrichtung
US6307321B1 (en) 1999-07-14 2001-10-23 Toshiba Lighting & Technology Corporation High-pressure discharge lamp and lighting apparatus
DE202006021014U1 (de) 2005-03-21 2011-12-29 Osram Ag Metallhalogenidlampe
EP1755145A2 (de) * 2005-06-24 2007-02-21 Osram-Sylvania Inc. Metallhalogenidlampe mit keramischem Entladungsgefäss
EP1755145A3 (de) * 2005-06-24 2008-04-30 Osram-Sylvania Inc. Metallhalogenidlampe mit keramischem Entladungsgefäss
WO2008129466A2 (en) * 2007-04-20 2008-10-30 Koninklijke Philips Electronics N.V. Metal halide lamp comprising a shaped ceramic discharge vessel
WO2008129486A2 (en) 2007-04-20 2008-10-30 Koninklijke Philips Electronics N.V. Metal halide lamp comprising an ionisable salt filling
WO2008129466A3 (en) * 2007-04-20 2008-12-18 Koninkl Philips Electronics Nv Metal halide lamp comprising a shaped ceramic discharge vessel
US8390196B2 (en) 2007-04-20 2013-03-05 Koninklijke Philips Electronics N.V. Methal halide lamp comprising a shaped ceramic discharge vessel

Also Published As

Publication number Publication date
HUP9701882A3 (en) 2000-02-28
HU9701882D0 (en) 1998-01-28
EP0841687A3 (de) 1998-06-17
CN1102798C (zh) 2003-03-05
JP3723676B2 (ja) 2005-12-07
CA2218639A1 (en) 1998-05-07
HU220258B (hu) 2001-11-28
JPH10144261A (ja) 1998-05-29
DE19645960A1 (de) 1998-05-14
CN1182276A (zh) 1998-05-20
CA2218639C (en) 2005-12-20
EP0841687B1 (de) 2003-01-08
US5936351A (en) 1999-08-10
HUP9701882A2 (hu) 1998-06-29

Similar Documents

Publication Publication Date Title
EP0841687B1 (de) Keramisches Entladungsgefäss
DE69718460T2 (de) Metallhalogenidlampe
EP0834905B1 (de) Natriumhochdrucklampe kleiner Leistung
DE69812069T2 (de) Metallhalogenidlampe
DE69804192T2 (de) Hochdruckentladungslampe mit uv-verstärker
DE69911878T2 (de) Metallhalogenid lampe
DE2951966C2 (de) Hochdruck-Metalldampfentladungslampe
DE69805390T2 (de) Metalldampfentladungslampe
DE69825700T2 (de) Metallhalogenidlampe
DE9415217U1 (de) Hochdruckentladungslampe
DE2815014A1 (de) Hochdrucknatriumdampfentladungslampe
DE60130204T2 (de) Hochdruckentladungslampe
EP0451647A2 (de) Hochdruckentladungslampe und Verfahren zu ihrer Herstellung
DE69824681T2 (de) Hochdruck-Entladungslampe
DE69501379T2 (de) Metall-halogenid lampe
DE102006024238A1 (de) Hochdruckentladungslampe
DE69921901T2 (de) Cermet und keramische Entladungslampe
DE69733049T2 (de) Metallhalogenidlampe
DE69503874T2 (de) Hochdruckentladungslampe und wärmeschild für eine solche lampe
WO2010069678A2 (de) Keramisches entladungsgefäss für eine hochdruckentladungslampe
DE60016156T2 (de) Metallhalogenidlampe
DE102006052715B4 (de) Verfahren zur Herstellung einer quecksilberfreien Bogenentladungsröhre mit jeweils einem Einkristall an den Elektrodenspitzen
EP0825636B1 (de) Hochdruckentladungslampe
EP0269958B1 (de) Einseitig gequetschte Hochdruckentladungslampe
DE69825035T2 (de) Hochdruck-Entladungslampe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): BE DE FR GB IT NL

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17P Request for examination filed

Effective date: 19980707

AKX Designation fees paid

Free format text: BE DE FR GB IT NL

RBV Designated contracting states (corrected)

Designated state(s): BE DE FR GB IT NL

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020524

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE DE FR GB IT NL

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709090

Country of ref document: DE

Date of ref document: 20030213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030329

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031009

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709090

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709090

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GESELLSCHAFT MIT BESCHRAENKTER HAFTUNG, 81543 MUENCHEN, DE

Effective date: 20111130

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20121031

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20121019

Year of fee payment: 16

Ref country code: IT

Payment date: 20121022

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709090

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709090

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM AG, 81543 MUENCHEN, DE

Effective date: 20130205

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20121019

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709090

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709090

Country of ref document: DE

Owner name: OSRAM GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 81543 MUENCHEN, DE

Effective date: 20130822

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20131022

Year of fee payment: 17

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131009

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131031

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140501

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131009

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141031

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20161025

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709090

Country of ref document: DE

Owner name: LEDVANCE GMBH, DE

Free format text: FORMER OWNER: OSRAM GMBH, 80807 MUENCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709090

Country of ref document: DE