EP0833106B1 - Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners - Google Patents

Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners Download PDF

Info

Publication number
EP0833106B1
EP0833106B1 EP97116689A EP97116689A EP0833106B1 EP 0833106 B1 EP0833106 B1 EP 0833106B1 EP 97116689 A EP97116689 A EP 97116689A EP 97116689 A EP97116689 A EP 97116689A EP 0833106 B1 EP0833106 B1 EP 0833106B1
Authority
EP
European Patent Office
Prior art keywords
gas
air
flame
burner
controller
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97116689A
Other languages
English (en)
French (fr)
Other versions
EP0833106A3 (de
EP0833106A2 (de
Inventor
Enno Vrolijk
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Garrett Motion SARL
Original Assignee
Honeywell BV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Honeywell BV filed Critical Honeywell BV
Publication of EP0833106A2 publication Critical patent/EP0833106A2/de
Publication of EP0833106A3 publication Critical patent/EP0833106A3/de
Application granted granted Critical
Publication of EP0833106B1 publication Critical patent/EP0833106B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N1/00Regulating fuel supply
    • F23N1/02Regulating fuel supply conjointly with air supply
    • F23N1/022Regulating fuel supply conjointly with air supply using electronic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N5/00Systems for controlling combustion
    • F23N5/003Systems for controlling combustion using detectors sensitive to combustion gas properties
    • F23N5/006Systems for controlling combustion using detectors sensitive to combustion gas properties the detector being sensitive to oxygen
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2221/00Pretreatment or prehandling
    • F23N2221/10Analysing fuel properties, e.g. density, calorific
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23NREGULATING OR CONTROLLING COMBUSTION
    • F23N2225/00Measuring
    • F23N2225/26Measuring humidity
    • F23N2225/30Measuring humidity measuring lambda

Definitions

  • An additional oxygen sensor has therefore been provided in the flue gas outlet, which, depending on the oxygen content of the flue gases, changes the gas / air mixture ratio via a regulator that acts on the gas or air supply in the direction of optimal combustion with a small excess of air, for example 4%.
  • Such an additional oxygen or NO x sensor increases the costs of the control device and, since it is arranged in the flue gas outlet, is subject to considerable contamination. It must therefore be regularly serviced and cleaned or replaced.
  • DE-39 37 290 A1 describes a method for controlling the one to be fed to a burner Gas / air mixture, the electrical conductivity of the flame region, i.e. the size the ionization current of a flame rod immersed in the flame as a parameter for the mixture composition serves.
  • the conductivity of the flame area is measured and compared with an empirically determined target value.
  • the deviation of the actual value from Setpoint value delivers a signal that changes the mixture composition, for example the blower motor, which changes the mixture composition until the Flame rod signals that the conductivity setpoint in the flame area has been reached.
  • DE 44 33 425 A1 and DE 195 02 901 A1 use the ionization current of a flame sensor to control the mixture.
  • a burner is known from DE-22 52 618 A1, in which the position of the flame in is visually monitored with respect to the burner plate, including a flame to glow brought platinum wire and a photo element. Strikes the flame on the burner back, the platinum wire located near the burner plate is heated and that Radiation of the platinum wire is applied to the photoelement. This turns into the speed of the fan increasing signal derived. On the other hand, the flame travels from the burner gone, the platinum wire is no longer heated and the photo element receives from this no more radiation. The resulting signal lowers the fan speed.
  • CH 389 539 describes a safety device on gas burners with a thermoelectric sensor, if the gas / air mixture is properly composed just touched the perimeter of the blue core of the flame. The changes Composition, the sensor protrudes into a cooler part of the flame, causing the sensor cools down and the gas valve closes.
  • the invention proposes a method and a device for operating a gas burner which do not require an additional oxygen or NO x sensor in the flue gas outlet and nevertheless lead to an at least approximately optimal combustion even when using different types of gas with a different Wobbe number.
  • the method and the device according to the invention are in the independent Characterized claims. Advantageous configurations result from the Dependent claims.
  • the invention uses the anyway to monitor the burner flame existing flame sensor additionally in the course of a calibration of the burner system, the optimal gas / air ratio depending on the type of gas determine.
  • the invention takes advantage of the fact that on the one hand with sufficient Excess gas ignites the flame with certainty and on the other hand the flame in dependence the size and position of the burner in relation to the amount of air changed. At high Air content increases the outflow speed of the gas / air mixture from the burner than the rate of combustion. This causes the flame to rise from the burner.
  • the flame sensor in such a way that it detaches the flame from the Burner can determine, this lifting of the flame can be evaluated that it as a sign of an excessively high proportion of air, i.e. for a non-optimal gas / air ratio is exploited.
  • the flame sensor in normal operation when the flame goes out it delivers a signal to stop the burner during the calibration despite the burning Flame will also give off a signal indicating the absence of a flame, if removed the flame from the flame sensor.
  • you could go for the two processes also use separate flame sensors. It may be one in the flame immersed thermal flame sensor, e.g. a flame rod or one act optical flame sensor, which is sufficiently focused to raise the flame to be able to recognize.
  • the gas / air mixture supplied to burner 2 contains too much air, which increases the flame.
  • the flame sensor 3 no longer protrudes into the Area of the flame tips, but into the middle flame area, the opposite the tip of the flame has a lower temperature. Nevertheless, the recognizes Flame sensor 3 the presence of the flames 1.
  • the gas / air mixture has a very high excess of air.
  • the flames 1 are still present, but so far from the burner 2 that the Flame rod 3 is no longer immersed in the flame 1 itself.
  • the flame sensor 3 can do not recognize the presence of the flames 1, but reports to a connected one Monitoring circuit a flame failure, although the flames 1 in reality available.
  • This lifting of the flames 1 from the burner 2 is according to the invention used to calibrate the gas / air ratio when the burner contains gases different Wobbe index should burn optimally.
  • a test copy of the burner is operated with an optimal gas / air mixture and at the same time measured the oxygen content in the exhaust gas.
  • the purpose of this measurement is that Actually optimally adjust gas / air mixture.
  • the operating mode is A.
  • increase the excess air until finally the flames 1 according to operating mode C. as far as are lifted from the burner 2 that the flame sensor 3 the presence of the No longer detects flames, but reports a flame failure.
  • the burner When installing a burner and then at regular intervals, for example once or twice a day, the burner is calibrated as follows: The burner is started with sufficient gas excess so that it ignites in any case and the flames are created. The excess gas depends on the gas with the lowest calorific calorific value to be burned in the installation in question. The setting of the corresponding control elements for gas and air supply is known. After the flame has been ignited, the gas / air ratio is changed in the direction of excess air by appropriate adjustment of the actuators determining the gas / air ratio, for example by means of a gas / air controller. As soon as the excess air has reached a value at which the flames 1 lift off the flame rod 3, the flame sensor 3 switches off the burner.
  • the calibration process can be repeated automatically. Each the more often such a calibration is carried out, the lower the risk that the Burner between two calibrations with a non-optimal gas / air ratio is operated.
  • the invention is for both burners with a switching and with a modulating gas valve.
  • Gas is the combustion chamber or the burner 2 from a Gas line G forth supplied via such an on / off gas valve 4 and a gas injector 5.
  • a blower 6 generates a stream of combustion air, which is passed through an air nozzle 7 Burner 2 arrives.
  • the blower 6 could with one operated by the desired gas / air ratio predetermined speed.
  • the invention provides an adaptation of this speed to the gas type in question to set an optimal gas / air mixture by means of the calibration mentioned.
  • the system started with a low speed of the blower 6, so that with certainty Burner ignites and the flame sensor 3 reports the presence of flames.
  • the controller 8 increases the speed of the fan 6 until as a result of the increased Excess air, the flames are lifted from the flame sensor in accordance with operating mode C. have and this consequently delivers a flame failure signal to the controller 8.
  • the preferred controller 8 equipped with a microprocessor and memory does not switch over here individual shown but known signal connections from the system and saves at the same time the speed value given when the flames go out.
  • the controller then reduces 8 is the target value of the fan speed by the above-mentioned predetermined percentage, that from the shutdown operating point according to operating mode C, the excess air on the optimal mode of operation A is reduced.
  • the system is optimized with this Gas / air ratio or excess air released for operation.
  • the controller 8 puts the system into operation by the Gas valve 4 opened and the blower 6 at the now optimized speed is operated until there is no longer any need for heat.
  • Such a calibration process can be preceded by every activation. For plants, which switch on and off more often is usually sufficient if the calibration is done once or takes place two times a day.
  • the Wobbe index of the supplied gas changes frequently Security not.
  • the calibration process can also be carried out without interrupting burner operation be when the controller 8 when switching on the system and when the Flame failure signal due to the flame lifting off the burner the fan speed reduced by the specified percentage without reducing the gas supply and thus the Interrupt the burning process.
  • FIG 3 shows in simplified form a burner system with modulating operation, i.e. Gas and Air supply changes depending on the respective heat requirement.
  • the fuel gas G arrives again via an injector 5 and the combustion air L via an air nozzle 7 to the burner 2.
  • a modulating gas valve 14 and the speed-controlled blower 6 are from one Gas / air controller 15 in the sense of maintaining a predetermined optimal gas / air ratio controlled. Examples of this are from EP 0 390 964 B1 (72400679) or EP 0 644 377 A (72200796) is known. Is between the gas valve 14 and the gas injector 5 a gas throttle 16 is switched on, which is controlled by the controller 8.
  • the speed of the fan 6 is dependent on the heat requirement changed.
  • the gas supply through the gas valve 14 in Controlled to maintain a given gas / air ratio.
  • Such a Gas / air regulator 15 has a predetermined modulation range over which it is automatic Adjustment of gas and air supply is effective.
  • the gas injector 5 is designed so that it with throttle 16 fully open and using a gas with the lowest too expected heat content achieved the desired gas / air ratio.
  • the system is started with throttle 16 fully open. As soon as the flame ignites The controller 8 slowly changes the flow cross section of the throttle 16. When the flame from the flame sensor 3, the controller 8 switches, as in the above embodiment, the Plant from. When you switch on again, the flow cross section of the throttle 16 is around predefined percentage between withdrawal value (operating mode C) and optimal operation (Operating mode A) increased, for example using a servomotor, which at constant Speed is in operation for a predetermined duration corresponding to the percentage mentioned.
  • the throttle 16 can thus be part of the modulating gas valve 14.
  • the setting the gas / air ratio during calibration can not only in the gas flow path, but instead be carried out in the flow path of the air L when one appropriate adjustment device between the fan 6 and air nozzle 7 provides.
  • this is less cheap, because in this case the use of different gas types Heat output of the burner would change.
  • a thermal flame sensor e.g. a flame rod 3 can also be a sufficiently focused optical or other Flame sensor are used, which not only the presence of the flame 1 but also detects their lifting from the burner 2.
  • the combustion air supply can also be through a throttle valve arranged in the air flow can be regulated.
  • the one used for calibration Regulator 8 and a combined gas / air regulator 15 can be made into a single regulator sum up.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Regulation And Control Of Combustion (AREA)

Description

Um einerseits den Brennstoff bestmöglich auszunutzen und andererseits den Ausstoß schädlicher Verbrennungsprodukte in die Umwelt weitgehend zu vermindern, versucht man, Gasbrenner mit einem solchen Gas/Luft-Gemisch zu versorgen, daß dieses optimal und vollständig verbrennt. Bei herkömmlichen Gas/Luft-Reglern wird dabei von einem vorgegebenen Wobbe-Index des Brenngases ausgegangen und das Mischungsverhältnis dementsprechend konstant gehalten. Die Gasversorgung liefert jedoch keineswegs Brenngas mit gleichem oder gleichbleibendem Wobbeindex, so daß insbesondere bei Vormisch-Gasbrennern und atmosphärischen Brennern mit geringem NOx-Ausstoß bisweilen mit den herkömmlichen Gas/Luft-Regeleinrichtungen, die ein vorgegebenes Gas/Luft-Verhältnis einhalten, nicht in allen Fällen eine wirklich optimale Verbrennung erzielbar ist. Man hat deshalb zusätzlich im Rauchgasabzug einen Sauerstoffühler vorgesehen, der je nach Sauerstoffanteil der Rauchgase das Gas/Luft-Mischungsverhältnis über einen auf die Gas- oder Luftzufuhr einwirkenden Regler in Richtung auf eine optimale Verbrennung mit geringem Luftüberschuß von beispielsweise 4% verändert. Ein solcher zusätzlicher Sauerstoff- oder NOx-Fühler erhöht die Kosten der Regeleinrichtung und unterliegt, da er im Rauchgasabzug angeordnet ist, einer erheblichen Verschmutzung. Er muß deshalb regelmäßig gewartet und gesäubert oder ausgetauscht werden.
Im Stand der Technik sind verschiedene Methoden bekannt, das Gas/Luft-Verhältnis ohne Sauerstoffühler im Rauchgasabzug zu überwachen bzw. zu regeln. So beschreibt DE 41 12 449 A1 ein Verfahren zum Regeln eines Flächenbrenners, bei dem die Luftzufuhr in Abhängigkeit von der Temperatur im Bereich des Brenners geregelt wird. Hierzu ist in der Brennerplatte ein Temperaturfühler angeordnet. Hebt die Flamme bei zu hohem Luftüberschuß von der Brennerplatte ab, so sinkt deren Temperatur, und der Temperaturfühler gibt an das Gebläse ein dessen Drehzahl verringerndes Stellsignal. Auf diese Weise werden Störgrößen wie eine wechselnde Gasqualität, Schwankungen in der Versorgungsspannung des Gebläsemotors oder Änderungen der Lufttemperatur selbsttätig ausgeglichen. Man erhält eine Art Lambda-Regelung ohne die Nachteile einer Lambda-Sonde im Rauchgasabzug.
DE-39 37 290 A1 beschreibt ein Verfahren zum Steuern des einem Brenner zuzuführenden Gas/Luft-Gemischs, wobei die elektrische Leitfähigkeit des Flammenbereichs, d.h. die Größe des Ionisationsstroms eines in die Flamme eintauchenden Flammenstabes als Kenngröße für die Gemisch-Zusammensetzung dient. Die Leitfähigkeit des Flammenbereichs wird gemessen und mit einem empirisch ermittelten Sollwert verglichen. Die Abweichung des Istwerts vom Sollwert liefert ein die Gemisch-Zusammensetzung veränderndes Signal, beispielsweise an den Gebläsemotor, welcher die Gemisch-Zusammensetzung solange ändert, bis der Flammenstab das Erreichen des Sollwertes der Leitfähigkeit im Flammenbereich meldet. Auf diese Weise kann auch bei variierender Gasqualität und wechselnden Luft-Zuständen eine konstante Verbrennungsqualität erzielt werden. Auch DE 44 33 425 A1 und DE 195 02 901 A1 nutzen zur Gemischregelung den Ionisationsstrom eines Flammenfühlers aus.
Weiterhin ist aus DE-22 52 618 A1 ein Brenner bekannt, bei dem die Position der Flamme in bezug auf die Brennerplatte optisch überwacht wird, wozu ein von der Flamme zum Glühen gebrachter Platindraht und ein Photoelement dienen. Schlägt die Flamme auf den Brenner zurück, so wird der in der Nähe der Brennerplatte angeordnete Platindraht aufgeheizt und das Photoelement mit der Strahlung des Platindrahts beaufschlagt. Hieraus wird ein die Drehzahl des Gebläses erhöhendes Signal abgeleitet. Wandert andererseits die Flamme vom Brenner weg, so wird der Platindraht nicht mehr aufgeheizt und das Photoelement empfängt von diesem keine Strahlung mehr. Das hieraus resultierende Signal senkt die Gebläsedrehzahl ab.
Schließlich beschreibt CH 389 539 eine Sicherheitsvorrichtung an Gasbrennern mit einem thermoelektrischen Fühler, der bei ordnungsgemäßer Zusammensetzung des Gas/Luft-Gemischs gerade den Umfang des blauen Kerns der Flamme berührt. Ändert sich die Zusammensetzung, so ragt der Fühler in einen kühleren Teil der Flamme, wodurch der Fühler abkühlt und das Gasventil schließt.
Durch die Erfindung werden ein Verfahren und eine Vorrichtung zum Betrieb eines Gasbrenners vorgeschlagen, welche ohne zusätzlichen Sauerstoff- oder NOx-Fühler im Rauchgasabzug auskommen und trotzdem zu einer zumindest angenähert optimalen Verbrennung auch bei Verwendung unterschiedlicher Gassorten mit abweichender WobbeZahl führen.
Das Verfahren sowie die Vorrichtung gemäß der Erfindung sind in den unabhängigen Patentansprüchen gekennzeichnet. Vorteilhafte Ausgestaltungen ergeben sich aus den Unteransprüchen. Die Erfindung verwendet den ohnehin zur Überwachung der Brennerflamme vorhandenen Flammenfühler zusätzlich im Zuge einer Kalibrierung der Brenneranlage dazu, das optimale Gas/Luft-Verhältnis in Abhängigkeit von der jeweiligen Gassorte selbsttätig zu ermitteln. Dabei nutzt die Erfindung die Tatsache aus, daß einerseits bei hinreichendem Gasüberschuß die Flamme mit Sicherheit zündet und andererseits die Flamme in Abhängigkeit vom Luftanteil ihre Größe und die Lage in bezug auf den Brenner verändert. Bei hohem Luftanteil wird die Ausströmgeschwindigkeit des Gas/Luftgemischs aus dem Brenner größer als die Verbrennungsgeschwindigkeit. Dies führt dazu, daß die Flamme vom Brenner abhebt. Ordnet man den Flammenfühler derart an, daß er ein solches Abheben der Flamme vom Brenner feststellen kann, so läßt sich dieses Abheben der Flamme dahin gehend auswerten, daß es als Anzeichen für einen zu hohen Luftanteil, d.h. für ein nicht-optimales Gas/Luft-Verhältnis ausgenutzt wird. Während der Flammenfühler im Normalbetrieb beim Erlöschen der Flamme ein den Brenner stillsetzendes Signal liefert, gibt er während der Kalibrierung trotz brennender Flamme ebenfalls ein das Nichtvorhandensein einer Flamme anzeigendes Signal ab, wenn sich die Flamme vom Flammenfühler entfernt hat. Mit einem einzigen Flammenfühler kann man einerseits das Vorhandensein der Flamme im Normalbetrieb und andererseits die Position der Flamme während der Kalibrierung überwachen. Natürlich könnte man für die beiden Vorgänge auch getrennte Flammenfühler verwenden. Dabei kann es sich um einen in die Flamme eintauchenden thermischen Flammenfühler, z.B. um einen Flammenstab oder auch um einen optischen Flammenfühler handeln, der hinreichend fokussiert ist, um das Abheben der Flamme erkennen zu können.
Die Erfindung wird nachfolgend anhand in den Zeichnungen wiedergegebener Ausführungsbeispiele erläutert. Darin zeigt:
Figur 1
schematisch einen Hauptbrenner mit austretenden Flammen und zwar im Normalbetrieb (A) mit optimaler Flammenhöhe, bei etwas zu hohem Luftüberschuß (B) sowie bei starkem Luftüberschuß und abgehobener Flamme (C);
Figur 2
eine Gas/Luft-Regeleinrichtung mit einem in Abhängigkeit vom Wärmebedarf ein- und abschaltenden Gasventil; sowie
Figur 3
eine ähnliche Regeleinrichtung mit in Abhängigkeit vom Wärmebedarf modulierendem Brennstoffventil.
Bei allen drei in Figur 1 dargestellten Betriebszuständen A, B und C treten mehrere Flammen 1 aus entsprechenden Öffnungen des Brenners 2 aus und werden von einem Flammenfühler in Form eines Flammenstabs 3 überwacht. Im optimalen Betriebszustand A beginnt die Flamme unmittelbar an der Austrittsöffnung des Brenners 2 und hat eine solche Größe, daß der Flammenstab 3 in die Flammenspitze, also den Flammenbereich mit der höchsten Temperatur hineinragt. Hier liegt also ein optimales Gas/Luftgemisch vor, welches eine nahezu vollständige Verbrennung und damit geringstmögliche unverbrannte Anteile im Rauchgas gewährleistet.
In der Betriebsart B enthält das dem Brenner 2 zugeführte Gas/Luft-Gemisch zuviel Luft, wodurch die Flamme vergrößert wird. Hier ragt der Flammenfühler 3 nicht mehr in den Bereich der Flammenspitzen, sondern in den mittleren Flammenbereich hinein, der gegenüber der Flammenspitze eine niedrigere Temperatur aufweist. Gleichwohl erkennt der Flammenfühler 3 das Vorhandensein der Flammen 1.
In der Betriebsart C hat das Gas/Luft-Gemisch einen sehr hohen Luftüberschuß. Die Flammen 1 sind zwar nach wie vor vorhanden, aber soweit vom Brenner 2 abgehoben, daß der Flammenstab 3 nicht mehr in die Flamme 1 selbst eintaucht. Der Flammenfühler 3 kann also das Vorhandensein der Flammen 1 nicht erkennen, sondern meldet an eine angeschlossene Überwachungsschaltung einen Flammenausfall, obwohl die Flammen 1 in Wirklichkeit vorhanden sind. Dieses Abheben der Flammen 1 vom Brenner 2 wird gemäß der Erfindung zum Kalibrieren des Gas/Luft-Verhältnisses ausgenutzt, wenn der Brenner Gase mit unterschiedlichem Wobbeindex optimal verbrennen soll.
Hierzu wird ein Testexemplar des Brenners mit einem optimalen Gas/Luft-Gemisch betrieben und zugleich der Sauerstoffgehalt im Abgas gemessen. Diese Messung hat den Zweck, das Gas/Luft-Gemisch tatsächlich optimal einzustellen. Es ergibt sich die Betriebsart A. Sodann erhöht man den Luftüberschuß bis schließlich entsprechend der Betriebsart C die Flammen 1 soweit vom Brenner 2 abgehoben sind, daß der Flammenfühler 3 das Vorhandensein der Flammen nicht mehr erkennt, sondern einen Flammenausfall meldet. Zugleich wird gemessen, um wieviel Prozent der Luftüberschuß gegenüber der optimierten Betriebsart A zugenommen hat. Diese prozentuale Zunahme des Luftüberschusses bis zum Flammenabheben vom Flammenstab 3 ist eine charakteristische Kenngröße des Brenners, welche nur einmal für den betreffenden Brennertyp bestimmt werden muß.
Bei der Installation eines Brenners und danach in regelmäßigen Abständen, beispielsweise einmal oder zweimal am Tage, wird der Brenner wie folgt kalibriert:
Der Brenner wird mit hinreichendem Gasüberschuß in Gang gesetzt, so daß er auf jeden Fall zündet und die Flammen entstehen. Der Gasüberschuß richtet sich dabei nach dem in der betreffenden Anlage gegebenenfalls zu verbrennenden Gas mit dem geringsten kalorischen Brennwert. Der Einstellung der entsprechenden Regelelemente für Gas- und Luftzufuhr ist dabei bekannt. Nach dem Zünden der Flamme wird durch entsprechende Verstellung der das Gas/Luft-Verhältnis bestimmenden Stellglieder, z.B. durch einen Gas/Luft-Regler, das Gas/Luft-Verhältnis in Richtung auf einen Luftüberschuß verändert. Sobald der Luftüberschuß einen Wert erreicht hat, bei dem die Flammen 1 vom Flammenstab 3 abheben, schaltet der Flammenfühler 3 den Brenner ab. Dies ist ein charakteristischer und wiederholbarer Arbeitspunkt des Brenners im Zusammenwirken mit dem Flammenfühler. Von diesem Arbeitspunkt aus wird das Gas/Luft-Verhältnis um den eingangs erwähnten, einmal ermittelten Prozentsatz in Richtung auf eine Verringerung des Luftüberschusses geändert und erreicht damit das optimale Gas/Luft-Verhältnis entsprechend der Betriebsart A. Nunmehr ist der Brenner im Hinblick auf die Wobbezahl des gerade verbrannten Gases kalibriert und kann durch Konstanthalten dieses Gas/Luft-Verhältnisses optimal betrieben werden. Die Aufrechterhaltung des Gas/Luft-Verhältnisses ist durch die Einstellung der betreffenden Stellglieder vorgegeben oder kann durch einen an sich bekannten Gas/Luft-Regler gewährleistet werden.
Sollte der Brenner zwischen zwei Kalibrierzyklen infolge einer zu starken Änderung der Gasqualität nicht zünden, so kann der Kalibriervorgang automatisch wiederholt werden. Je öfter eine solche Kalibrierung durchgeführt wird, um so geringer ist die Gefahr, daß der Brenner zwischen zwei Kalibrierungen mit einem nicht optimalen Gas/Luft-Verhältnis betrieben wird. Die Erfindung ist sowohl bei Brennern mit einem schaltenden als auch mit einem modulierenden Gasventil einsetzbar.
Anhand von Figur 2 wird zunächst die Arbeitsweise bei Verwendung eines schaltenden Ein/Aus-Gasventils erläutert. Gas wird der Brennkammer bzw. dem Brenner 2 von einer Gasleitung G her über ein solches Ein/Aus-Gasventil 4 und einen Gasinjektor 5 zugeführt. Zugleich erzeugt ein Gebläse 6 einen Verbrennungsluftstrom, der über eine Luftdüse 7 zum Brenner 2 gelangt. Solange nur eine Gassorte verbrannt wird, könnte das Gebläse 6 mit einer durch das gewünschte Gas/Luft-Verhältnis vorgegebenen Drehzahl betrieben werden. Die Erfindung sieht jedoch eine Anpassung dieser Drehzahl an die betreffende Gassorte vor, um mittels der erwähnten Kalibrierung ein optimales Gas/Luft-Gemisch einzustellen. Hierzu wird die Anlage mit einer niedrigen Drehzahl des Gebläses 6 gestartet, so daß mit Sicherheit der Brenner zündet und der Flammenfühler 3 das Vorhandensein von Flammen meldet. Anschließend erhöht der Regler 8 die Drehzahl des Gebläses 6 solange bis infolge des erhöhten Luftüberschusses die Flammen entsprechend der Betriebsart C vom Flammenfühler abgehoben haben und dieser folglich an den Regler 8 ein Flammenausfallsignal liefert. Der vorzugsweise mit einem Mikroprozessor und Speichern ausgestattete Regler 8 schaltet über hier nicht im einzelnen dargestellte, aber bekannte Signalverbindungen die Anlage ab und speichert zugleich den beim Erlöschen der Flammen gegebenen Drehzahlwert. Anschließend verringert der Regler 8 den Sollwert der Gebläsedrehzahl um den oben erwähnten vorgegebenen Prozentsatz derart, daß von dem Abschalt-Arbeitspunkt gemäß Betriebsweise C der Luftüberschuß auf die optimale Betriebsweise A verringert wird. Nunmehr wird die Anlage mit diesem optimalen Gas/Luft-Verhältnis bzw. Luftüberschuß für den Betrieb freigegeben. Sobald beispielsweise ein zu beheizender Raum oder eine Warmwasserentnahmestelle die Zufuhr von Wärme und damit das Einschalten des Brenners anfordert, setzt der Regler 8 die Anlage in Betrieb, indem das Gasventil 4 geöffnet und das Gebläse 6 mit der nunmehr optimierten Drehzahl solange betrieben wird, bis kein Wärmebedarf mehr besteht. Bei nur selten eingeschalteten Anlagen kann jeder Einschaltung ein solcher Kalibriervorgang vorangestellt werden. Bei Anlagen, welche öfter ein- und ausschalten, genügt es meistens, wenn die Kalibrierung einmal oder zweimai pro Tag erfolgt. Öfter ändert sich der Wobbeindex des zugeführten Gases mit Sicherheit nicht.
Der Kalibriervorgang kann auch ohne Unterbrechung des Brennerbetriebs selbst vorgenommen werden, wenn der Regler 8 beim Einschalten der Anlage und beim erstmaligen Auftreten des Flammenausfallsignals infolge des Abhebens der Flamme vom Brenner die Gebläsedrehzahl gleich um den vorgegebenen Prozentsatz verringert, ohne dabei die Gaszufuhr und damit den Brennvorgang zu unterbrechen.
Figur 3 zeigt vereinfacht eine Brenneranlage mit modulierendem Betrieb, d.h. Gas- und Luftzufuhr ändern sich in Abhängigkeit vom jeweiligen Wärmebedarf. Das Brenngas G gelangt wiederum über einen Injektor 5 und die Verbrennungsluft L über eine Luftdüse 7 zum Brenner 2. Ein modulierendes Gasventil 14 sowie das drehzahlgesteuerte Gebläse 6 werden von einem Gas/Luft-Regler 15 im Sinne der Aufrechterhaltung eines vorgegebenen optimalen Gas/Luft-Verhältnisses gesteuert. Beispiele hierfür sind aus EP 0 390 964 Bl (72400679) oder EP 0 644 377 A (72200796) bekannt. Zwischen das Gasventil 14 und den Gasinjektor 5 ist eine Gasdrossel 16 eingeschaltet, welche vom Regler 8 gesteuert wird.
In bekannter Weise wird die Drehzahl des Gebläses 6 in Abhängigkeit vom Wärmebedarf verändert. Über den Gas/Luftregler 15 wird dabei die Gaszufuhr durch das Gasventil 14 im Sinne der Aufrechterhaltung eines vorgegebenen Gas/Luft-Verhältnisses gesteuert. Ein solcher Gas/Luftregler 15 hat einen vorgegebenen Modulationsbereich über den diese automatische Anpassung von Gas- und Luftzufuhr wirksam ist. Der Gasinjektor 5 ist so ausgestaltet, daß er bei voll geöffneter Drossel 16 und Verwendung eines Gases mit den niedrigsten zu erwartenden Wärmeinhalt das gewünschte Gas/Luft-Verhältnis erzielt.
Die Anlage wird bei voll geöffneter Drossel 16 in Gang gesetzt. Sobald die Flamme zündet, verändert der Regler 8 langsam den Durchflußquerschnitt der Drossel 16. Wenn die Flamme vom Flammenfühler 3 abhebt, schaltet der Regler 8, wie beim obigen Ausführungsbeispiel, die Anlage ab. Beim erneuten Einschalten wird der Durchflußquerschnitt der Drossel 16 um den vorgegebenen Prozentsatz zwischen Abhebewert (Betriebsart C) und optimalem Betrieb (Betriebsart A) erhöht, beispielsweise unter Verwendung eines Stellmotors, der bei konstanter Drehzahl für eine vorgegebene, dem genannten Prozentsatz entsprechende Dauer in Betrieb ist.
Damit wird das Gas/Luft-Verhältnis auf den gewünschten optimalen Wert eingestellt. Anschließend wird die Anlage für den Normalbetrieb freigegeben. Auch hier kann die Einstellung des optimalen Gasstroms im Verhältnis zum Luftstrom mit Hilfe der Drossel 16 und des Reglers 8 während des ersten Einschaltvorgangs der Anlage ohne Unterbrechung des Brennerbetriebs erfolgen.
Im Rahmen der Erfindung sind zahlreiche Abwandlungen der gerätemäßigen Ausgestaltung möglich. So kann die Drossel 16 Teil des modulierenden Gasventils 14 sein. Die Einstellung des Gas/Luft-Verhältnisses beim Kalibrieren kann nicht nur im Strömungsweg des Gases, sondern statt dessen auch im Strömungsweg der Luft L vorgenommen werden, wenn man eine entsprechende Einstellvorrichtung zwischen Gebläse 6 und Luftdüse 7 vorsieht. Dies ist jedoch weniger günstig, weil sich in diesem Falle bei Verwendung unterschiedlicher Gasarten auch die Wärmeleistung des Brenners ändern würde. Anstelle eines thermischen Flammenfühlers, z.B. eines Flammenstabs 3, kann auch ein ausreichend fokussierter optischer oder sonstiger Flammensensor eingesetzt werden, der nicht nur das Vorhandensein der Flamme 1 sondern auch deren Abheben vom Brenner 2 erkennt. Die Verbrennungsluftzufuhr kann auch durch eine im Luftstrom angeordnete Drosselklappe regelbar sein. Den der Kalibrierung dienenden Regler 8 und einen kombinierten Gas/Luft-Regler 15 kann man zu einem einzigen Regler zusammenfassen.

Claims (9)

  1. Verfahren zum Betrieb eines Gasbrenners mit einem kalibrierten Regler, wobei der Regler die Gas- und/oder Luftversorgung des von einem Flammenfühler überwachten Gasbrenners steuert, mit folgenden Maßnahmen:
    a) zur Kalibrierung des Reglers wird ein Brenner-Testexemplar bei Nennlast mit einem optimalen Gas/Luft-Gemisch betrieben, dessen Einhaltung durch eine Sauerstoffmessung im Abgaskanal überwacht wird; dann wird der Luftüberschuß soweit erhöht, bis der Flammenfühler ein Abheben der Flammen vom Brenner-Testexemplar meldet; darauffolgend wird ermittelt, um welchen Prozentsatz der Luftüberschuß zwischen dem Betrieb mit optimalem Gas/Luft-Gemisch und dem Abheben der Flamme vom Brenner-Textexemplar erhöht wurde, und dieser Prozentsatz wird im Regler gespeichert;
    b) dem Gasbrenner wird ein Gas/Luft-Gemisch mit Gasüberschuß zugeführt und der Gasbrenner wird gezündet;
    c) der Gasüberschuß wird verringert bis ein Luftüberschuß entsteht;
    d) sobald bei einem vorgegebenen Luftüberschuß die Flamme vom Flammenfühler abhebt, liefert dieser ein Flammenausfallsignal;
    e) von dem beim Auftreten des Flammenausfallsignals gegebenen Gas/Luft-Mischungsverhältnis wird das Gas/Luft-Gemisch um den gemäß Maßnahme a) gespeicherten Prozentsatz in Richtung auf einen höheren Gasanteil geändert;
    f) mit diesem optimalen Gas/Luft-Mischungsverhältnis wird der Gasbrenner bis zur nächsten Optimierung betrieben.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß das optimierte Gas/Luft-Gemisch etwa 4% Luftüberschuß hat.
  3. Vorrichtung zum Betrieb eines Gasbrenners mit:
    a) einem kalibrierten Regler, wobei zur Kalibrierung des Reglers ein Brenner-Testexemplar bei Nennlast mit einem optimalen Gas/Luft-Gemisch betrieben wird, dessen Einhaltung durch eine Sauerstoffinessung im Abgaskanal überwacht wird; wobei dann der Luftüberschuß soweit erhöht wird, bis der Flammenfühler ein Abhcben der Flammen vom Brenner-Testexemplar meldet; wobei darauffolgend ermittelt wird, um welchen Prozentsatz der Luftüberschuß zwischen dem Betrieb mit optimalem Gas/Luft-Gemisch und dem Abheben der Flamme vom Brenner-Textexemplar erhöht wurde, und wobei dieser Prozentsatz im Regler gespeichert wird;
    b) einem mit einem Gas/Luft-Gemisch versorgten Gasbrenner (2);
    c) einem dem Gasbrenner zugeordneten Flammenfühler (3);
    d) einem Gasventil (4, 14) und einem Verbrennungsluftgebläse (6); sowie
    e) einem an den Flammenfühler angeschlossenen Regler (8), der bei Flammenausfall die Gas- oder Gas/Luft-Zufuhr zum Gasbrenner unterbricht und zur Beeinflussung des Gas/Luft-Verhältnisses auf ein die Gas- oder Luftzufuhr steuerndes Stellglied (6, 16) einwirkt;
    dadurch gekennzeichnet,daßderRegler(8)
    f) beim Einschalten des Gasbrenners (2) dem Stellglied ein Steuersignal zuführt, welches einen zum sicheren Zünden des Gasbrenners ausreichenden Gasüberschuß erzeugt;
    g) nach dem Erscheinen eines das Zünden der Flamme anzeigenden Flammensignals des Flammenfühlers (3) das Steuersignal in Richtung auf einen Luftüberschuß solange ändert, bis das Flammensignal verschwindet;
    h) einen Speicher für den beim Kalibrieren ermittelten Prozentsatz aufweist;
    i) eine Vorrichtung zum Verändern des Stellsignals um den vorgegebenen Prozentsatz in Richtung auf eine Erhöhung des Gasanteils im Gas/Luft-Gemisch enthält; und
    j) diesen optimierten Wert des Gas/Luft-Verhältnisses in der nachfolgenden Betriebsphase des Gasbrenners aufrechterhält.
  4. Vorrichtung nach Anspruch 3, dadurch gekennzeichnet, daß ein Ausgang des Reglers (8) an einen Drehzahlsteuereingang eines Gebläses (6) für die Verbrennungsluftzufuhr angeschlossen ist.
  5. Vorrichtung nach Anspruch 4, dadurch gekennzeichnet, daß das Gasventil ein vom Wärmebedarf gesteuertes Ein/Ausschaltventil (4) ist.
  6. Vorrichtung nach Anspruch 3 oder 4, dadurch gekennzeichnet, daß das Gasventil ein vom Wärmebedarf gesteuertes modulierendes Ventil (14) ist.
  7. Vorrichtung nach Anspruch 6, dadurch gekennzeichnet, daß ein Ausgang des Reglers (8) an das Stellglied (16) im Strömungsweg (14, 16, 5) des Gases angeschlossen ist.
  8. Vorrichtung nach Anspruch 6 oder 7, dadurch gekennzeichnet, daß ein kombinierter Gas/Luft-Regler (15) eingangsseitig an einen Wärmebedarfsfühler angeschlossen ist und ausgangsseitig einerseits auf eine Drehzahlsteuerschaltung für das Gebläse (6) sowie andererseits auf das Gasventil (14) einwirkt.
  9. Vorrichtung nach Anspruch 8, dadurch gekennzeichnet, daß der Speicher für den bei der Kalibrierung ermittelten Prozentsatz Teil des kombinierten Gas/Luft-Reglers (15), vorzugsweise eines Mikroprozessor-Reglers ist.
EP97116689A 1996-09-26 1997-09-25 Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners Expired - Lifetime EP0833106B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19639487 1996-09-26
DE19639487A DE19639487A1 (de) 1996-09-26 1996-09-26 Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners

Publications (3)

Publication Number Publication Date
EP0833106A2 EP0833106A2 (de) 1998-04-01
EP0833106A3 EP0833106A3 (de) 1999-08-04
EP0833106B1 true EP0833106B1 (de) 2001-11-14

Family

ID=7806909

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97116689A Expired - Lifetime EP0833106B1 (de) 1996-09-26 1997-09-25 Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners

Country Status (2)

Country Link
EP (1) EP0833106B1 (de)
DE (2) DE19639487A1 (de)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102004051270A1 (de) * 2004-10-21 2006-04-27 G. Kromschröder AG Verfahren und Einrichtung zur Kalibrierung eines Heizwertgerätes
EP2014985A2 (de) 2007-07-13 2009-01-14 Vaillant GmbH Verfahren zur Brenngas-Luft-Einstellung für einen brenngasbetriebenen Brenner
DE10300602B4 (de) * 2002-01-17 2012-01-05 Vaillant Gmbh Verfahren zur Regelung eines Gasbrenners
EP2631541A1 (de) 2012-02-27 2013-08-28 Honeywell Technologies Sarl Verfahren zum Betrieb eines Gasbrenners
EP2667097A1 (de) 2012-05-24 2013-11-27 Honeywell Technologies Sarl Verfahren zum Betrieb eines Gasbrenners
US10247416B2 (en) 2015-03-23 2019-04-02 Honeywell Technologies Sarl Method for operating a gas burner
US11105512B2 (en) 2018-03-30 2021-08-31 Midea Group Co., Ltd Method and system for controlling a flow curve of an electromechanical gas valve
US11262069B2 (en) 2020-06-25 2022-03-01 Midea Group Co., Ltd. Method and system for auto-adjusting an active range of a gas cooking appliance

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19857239C2 (de) * 1998-12-11 2000-11-23 Honeywell Bv Regelverfahren für Gasbrenner
DE19963974C2 (de) * 1999-12-31 2002-11-14 Bosch Gmbh Robert Gasbrenner
DE10030063C2 (de) * 2000-06-19 2003-03-20 Honeywell Bv Regelungsverfahren für Gasbrenner
DE10145592C1 (de) 2001-09-14 2003-06-18 Rational Ag Verfahren zur Leistungseinstellung gasbetriebener Gargeräte sowie dieses Verfahren nutzendes Gargerät
DE10200128B4 (de) * 2002-01-04 2005-12-29 Fa.Josef Reichenbruch Verfahren zur Erkennung von Gasarten und Verfahren zum Betrieb einer Brennvorrichtung sowie Brennvorrichtung für die Durchführung dieser Verfahren
AT411189B (de) 2002-01-17 2003-10-27 Vaillant Gmbh Verfahren zur regelung eines gasbrenners
DE20201182U1 (de) * 2002-01-25 2002-05-23 Gabriel Martin Brenner für fluide Brennstoffe
ATE534871T1 (de) 2003-10-08 2011-12-15 Vaillant Gmbh Verfahren zur regelung eines gasbrenners, insbesondere bei heizungsanlagen mit gebläse
AT510075B1 (de) * 2010-07-08 2012-05-15 Vaillant Group Austria Gmbh Verfahren zur kalibrierung einer einrichtung zum regeln des brenngas-luft-verhältnisses eines brenngasbetriebenen brenners
DE102012108268A1 (de) 2012-09-05 2014-03-06 Ebm-Papst Landshut Gmbh Verfahren zur Erkennung der Gasfamilie sowie Gasbrennvorrichtung
DE102019131310A1 (de) * 2019-11-20 2021-05-20 Vaillant Gmbh Heizgerät mit Notbetriebsregelung

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE598922A (nl) * 1960-01-12 1961-07-10 Henri Willem Grootenhuys Veiligheidsinrichting
FR2638819A1 (fr) * 1988-11-10 1990-05-11 Vaillant Sarl Procede et un dispositif pour la preparation d'un melange combustible-air destine a une combustion
DE3911268A1 (de) 1989-04-07 1990-10-11 Honeywell Bv Regeleinrichtung fuer gasbrenner
AT396028B (de) * 1990-04-17 1993-05-25 Vaillant Gmbh Verfahren zur regelung eines voll vormischenden flaechenbrenners
JP3132213B2 (ja) * 1993-01-13 2001-02-05 松下電器産業株式会社 燃焼装置
DE59306401D1 (de) * 1993-03-11 1997-06-12 Landis & Gyr Tech Innovat Brennerregler
DE59304310D1 (de) 1993-09-16 1996-11-28 Honeywell Bv Regeleinrichtung für Gasbrenner
DE4433425C2 (de) 1994-09-20 1998-04-30 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung zum Einstellen eines Gas-Verbrennungsluft-Gemisches bei einem Gasbrenner
DE19502901C2 (de) 1995-01-31 2000-02-24 Stiebel Eltron Gmbh & Co Kg Regeleinrichtung für einen Gasbrenner

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10300602B4 (de) * 2002-01-17 2012-01-05 Vaillant Gmbh Verfahren zur Regelung eines Gasbrenners
DE102004051270A1 (de) * 2004-10-21 2006-04-27 G. Kromschröder AG Verfahren und Einrichtung zur Kalibrierung eines Heizwertgerätes
EP2014985A2 (de) 2007-07-13 2009-01-14 Vaillant GmbH Verfahren zur Brenngas-Luft-Einstellung für einen brenngasbetriebenen Brenner
DE102008031979A1 (de) 2007-07-13 2009-01-15 Vaillant Gmbh Verfahren zur Brenngas-Luft-Einstellung für einen brenngasbetriebenen Brenner
EP2631541A1 (de) 2012-02-27 2013-08-28 Honeywell Technologies Sarl Verfahren zum Betrieb eines Gasbrenners
EP2631541B1 (de) * 2012-02-27 2018-04-11 Honeywell Technologies Sarl Verfahren zum Betrieb eines Gasbrenners
EP2667097A1 (de) 2012-05-24 2013-11-27 Honeywell Technologies Sarl Verfahren zum Betrieb eines Gasbrenners
US10247416B2 (en) 2015-03-23 2019-04-02 Honeywell Technologies Sarl Method for operating a gas burner
US11105512B2 (en) 2018-03-30 2021-08-31 Midea Group Co., Ltd Method and system for controlling a flow curve of an electromechanical gas valve
US11262069B2 (en) 2020-06-25 2022-03-01 Midea Group Co., Ltd. Method and system for auto-adjusting an active range of a gas cooking appliance

Also Published As

Publication number Publication date
DE59705366D1 (de) 2001-12-20
EP0833106A3 (de) 1999-08-04
EP0833106A2 (de) 1998-04-01
DE19639487A1 (de) 1998-04-09

Similar Documents

Publication Publication Date Title
EP0833106B1 (de) Verfahren und Vorrichtung zur Betriebsoptimierung eines Gasbrenners
EP1902254B1 (de) Verfahren zur regelung und steuerung einer feuerungseinrichtung und feuerungseinrichtung
DE69910381T2 (de) Ofen für feste brennstoffe
DE3707259C2 (de) Brennervorrichtung
EP1761728B1 (de) Verfahren zur einstellung der luftzahl an einer feuerungseinrichtung und feuerungseinrichtung
EP2005066B1 (de) Verfahren zum starten einer feuerungseinrichtung bei unbekannten rahmenbedingungen
EP0392162B1 (de) Gaskocheinrichtung mit wenigstens einem unter Glaskeramikplatte angeordneten Gasstrahlungsbrenner sowie Verfahren zum Verringern der Aufheizzeit einer derartigen Gaskocheinrichtung
EP3690318B1 (de) Verfahren zur regelung eines brenngas-luft-gemisches in einem heizgerät
DE3937290A1 (de) Verfahren und einrichtung zur herstellung eines einer verbrennung zuzufuehrenden brennstoff-verbrennungsluft-gemisches
EP1522790B1 (de) Verfahren zur Regelung eines Gasbrenners, insbesondere bei Heizungsanlagen mit Gebläse
EP0770824A2 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
DE19539568C1 (de) Verfahren und Schaltung zur Regelung eines Gasbrenners
EP1331444B1 (de) Verfahren zur Regelung eines Gasbrenners
DE102019119186A1 (de) Verfahren und Vorrichtung zur Regelung eines Brenngas-Luft-Gemisches in einem Heizgerät
EP3992529A1 (de) Verfahren und vorrichtung zum zünden eines brenners
DE3807388A1 (de) Verfahren zum betreiben eines heizgeraets und heizgeraet
EP4043793A1 (de) Verfahren und anordnung zur erkennung eines flammenrückschlages in einem vormisch-brenner
DE19734574B4 (de) Verfahren und Vorrichtung zum Regeln eines Brenners, insbesondere eines vollvormischenden Gasbrenners
EP1293728B1 (de) Verfahren zur Leistungseinstellung gasbetriebener Gargeräte sowie dieses Verfahren nutzendes Gargerät
DE102004055715C5 (de) Verfahren zur Einstellung von Betriebsparametern an einer Feuerungseinrichtung und Feuerungseinrichtung
DE10045272A1 (de) Feuerungseinrichtung mit Überwachung der Flammenlänge
DE102004063992B4 (de) Verfahren zur Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung
EP0643264A1 (de) Verfahren zur Regulierung der Flammengüte eines atmosphärischen Gasbrenners und Gasbrenner zur Durchführung des Verfahrens
DE202004017851U1 (de) Feuerungseinrichtung
DE102004030299A1 (de) Verfahren zur Regelung und Steuerung einer Feuerungseinrichtung und Feuerungseinrichtung

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

AX Request for extension of the european patent

Free format text: AL;LT;LV;RO;SI

17P Request for examination filed

Effective date: 19990719

AKX Designation fees paid

Free format text: DE FR GB IT NL

17Q First examination report despatched

Effective date: 20000711

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT NL

REF Corresponds to:

Ref document number: 59705366

Country of ref document: DE

Date of ref document: 20011220

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020115

NLR4 Nl: receipt of corrected translation in the netherlands language at the initiative of the proprietor of the patent
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

NLS Nl: assignments of ep-patents

Owner name: HONEYWELL TECHNOLOGIES SARL

Effective date: 20080618

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120829

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20120910

Year of fee payment: 16

Ref country code: IT

Payment date: 20120924

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120928

Year of fee payment: 16

Ref country code: NL

Payment date: 20120913

Year of fee payment: 16

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140401

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130925

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20140530

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59705366

Country of ref document: DE

Effective date: 20140401

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130925

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130925

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140401

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130930