EP0830704B1 - Procede et appareil perfectionnes pour un dispositif fusible monte en surface - Google Patents

Procede et appareil perfectionnes pour un dispositif fusible monte en surface Download PDF

Info

Publication number
EP0830704B1
EP0830704B1 EP96919129A EP96919129A EP0830704B1 EP 0830704 B1 EP0830704 B1 EP 0830704B1 EP 96919129 A EP96919129 A EP 96919129A EP 96919129 A EP96919129 A EP 96919129A EP 0830704 B1 EP0830704 B1 EP 0830704B1
Authority
EP
European Patent Office
Prior art keywords
fusible link
substrate
layer
fuse
conductive
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96919129A
Other languages
German (de)
English (en)
Other versions
EP0830704A1 (fr
Inventor
Vladimir Blecha
Katherine M. Mcguire
Andrew J. Neuhalfen
Daniel B. Onken
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Littelfuse Inc
Original Assignee
Littelfuse Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from US08/482,829 external-priority patent/US5943764A/en
Application filed by Littelfuse Inc filed Critical Littelfuse Inc
Publication of EP0830704A1 publication Critical patent/EP0830704A1/fr
Application granted granted Critical
Publication of EP0830704B1 publication Critical patent/EP0830704B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/046Fuses formed as printed circuits
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H69/00Apparatus or processes for the manufacture of emergency protective devices
    • H01H69/02Manufacture of fuses
    • H01H69/022Manufacture of fuses of printed circuit fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/041Fuses, i.e. expendable parts of the protective device, e.g. cartridges characterised by the type
    • H01H85/0411Miniature fuses
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01HELECTRIC SWITCHES; RELAYS; SELECTORS; EMERGENCY PROTECTIVE DEVICES
    • H01H85/00Protective devices in which the current flows through a part of fusible material and this current is interrupted by displacement of the fusible material when this current becomes excessive
    • H01H85/02Details
    • H01H85/04Fuses, i.e. expendable parts of the protective device, e.g. cartridges
    • H01H85/05Component parts thereof
    • H01H85/055Fusible members
    • H01H85/08Fusible members characterised by the shape or form of the fusible member
    • H01H85/11Fusible members characterised by the shape or form of the fusible member with applied local area of a metal which, on melting, forms a eutectic with the main material of the fusible member, i.e. M-effect devices

Definitions

  • the invention relates generally to a surface-mountable fuse for placement into and protection of the electrical circuit of a printed circuit board.
  • the invention relates to a surface-mount fuse according to the preambles of claims 1, 13 and 17 and to a method of manufacturing a surface-mount fuse according to the preambles of claims 8 and 25 as for example known from US-A-5 166 656.
  • PC Printed circuit
  • the invention is a thin film, surface-mounted fuse which comprises two material subassemblies.
  • the first subassembly comprises a fusible link, its supporting substrate and terminal pads.
  • the second subassembly comprises a protective layer which overlies the fusible link so as to provide protection from impacts and oxidation.
  • the protective layer is preferably made of a polymeric material.
  • the most preferred polymeric material is a polyurethane gel or paste when the stencil printing step is used to apply the cover coat.
  • polycarbonates will also work well when an injection molding step is used to apply the cover coat.
  • the most preferred supporting substrate is an FR-4 epoxy or a polyimide.
  • a second aspect of the invention is a thin film, surface-mounted fuse.
  • This fuse comprises a fusible link made of a conductive metal.
  • the first conductive metal is preferably, but not exclusively, selected from the group including copper, silver, nickel, titanium, aluminum or alloys of these conductive metals.
  • a second conductive metal, different from the first conductive metal, is deposited on the surface of this fusible link.
  • One preferred metal for the surface-mounted fuse of this invention is copper.
  • One preferred second conductive metal is tin-lead. Another preferred second conductive metal is tin.
  • the second conductive metal may be deposited onto the fusible link in the form of a rectangle, circle or in the form of any of several other configurations, depending on the configuration of the fuse link.
  • the second conductive metal is preferably deposited along the central portion of the fusible link.
  • Photolithographic, mechanical and laser processing techniques may be employed to create very small, intricate and complex fusible link geometries.
  • This capability when combined with the extremely thin film coatings applied through electrochemical and physical vapor deposition (PVD) techniques, enables these subminiature fuses to control the fusible area of the element and protect circuits passing microampere- and ampere-range currents.
  • PVD physical vapor deposition
  • the location of the fusible link at the top of the substrate of the present fuse enables one to use laser processing methods as a high precision secondary operation, in that way trimming the final resistance value of the fuse element.
  • FIG. 1 is a perspective view of a copper-plated, FR-4 epoxy sheet used to make a subminiature surface-mounted fuse in accordance with the invention.
  • FIG. 2 is a view of a portion of the sheet of FIG. 1, and taken along lines 2-2 of FIG. 1.
  • FIG. 3 is a perspective view of the FR-4 epoxy sheet of FIG. 1, but stripped of its copper plating, and with a plurality of bores (partially shown), each having a diameter D, spaced apart by a length L and a width W, and routed into separate quadrants of that sheet.
  • FIG. 4 is an enlarged, perspective view of a cut-away portion of the bored sheet of FIG. 3, but with a copper plating layer having been reapplied.
  • FIG. 5 is a cut-away perspective view of the flat, upward-facing surfaces of the replated copper sheet, after the sheet was masked with a multi-squared panel of an ultraviolet (UV) light-opaque substance.
  • UV ultraviolet
  • FIG. 6 is a perspective view of the reverse side of FIG. 5, rotated about one of the fuse rows 27, but after the removal of a strip-like portion of copper plating from the replated sheet of FIG. 5.
  • FIG. 7 is a perspective view of the top-side of FIG. 6, rotated about one of the fuse rows 27, and showing linear regions 40 defined by dotted lines.
  • FIG. 8 is a perspective view of a single fuse row 27 from the sheet, cut away from the other fuse rows, and cut away at one edge of one of the fuses, after dipping the sheet into a copper plating bath and then a nickel plating bath, with the result that copper and nickel layers are deposited onto the base copper layer of the terminal pads, including the grooves of the pads.
  • FIG. 9 is a perspective view of the strip of FIG. 8, but prior to UV light curing, and showing a fuse-blowing portion 50 at the center of fusible link 42 that is masked with a UV light-opaque substance.
  • FIG. 10 shows the strip of FIG. 9, but after immersion into a tin-lead plating bath to create another layer over the copper and nickel layers, and after deposition of a tin-lead alloy onto the central portion of the fusible link.
  • FIG. 11 shows the strip of FIG. 10, but with an added polymeric gel or paste layer onto the top of the fuse row 27.
  • FIG. 12 shows the individual fuse in accordance with the invention as it is finally made, and after a so-called dicing operation in which a diamond saw is used to cut the strips along parallel and perpindicular planes to form these individual surface-mountable fuses.
  • the thin film, surface-mounted fuse is a subminiature fuse used in a surface mount configuration on a PC board or on a thick film hybrid circuit.
  • One of these fuses is typically known in the art as an "A" case fuse.
  • the "A" case fuse standard industry size for these fuses is 125 mils. long by 60 mils. wide.
  • the "A” case fuse is also designated as a 1206 fuse.
  • the present invention includes even smaller sized fuses which are compatible with standard sized surface mountable devices.
  • the present invention can be used within all other standard sizes of such surface mountable device sizes, such as 1210, 0805, 0603 and 0402 fuses, as well as non-standard sizes.
  • the invention generally comprises two material subassemblies.
  • the first subassembly includes the fuse element or fusible link 42, its supporting substrate or core 13, and terminal pads 34 and 36 for connecting the fuse 58 to the PC board.
  • the second subassembly is a protective layer 56 which overlies the fusible link 42 and a substantial portion of the top portion of the fuse so as to, at least, provide protection from impacts which may occur during automated assembly, and protection from oxidation during use.
  • the first subassembly contains and supports two metal electrodes or pads 34, 36, and the fusible element or link 42, both of which are bonded to the substrate as a single continuous film, as shown in FIGs. 5 and 6.
  • the pads 34, 36 are located on the top, the bottom, and a the sides of the substrate or core 13, while the fusible link 42 is located at the top of the substrate 13. More specifically, the pads 34, 36 extend into the two grooves 16 (each groove 16 is one half of each bore 14) in each fuse created by the bores 14 and dicing operation during the process of manufacture, as will be further described below.
  • pads are made up of several layers, including a base copper layer, a supplemental copper layer, a nickel layer and a tin-lead layer.
  • the base copper layer of the pads and the thin film fusible link are simultaneously deposited by (1) electrochemical processes, such as the plating described in the preferred embodiment below; or (2) by PVD.
  • electrochemical processes such as the plating described in the preferred embodiment below; or (2) by PVD.
  • Such simultaneous deposition ensures a good conductive path between the fusible link 42 and the terminal pads 34, 36. This type of deposition also facilitates manufacture, and permits very precise control of the thickness of the fusible link 42.
  • This fuse may be made by the following process. Shown in FIGS. 1 and 2 is a solid sheet 10 of an FR-4 epoxy with copper plating 12. The copper plating 12 and the FR-4 epoxy core 13 of this solid sheet 10 may best be seen in FIG. 2.
  • This copper-plated FR-4 epoxy sheet 10 is available from Allied Signal Laminate Systems, Hoosick Falls, New York, as Part No. 0200BED130C1/C1GFN0200 C1/C1A2C.
  • FR-4 epoxy is a preferred material
  • other suitable materials include any material that is compatible with, i.e., of a chemically, physically and structurally similar nature to, the materials from which PC boards are made.
  • another suitable material for this solid sheet 10 is polyimide.
  • FR-4 epoxy and polyimide are among the class of materials having physical properties that are nearly identical with the standard substrate material used in the PC board industry.
  • the fuse of the invention and the PC board to which that fuse is secured have extremely well-matched thermal and mechanical properties.
  • the substrate of the fuse of the present invention also provides desired arc-tracking characteristics, and simultaneously exhibits sufficient mechanical flexibility to remain intact when exposed to the rapid release of energy associated with arcing.
  • the copper plating 12 is etched away from the solid sheet 10 by a conventional etching process.
  • the copper is etched away from the substrate by a ferric chloride solution.
  • the FR-4 epoxy sheet 10 having this treated, copper-free surface is then drilled or punched to create holes or bores 14 along four quadrants 10a, 10b, 10c, 10d of the sheet 10, as may be seen in FIG. 3.
  • Broken lines visually separate these four quadrants 10a, 10b, 10c, 10d in FIG. 3.
  • the bores 14 are lined up into rows 27 and columns 29. Although only four rows 27 of bores 14 are shown in FIG. 3 in one quadrant 10a for convenience, the rows 27 of holes 14 are actually disposed over almost the entire sheet 10 in all four quadrants 10a, 10b, 10c, 10d, as is designated by the three dots 11.
  • the length L between the center of the bores 14 is approximately 70 mils, and the width W between the center of the bores 14 is approximately 38 mils.
  • the length L between the center of the bores 14 is approximately 50 mils, and the width W between the center of the bores 14 is approximately 30 mils.
  • the diameter D (FIG. 4) for each bore 14 for the "603" sizing is approximately 18 mils.
  • the etched and bored sheet 10 shown in FIG. 3 is again plated with copper.
  • This reapplication of copper occurs through the immersion of the etched and bored sheet of FIG. 3 into an electroless copper plating bath.
  • This method of copper plating is well-known in the art.
  • This copper plating step results in the placement of a copper layer having a uniform thickness along each of the exposed surfaces of the sheet 10.
  • the copper plating 18 resulting from this step covers both (1) the flat, upper surfaces 22 of the sheet 10; and (2) the vertical regions of the groves 16 and/or the vertical regions of the bores 14. These vertical portion of the grooves 16 and/or bores 14 must be copper-plated because they will ultimately form a portion of the terminal pads 34, 36 of the final fuse as will be further described below.
  • the uniform thickness of the copper plating will depend upon the ultimate needs of the user. Particularly, as may be seen in FIG. 4, for a fuse intended to open at 1/16 ampere, the copper plating 18 has a thickness of 2,500 Angstroms. For a fuse intended to open at 5 amperes, the copper plating 18 has a thickness of approximately 75,000 Angstroms for a particular width of the fusable link.
  • An otherwise clear mask is placed over the replated copper sheet 20 from FIG. 4 after it has been covered with the photoresist.
  • Square panels are a part of, and are evenly spaced across, this clear mask according to the sizing of the fuse being manufactured. These square panels are made of an UV light-opaque substance, and are generally shown as the rectangle 30 shown in FIG. 5. Essentially, by placing this mask having these panels onto the replated copper sheet 20, several portions of the flat, upward-facing surfaces 22 of the replated copper sheet 20 from FIG 4. are effectively shielded from the effects of UV light.
  • these square panels will essentially define the shapes and sizes of the so-called fusible link 42 and the upper terminal areas 60 of the terminal pads 34, 36 on the upper portion 22 of the fuse.
  • the fusible link 42 is in electrical communication with the upper terminal areas 60. It will be appreciated that the width, length and shape of both the fusible link 42 and these upper terminal areas 60 may be altered by changing the size and shape of these UV light-opaque panels.
  • the backside of the sheet is covered with a photoresist material and an otherwise clear mask is placed over the replated copper sheet 20 after it has been covered with the photoresist.
  • a rectangular panel is a part of this clear mask.
  • the rectangular panels are made of a UV light-opaque substance, and are of a size corresponding to the size of the panel 28 shown in FIG. 6. Essentially, by placing this mask having these panels onto the replated copper sheet 20, several strips of the flat, downward-facing surfaces 28 of the replated copper sheet 20 are effectively shielded from the effects of the UV light.
  • the rectangular panels will essentially define the shapes and sizes of the lower terminal areas 62 of the terminal pads 34, 36, and the lower middle portions 28 of sheet 20, as shown in FIG. 6.
  • the copper plating from a portion of the underside of a sheet 20 is defined by a photoresist mask. Particularly, the copper plating from the lower, middle portions 28 of the underside of the sheet 20 is removed. The lower, middle portions 28 of the underside of the sheet 20 is that part of the strip along a line immediately beneath the areas 30 of clear epoxy, and the fuse links 42. A perspective view of this section of this replated sheet 20 is shown in FIG. 6.
  • the replated sheet 20 is subjected to the UV light for a time sufficient to ensure curing of all of the photoresist that is not covered by the square panels and rectangular strips of the masks. Thereafter, the masks containing these square panels and rectangular strips are removed from the replated sheet 20.
  • the photoresist that was formerly below these square panels remains uncured. This uncured photoresist may be washed from the replated sheet 20 using a solvent.
  • the cured photoresist on the remainder of the replated sheet 20 provides protection against the next step in the process. Particularly, the cured photoresist prevents the removal of copper beneath those areas of cured photoresist. The regions formerly below the square panels have no cured photoresist and no such protection. Thus, the copper from those regions can be removed by etching. This etching is performed with a ferric chloride solution through well known etching concepts.
  • the replated sheet 20 is then placed in a chemical bath to remove all of the remaining cured photoresist from the previously cured areas of that sheet 20.
  • this sheet 20 will ultimately be cut into a plurality of pieces, and each of these pieces becomes a fuse in accordance with the invention, as will be further described below.
  • FIGS. 5 through 7 only a cut-away portion of the overall sheet including three rows 27 and four columns 29 is shown in FIGS. 5 through 7.
  • the bores 14 and grooves of the sheet 20 still include copper plating. These bores 14 and grooves 16 form portions of the pads 34, 36. These pads 34, 36 will ultimately serve as the means for securing the entire, finished fuse to the PC board.
  • FIG. 7 is a perspective view of the opposite side of the sheet 20 from FIG. 6. Directly opposite and coinciding with the lower, middle portions 28 of the sheet 20 are linear regions 40 on the top-side 38 of the sheet 20. These linear regions 40 are defined by the dotted lines of FIG. 7.
  • FIG. 7 is to be referred to in connection with the next step in the manufacture of the invention.
  • a photoresist polymer is placed along each of the linear regions 40 of the top side 38 of the sheet 20. Through the covering of these linear regions 40, photoresist polymer is also placed along the relatively thin portions which will comprise the fusible links 42. These fusible links 42 are made of a conductive metal, here copper.
  • the photoresist polymer is then treated with UV light, resulting in a curing of the polymer onto linear region 40 and its fusible links 42.
  • the middle portion 28 of the underside of the sheet 20 will also not be subject to plating when the sheet 20 is dipped into the electrolytic plating bath. Copper metal previously covering this metal portion had been removed, revealing the bare epoxy that forms the base of the sheet 20. Metal will not adhere to or plate onto this bare epoxy using an electrolytic plating process.
  • the entire sheet 20 is dipped into an electrolytic copper plating bath and then an electrolytic nickel plating bath.
  • a copper layer 46 and a nickel layer 48 are deposited on the base copper layer 44.
  • the cured photoresist polymer on the linear region 40, including the photoresist polymer on the fusible links 42, is removed from that region 40.
  • Photoresist polymer is then immediately reapplied along the entire linear region 40.
  • a portion 50 at the center of the fusible link 42 is masked with a UV light-opaque substance.
  • the entire linear region 40 is then subjected to UV light, with the result that curing of the photoresist polymer occurs on all of that region, except for the masked central portion 50 of the fusible link 42.
  • the mask is removed from the central portion 50 of the fusible link, and the sheet 20 is rinsed.
  • the uncured photoresist above the central portion 50 of the fusible link 42 is removed from the fusible link 42.
  • the cured photoresist along the remainder of the linear region 40 remains.
  • Plating of metal will not occur on the portion of the sheet 20 covered by the cured photoresist. Because of the absence of the photoresist from the central portion 50 of the fusible link 42, however, metal may be plated onto this central portion 50.
  • a tin-lead layer 52 (FIG. 10) is overlain over the copper 46 and nickel layers 48.
  • a tin-lead spot 54 is also deposited onto the surface of the fusible link 42, i.e., essentially placed by an electrolytic plating process onto the central portion 50 of the fusible link 42. This electrolytic plating process is essentially a thin film deposition process.
  • this tin-lead may also be added to the surface of the fusible link 42 by a photolithographic process or by means of a physical vapor deposition process, such as sputtering or evaporation in a high vacuum deposition chamber.
  • This spot 54 is comprised of a second conductive metal, i.e., tin-lead or tin, that is dissimilar to the copper metal of the fusible link 42.
  • This second conductive metal in the form of the tin-lead spot 54 is deposited onto the fusible link 42 in the form of a rectangle.
  • the tin-lead spot 54 on the fusible link 42 provides that link 42 with certain advantages.
  • the tin-lead spot 54 melts upon current overload conditions, creating a fusible link 42 that becomes a tin-lead-copper alloy.
  • This tin-lead-copper alloy results in a fusible link 42 having a lower melting temperature than the copper alone.
  • the lower melting temperature reduces the operating temperature of the fuse device of the invention, and this results in improved performance of the device.
  • tin-lead alloy is deposited on the copper fusible link 42 in this example, it will be understood by those skilled in the art that other conductive metals may be placed on the fusible link 42 to lower its melting temperature, and that the fusible link 42 itself may be made of conductive metals other than copper.
  • the tin-lead alloy or other metal deposited on the fusible link 42 need not be of a rectangular shape, but can take on any number of additional configurations.
  • the second conductive metal may be placed in a notched section of the link, or in holes or voids in that link.
  • Parallel fuse links are also possible. As a result of this flexibility, specific electrical characteristics can be engineered into the fuse to meet varying needs of the ultimate user.
  • one of the possible fusible link configurations is a serpentine configuration.
  • the effective length of the fusible link may be increased, even though the distance between the terminals at the opposite ends of that link remain the same.
  • a serpentine configuration provides for a longer fusible link without increasing the dimensions of the fuse itself.
  • the next step in the manufacture of the device of the invention is the placement, across a significant portion of the top of the sheet 20 between the terminal pads 34, 36, of a protective layer 56 (FIG. 11).
  • This protective layer 56 is the second subassembly of the present fuse, and forms a relatively tight seal over the portion of the top of the sheet where the fusible links 42 exist. In this way, the protective layer 56 inhibits corrosion of the fusible links 42 during their useful lives.
  • the protective layer 56 also provides protection from oxidation and impacts during attachment to the PC board.
  • This protective layer also serves as a means of providing for a surface for pick and place operations which use a vacuum pick-up tool.
  • This protective layer 56 helps to control the melting, ionization and arcing which occur in the fusible link 42 during current overload conditions.
  • the protective layer 56 or cover coat material provides desired arc-quenching characteristics, especially important upon interruption of the fusible link 42.
  • the protective layer 56 may be comprised of a polymer, preferably a polyurethane gel or paste when a stencil print operation is used to apply the cover coat.
  • a preferred polyurethane is made by Dymax Corporation.
  • Other similar gels, pastes, or adhesives are suitable for the invention.
  • the protective layer 56 may also be comprised of plastics, conformal coatings and epoxies.
  • This protective layer 56 is applied to the strips 26 using a stencil printing process which includes the use of a common stencil printing machine.
  • a stencil printing process which includes the use of a common stencil printing machine.
  • an injection of the material into a die mold was performed while the sheet 20 was clamped between two dies.
  • stencil printing is a much faster process. Specifically, it has been found that the use of a stencil printing process while using a stencil printing machine, at least, doubles production output of the number of fuses from a previous die mold operation.
  • the stencil printing machine is made by affiliated Manufacturers, Inc. of Northbranch, New Jersey, Model No. CP-885.
  • the material is applied to the sheet 20 in strips simultaneously, instead of two strips at a time in the die mold/injection filling process.
  • the material is cured much faster than the injection fill process because in the stencil printing process, the cover coat material is completely exposed to the UV radiation from the lamps as opposed to the injection filling process where you have a filter that you have to transmit the energy from the lamp to the coating itself because the mold itself acts as a filter.
  • the stencil printing process produces a more uniform cover coat than the injection filling process, in terms of the height, the width of the covet coat. Because of that uniformity, the fuses can be tested and packaged automatically. With the injection filling process it was sometimes difficult to precisely align the fuses in testing and packaging equipment due to some non-uniform heights and widths of the cover coat.
  • the stencil printing machine comprises a slidable plate 70, a base 72. a squeegee arm 74, a squeegee 76, and an overlay 78.
  • the overlay 78 is mounted on the base 72 and the squeegee 76 is movably mounted on the squeegee arm 74 above the base 72 and overlay 78.
  • the plate 70 is slidable underneath the base 72 and overlay 78.
  • the overlay 78 has parallel openings 80 which correspond to the width of the cover coat 56.
  • the stencil printing process begins by attaching an adhesive tape under the fuse sheet 20.
  • the fuse sheet 20, with the adhesive tape is placed on the plate 70 with the adhesive tape between the plate 70 and the fuse sheet 20.
  • the cover coat material is then applied with a syringe at one end of the overlay 78.
  • the plate 70 slides underneath the overlay 78 and lodges the sheet 20 underneath the overlay 78 in correct alignment with the parallel openings 80.
  • the squeegee 76 then lowers to contact the overlay 78 beyond the material on the top of the overlay 78.
  • the squeegee 76 then moves across the overlay 78 where the openings 80 exist, thereby forcing the cover coat material through the openings 80 and onto the sheet.
  • the cover coat now covers the fuse link area 40 (FIGS. 8 & 9).
  • the squeegee 76 is then raised, the sheet 20 is unlodged from the overlay 78, and the sheet 20 is placed in a UV light chamber so that the material can solidify and form the protective layer 56 (FIGS. 11 & 12).
  • the openings 80 in the overlay 78 are wide enough so that the protective layer partially overlaps the pads 34, 36, as shown in FIGS. 11 & 12.
  • the material used for the cover coat should have a viscosity in the gel or paste range so that after the material is spread onto the sheet 20, it will flow in a manner which creates a generally flat top surface 49, but not flow into the holes 14 or groves 16.
  • cover coats may be used.
  • colored, clear materials may be used. These colored materials may be simply manufactured by the addition of a dye to a clear polyurethane gel or paste. Color coding may be accomplished through the use of these colored gels and pastes. In other words, different colors of gels can correspond to different amperages, providing the user with a ready means of determining the amperage of any given fuse. The transparency of both of these coatings permit the user to visually inspect the fusible link 42 prior to installation, and during use, in the electronic device in which the fuse is used.
  • this protective layer 56 has significant advantages over the prior art, including the prior art, so-called, "capping" method. Due to the placement of the protective layer 56 over the entire top of a fuse body, the location of the protective layer relative to the location of the fusible link 42 is not critical.
  • the sheet 20 is then ready for a so-called dicing operation, which separates the rows and columns 27, 29 from one another, and into individual fuses.
  • a diamond saw or the like is used to cut the sheet 20 along parallel planes 57 (FIG. 11), and again perpindicular to planes 57, through the center of the holes 14, into individual thin film surface-mounted fuses 58 (FIG. 12).
  • One of the directions of cuts bisect the terminal areas through the center of the holes 14, thereby exposing and creating the grooves 16 of the terminal pads 34, 36. These grooves 16 appear on either side of the fusible link 42.
  • Fuses in accordance with this invention are rated at voltages and amperages greater than the ratings of prior art devices. Tests have indicated that fuses which fall under the "603" standard sizing would have a fuse voltage rating of 32 volts AC, and a fuse amperage rating of between 1/16 ampere and 2 amperes. Even though the fuses in accordance with this invention can protect circuits over a broad range of amperage ratings, the actual physical size of these fuses remains constant.
  • the fuse of the present invention exhibits improved control of fusing characteristics by regulating voltage drops across the fusible link 42. Consistent clearing times are ensured by (1) the ability to control, through deposition and photolithography processes, the dimensions and shapes of the fusible link 42 and terminal pads 34, 36; and (2) proper selection of the materials of the fusible link 42. Restriking tendencies are minimized by selection of an optimized material for the substrate 13 and protective layer 56.

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Fuses (AREA)
  • Lock And Its Accessories (AREA)
  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Manufacturing Of Printed Wiring (AREA)

Claims (30)

  1. Fusible monté en surface à couche mince (58), ledit fusible (58) comprenant deux sous-ensembles de matériaux:
    le premier sous-ensemble comprenant une liaison fusible (42), un substrat de support (13) et des plots de bornes (34, 36), le substrat de support (13) présentant une surface supérieure, une surface inférieure et des surfaces latérales opposées, et
    le second sous-ensemble comprenant une couche protectrice (56) qui recouvre la liaison fusible (42) de manière à assurer une protection vis-à-vis des impacts et de l'oxydation,
    ledit fusible (58) étant caractérisé en ce que les plots de bornes (34, 36) comprennent une pluralité de couches de plots de bornes conductrices (44, 46, 48, 52), les surfaces latérales opposées du substrat de support (13) comportent chacune une rainure (16) dans celle-ci, et une première couche de la pluralité de couches de plots de bornes conductrices (44) ainsi que la liaison fusible sont réalisées sous forme d'une seule couche continue qui s'étend sur la surface supérieure du substrat de support (13), la première des couches conductrices de plots de bornes (44) s'étendant en outre sur les rainures (16) des surfaces latérales opposées, dans lequel la couche protectrice (56) comprend une seule couche de matériau polymère comportant une surface supérieure de celle-ci, qui est appliquée sous forme d'un gel et étalée sur la surface supérieure du substrat de support (13), et dans lequel le matériau polymère durcit en formant une surface supérieure pratiquement plate du matériau polymère.
  2. Fusible monté en surface (58) selon la revendication 1, dans lequel la première couche conductrice (44) se termine sur la surface inférieure du substrat (13).
  3. Fusible monté en surface (58) selon la revendication 1, dans lequel la liaison fusible (42) comporte une partie centrale (50), la partie centrale (50) comportant une pastille d'étain-plomb ou d'étain sur celle-ci.
  4. Fusible monté en surface (58) selon la revendication 1, dans lequel ledit matériau polymère est transparent et coloré.
  5. Fusible monté en surface (58) selon la revendication 1, dans lequel ladite couche protectrice (56) est faite de polyuréthane.
  6. Fusible monté en surface (58) selon la revendication 1, dans lequel ledit substrat de support (13) est fait d'un époxy FR-4 ou d'un polyimide.
  7. Fusible monté en surface (58) selon la revendication 1, dans lequel ladite couche protectrice (56) est transparente et incolore.
  8. Procédé destiné à la fabrication d'un fusible monté en surface à couche mince (58) comprenant les étapes consistant à :
    a. fournir un substrat (13) comportant un dessus, un dessous et des côtés opposés,
    b. déposer, sur le dessus du substrat (13), une première couche conductrice (44), et,
    c. appliquer une couche protectrice (56),
       le procédé étant caractérisé en ce que les côtés opposés du substrat (13) sont chacun munis d'une rainure (16) dans ceux-ci, et l'étape de dépôt de la première couche conductrice (44) forme une liaison fusible (42) et des plots de bornes (34, 36) aux extrémités opposées de la liaison fusible (42); la liaison fusible (42) et les plots de bornes (34, 36) étant reliés électriquement, dans lequel la couche protectrice (56) comprend une seule couche de matériau polymère comportant une surface supérieure de celle-ci qui est appliquée sous forme d'un gel et étalée sur la surface supérieure du substrat de support (13), et dans lequel le matériau polymère durcit en formant une surface supérieure pratiquement plate du matériau polymère.
  9. Procédé selon la revendication 8, dans lequel la première couche conductrice (44) se prolonge à partir du dessus du substrat (13) et est déposée sur une partie des côtés du substrat (13) de sorte que les plots de bornes (34, 36) s'étendent depuis le dessus du substrat (13) jusqu'à une partie des côtés du substrat (13).
  10. Procédé selon la revendication 8, dans lequel la première couche conductrice (44) s'étend à partir des côtés du substrat (13) et est déposée sur une partie du dessous du substrat (13) de sorte que les plots de bornes (34, 36) s'étendent jusque sur une partie du dessous du substrat (13).
  11. Procédé selon la revendication 8, dans lequel la première couche conductrice (44) qui forme ladite liaison fusible (42) et lesdits plots de bornes (34, 36) est déposée par dépôt en phase vapeur.
  12. Procédé selon la revendication 8, dans lequel la première couche conductrice (44) qui forme ladite liaison fusible (42) et les plots de bornes (34, 36) est déposée par dépôt électrochimique.
  13. Fusible monté en surface à couche mince (58) comprenant:
    a. un substrat (13), présentant des surfaces latérales opposées,
    b. une liaison fusible (42),
    c. une première couche de plots de bornes (44), et,
    d. une couche protectrice (56),
       le fusible (58) étant caractérisé en ce qu'il comprend en outre :
    chacune des surfaces latérales opposées du substrat (13) comportant une rainure (16) dans celle-ci,
    la liaison fusible (42) et la première couche de plots de bornes (44) formées en tant qu'une seule couche continue disposée sur le substrat (13), dans lequel la liaison fusible (42) et la première couche de plots de bornes (44) sont faites d'un métal sélectionné à partir d'un groupe constitué du cuivre, de l'argent, du nickel, du titane, de l'aluminium et des alliages de ceux-ci,
    une seconde couche de plots de bornes (46) disposée sur la première couche de plots de bornes (44), dans laquelle la seconde couche de plots de bornes (46) est faite du même métal que la première couche (44),
    une troisième couche de plots de bornes (48) disposée sur la seconde couche de plots de bornes (46), dans laquelle la troisième couche de plots de bornes (48) est faite de nickel,
    une quatrième couche de plots de bornes (52) disposée sur la troisième couche de plots de bornes (48), dans laquelle la quatrième couche de plots de bornes (52) est faite d'étain-plomb ou d'étain,
    une couche protectrice (56) qui comprend une seule couche de matériau polymère comportant une surface supérieure qui est appliquée sous forme d'un gel et étalée sur la surface supérieure du substrat de support (13) au-dessus de la liaison fusible, et dans laquelle le matériau polymère durcit en formant une surface supérieure pratiquement plate du matériau polymère.
  14. Fusible monté en surface (58) selon la revendication 13, dans lequel les première, seconde, troisième et quatrième couches conductrices (44, 46, 48, 52) s'étendent sur les rainures (16) des surfaces latérales opposées du substrat (13).
  15. Fusible monté en surface (58) selon la revendication 13, dans lequel la liaison fusible (42) présente une partie centrale (50) comportant une pastille d'étain-plomb qui est disposée sur la partie centrale (50).
  16. Fusible monté en surface (58) selon la revendication 13, dans lequel la couche protectrice (56) est également appliquée sur une partie de la quatrième couche de plots de bornes (52).
  17. Fusible monté en surface à couche mince (58), ledit fusible (58) comprenant :
    a. un substrat (13), présentant des surfaces latérales opposées,
    b. une liaison fusible (42) faite d'un premier métal conducteur déposé sur le substrat (13),
    c. des plots de bornes (34, 36) reliés électriquement à la liaison fusible (42), et,
    d. une couche protectrice (56), le fusibie (58) étant caractérisé par:
    chacune des surfaces latérales opposées du substrat (13) comportant une rainure (16) dans celle-ci,
    un second métal conducteur (54), autre que le premier métal conducteur, déposé sur la surface de la liaison fusible (42),
    les plots de bornes (34, 36) comportant une pluralité de couches conductrices (44, 46, 48, 52), où une première couche de la pluralité des couches conductrices (44) ainsi que la liaison fusible (42) forment une seule couche continue, et,
    dans lequel la couche protectrice (56) comprend une seule couche de matériau polymère comportant une surface supérieure de celle-ci qui est appliquée sous forme d'un gel et étalée sur la surface supérieure du substrat de support (13) par-dessus la liaison fusible, et dans lequel le matériau polymère durcit en formant une surface supérieure pratiquement plate du matériau polymère.
  18. Fusible monté en surface (58) selon la revendication 17, dans lequel une seconde couche de la pluralité de couches conductrices (46) est déposée sur la première couche de la pluralité de couches conductrices (44) et est constituée du même métal que le premier métal conducteur.
  19. Fusible monté en surface (58) selon la revendication 18, dans lequel une troisième couche de la pluralité de couches conductrices (48) est déposée sur la seconde couche de la pluralité de couches conductrices (46) et est constituée de nickel.
  20. Fusible monté en surface (58) selon la revendication 19, dans lequel une quatrième couche de la pluralité de couches conductrices (52) est déposée sur la troisième couche de la pluralité de couches conductrices (48) et est constituée d'étain-plomb.
  21. Fusible monté en surface (58) selon la revendication 17, dans lequel le premier métal conducteur est sélectionné à partir du groupe comprenant le cuivre, l'argent, le nickel le titane, l'aluminium ou des alliages de ceux-ci.
  22. Fusible monté en surface (58) selon la revendication 17, dans lequel le second métal conducteur (50) est un alliage d'étain-plomb.
  23. Fusible monté en surface (58) selon la revendication 22, dans lequel le second métal conducteur (50) est déposé sur la liaison fusible (42) sous la forme d'un rectangle.
  24. Fusible monté en surface (58) selon la revendication 23, dans lequel la liaison fusible (42) comporte une partie centrale (50), et le rectangle est déposé le long de la partie centrale (50) de ladite liaison fusible (42).
  25. Procédé de fabrication d'un fusible monté en surface à couche mince (58) comprenant les étapes consistant à :
    a fournir un substrat (13) comportant une surface supérieure, une surface inférieure et une paire de perçages (14),
    b. déposer une première couche conductrice (44) sur la surface supérieure du substrat (13), et,
    c. une couche protectrice (56),
       le procédé étant caractérisé en ce que le dépôt de la première couche conductrice (44) forme simultanément une liaison fusible (42) et des plots de bornes (34, 36) sur la surface supérieure du substrat (13), la liaison fusible (42) étant déposée entre la paire de perçages (14) et étant reliée électriquement aux plots de bornes (34, 36), dans lequel la couche protectrice (56) comprend une seule couche de matériau polymère comportant une surface supérieure de celle-ci qui est appliquée sous forme d'un gel et étalée sur la surface supérieure du substrat du support (13), et dans lequel le matériau polymère durcit en formant une surface supérieure pratiquement plate du matériau polymère.
  26. Procédé selon la revendication 25, dans lequel la première couche conductrice (44) s'étend depuis la surface supérieure du substrat (13) jusque dans les perçages (14) de sorte que les plots de bornes (34, 36) s'étendent depuis la surface supérieure jusque dans les perçages (14).
  27. Procédé selon la revendication 26, dans lequel la première couche conductrice (44) s'étend à partir des perçages (14) et se termine sur la surface supérieure du substrat (13) de sorte que les plots de bornes (34, 36) s'étendent à partir des perçages (14) et se terminent sur la surface supérieure du substrat (13).
  28. Procédé selon la revendication 27, comprenant en outre l'étape consistant à déposer une ou plusieurs couches conductrices supplémentaires (46, 48 ou 52) par-dessus les plots de bornes (34, 36).
  29. Procédé selon la revendication 28, comprenant en outre l'étape consistant à déposer une pastille métallique (50) sur la liaison fusible (42).
  30. Procédé selon la revendication 25, dans lequel la couche protectrice (56) est appliquée sur la liaison fusible (42) en utilisant une machine d'impression au stencil (70, 72, 74, 76, 78, 80).
EP96919129A 1995-06-07 1996-06-06 Procede et appareil perfectionnes pour un dispositif fusible monte en surface Expired - Lifetime EP0830704B1 (fr)

Applications Claiming Priority (5)

Application Number Priority Date Filing Date Title
US47256395A 1995-06-07 1995-06-07
US08/482,829 US5943764A (en) 1994-05-27 1995-06-07 Method of manufacturing a surface-mounted fuse device
US472563 1995-06-07
US482829 1995-06-07
PCT/US1996/009147 WO1996041359A1 (fr) 1995-06-07 1996-06-06 Procede et appareil perfectionnes pour un dispositif fusible monte en surface

Publications (2)

Publication Number Publication Date
EP0830704A1 EP0830704A1 (fr) 1998-03-25
EP0830704B1 true EP0830704B1 (fr) 1998-11-11

Family

ID=27043825

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96919129A Expired - Lifetime EP0830704B1 (fr) 1995-06-07 1996-06-06 Procede et appareil perfectionnes pour un dispositif fusible monte en surface

Country Status (10)

Country Link
EP (1) EP0830704B1 (fr)
JP (1) JPH10512094A (fr)
CN (1) CN1191624A (fr)
AT (1) ATE173355T1 (fr)
AU (1) AU6154796A (fr)
CA (1) CA2224070A1 (fr)
DE (1) DE69600974T2 (fr)
DK (1) DK0830704T3 (fr)
ES (1) ES2124634T3 (fr)
WO (1) WO1996041359A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5923239A (en) * 1997-12-02 1999-07-13 Littelfuse, Inc. Printed circuit board assembly having an integrated fusible link
EP1074034B1 (fr) 1998-04-24 2002-03-06 Wickmann-Werke GmbH Fusible electrique
US6002322A (en) * 1998-05-05 1999-12-14 Littelfuse, Inc. Chip protector surface-mounted fuse device
GB0001573D0 (en) 2000-01-24 2000-03-15 Welwyn Components Ltd Printed circuit board with fuse
EP1396003A1 (fr) * 2001-06-11 2004-03-10 Wickmann-Werke GmbH Composant de fusible
US7551048B2 (en) 2002-08-08 2009-06-23 Fujitsu Component Limited Micro-relay and method of fabricating the same
CN101197351B (zh) * 2006-12-05 2010-09-01 邱鸿智 芯片慢熔型保险丝结构与制造方法
CN101894717B (zh) * 2009-05-21 2012-10-24 邱鸿智 具钻孔电极与压模包覆保险丝结构及制造方法
US9117615B2 (en) 2010-05-17 2015-08-25 Littlefuse, Inc. Double wound fusible element and associated fuse
JP5505142B2 (ja) * 2010-07-06 2014-05-28 富士通株式会社 ヒューズおよびその製造方法
CN101964287B (zh) * 2010-10-22 2013-01-23 广东风华高新科技股份有限公司 薄膜片式保险丝及其制备方法

Family Cites Families (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4164725A (en) * 1977-08-01 1979-08-14 Wiebe Gerald L Three-piece solderless plug-in electrically conducting component
GB1604820A (en) * 1978-05-30 1981-12-16 Laur Knudson Nordisk Elektrici Electrical safety fuses
DE3044711A1 (de) * 1980-11-27 1982-07-01 Wickmann-Werke GmbH, 5810 Witten Schmelzsicherung
DE3530354A1 (de) * 1985-08-24 1987-03-05 Opel Adam Ag Elektrische sicherungsanordnung
JPH0831303B2 (ja) * 1986-12-01 1996-03-27 オムロン株式会社 チツプ型ヒユ−ズ
DE69104977T2 (de) * 1990-03-13 1995-05-04 Morrill Glasstek Inc Elektrisches bauteil (sicherung) und dessen herstellungsverfahren.
JPH0433230A (ja) * 1990-05-29 1992-02-04 Mitsubishi Materials Corp チップ型ヒューズ
JPH04248221A (ja) * 1991-01-23 1992-09-03 Hitachi Chem Co Ltd チップ型ヒューズの製造法
JPH04245132A (ja) * 1991-01-30 1992-09-01 Hitachi Chem Co Ltd チップヒューズ用基板及びそれを用いたチップヒューズ
JPH04245129A (ja) * 1991-01-30 1992-09-01 Hitachi Chem Co Ltd チップ型ヒューズ
JPH04255627A (ja) * 1991-02-08 1992-09-10 Hitachi Chem Co Ltd チップ型ヒューズの製造法
JPH05166454A (ja) * 1991-12-11 1993-07-02 Hitachi Chem Co Ltd チップ型ヒューズ
US5166656A (en) * 1992-02-28 1992-11-24 Avx Corporation Thin film surface mount fuses
JPH0636672A (ja) * 1992-07-16 1994-02-10 Sumitomo Wiring Syst Ltd カード型ヒューズおよびその製造方法
US5552757A (en) * 1994-05-27 1996-09-03 Littelfuse, Inc. Surface-mounted fuse device

Also Published As

Publication number Publication date
JPH10512094A (ja) 1998-11-17
DK0830704T3 (da) 1999-07-26
ATE173355T1 (de) 1998-11-15
DE69600974T2 (de) 1999-06-10
EP0830704A1 (fr) 1998-03-25
MX9709974A (es) 1998-06-28
WO1996041359A1 (fr) 1996-12-19
ES2124634T3 (es) 1999-02-01
AU6154796A (en) 1996-12-30
DE69600974D1 (de) 1998-12-17
CN1191624A (zh) 1998-08-26
CA2224070A1 (fr) 1996-12-19

Similar Documents

Publication Publication Date Title
US5943764A (en) Method of manufacturing a surface-mounted fuse device
US6191928B1 (en) Surface-mountable device for protection against electrostatic damage to electronic components
US5790008A (en) Surface-mounted fuse device with conductive terminal pad layers and groove on side surfaces
US6002322A (en) Chip protector surface-mounted fuse device
EP0364570B1 (fr) Microfusibles a pellicule metallo-organique et procede de fabrication
US7367114B2 (en) Method for plasma etching to manufacture electrical devices having circuit protection
US7569907B2 (en) Hybrid chip fuse assembly having wire leads and fabrication method therefor
US5977860A (en) Surface-mount fuse and the manufacture thereof
EP0628211A1 (fr) Fusibles montes en surface, en film mince.
EP0830704B1 (fr) Procede et appareil perfectionnes pour un dispositif fusible monte en surface
EP0902957A2 (fr) Fusible monte en saillie et sa fabrication
US5974661A (en) Method of manufacturing a surface-mountable device for protection against electrostatic damage to electronic components
EP0834180B1 (fr) Procede et appareil destine a un dispositif montable en surface pour la protection contre les dommages electrostatiques subis par les composants electroniques
KR19990022733A (ko) 표면실장 퓨우즈 디바이스 제조방법 및 장치
MXPA97009973A (en) Method and apparatus for a mountable device on a surface for protection against electrostatic damage to components electroni
MXPA97009974A (es) Metodo y aparato mejorado para un dispositivo fusible montado en una superficie
KR19990022732A (ko) 전자 구성 부품의 정전기 손상 보호용 표면 실장 소자용 방법및 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971210

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980406

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19981111

Ref country code: GR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19981111

REF Corresponds to:

Ref document number: 173355

Country of ref document: AT

Date of ref document: 19981115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69600974

Country of ref document: DE

Date of ref document: 19981217

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2124634

Country of ref document: ES

Kind code of ref document: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: ROTTMANN, ZIMMERMANN + PARTNER AG

REG Reference to a national code

Ref country code: PT

Ref legal event code: SC4A

Free format text: AVAILABILITY OF NATIONAL TRANSLATION

Effective date: 19981203

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990606

Ref country code: IE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990606

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990607

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19990630

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
BERE Be: lapsed

Owner name: LITTELFUSE INC.

Effective date: 19990630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19991231

EUG Se: european patent has lapsed

Ref document number: 96919129.5

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

REG Reference to a national code

Ref country code: PT

Ref legal event code: MM4A

Free format text: LAPSE DUE TO NON-PAYMENT OF FEES

Effective date: 19991231

REG Reference to a national code

Ref country code: IE

Ref legal event code: MM4A

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FI

Payment date: 20000517

Year of fee payment: 5

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20000518

Year of fee payment: 5

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20000630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010101

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20000606

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

NLV4 Nl: lapsed or anulled due to non-payment of the annual fee

Effective date: 20010101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010606

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020228

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20000712

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050606

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150629

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 69600974

Country of ref document: DE