EP0825333A1 - Kühlbare Turbinenschaufel - Google Patents
Kühlbare Turbinenschaufel Download PDFInfo
- Publication number
- EP0825333A1 EP0825333A1 EP97810561A EP97810561A EP0825333A1 EP 0825333 A1 EP0825333 A1 EP 0825333A1 EP 97810561 A EP97810561 A EP 97810561A EP 97810561 A EP97810561 A EP 97810561A EP 0825333 A1 EP0825333 A1 EP 0825333A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- blade
- cavity
- cooling
- cooling channel
- channel
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F01—MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
- F01D—NON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
- F01D5/00—Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
- F01D5/12—Blades
- F01D5/14—Form or construction
- F01D5/18—Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
- F01D5/187—Convection cooling
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F05—INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
- F05D—INDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
- F05D2260/00—Function
- F05D2260/20—Heat transfer, e.g. cooling
- F05D2260/201—Heat transfer, e.g. cooling by impingement of a fluid
Definitions
- the invention is based on a coolable blade according to the preamble of first claim.
- Such coolable blades are known from GB 2 165 315.
- cooling fluid is conducted from the trailing edge area of the blade to the leading edge area via turns formed by partition walls and then blown out via openings in the blade head.
- air is blown out of the rear edge of the blade.
- this method cannot be used for trailing edges with small radii for manufacturing reasons.
- a large number of film cooling holes are also necessary, which makes the manufacture of the blade very complex.
- the trailing edge blow-out can lead to a reduction in the aerodynamic efficiency of the blade, since a larger trailing edge radius is required.
- a cooled blade is also known from DE 1 601 627, which has at its trailing edge region a radially extending cooling channel which diverges towards the tip of the blade.
- the cooling duct is fed with cooling air via a larger inlet opening.
- the cross-sectional area of this cooling channel is approximately the same size as that of the main channel in the middle of the blade, and even larger than that of the main channel in the area of the blade tip.
- the heat transfer rates in the rear edge area of the blade are therefore no better than those in the middle part of the blade and adequate cooling of the rear edge areas of the blade can no longer be guaranteed in the case of a blade that is subjected to high thermal loads.
- the invention is based, with a coolable blade the task at the beginning to improve the cooling of the trailing edge area of the blade and to achieve a high aerodynamic efficiency of the blade.
- the essence of the invention is therefore that an essentially in the trailing edge area radially extending, increasing in area with increasing radius Cooling channel is arranged, which is connected to the cavity via an inlet opening and that the cooling channel with the cavity via at least one connecting channel connected is.
- the advantages of the invention can be seen, inter alia, in the fact that the cooling fluid guided through the cooling channel is blown out of the blade in the region of the blade head and thus has no influence on the aerodynamics of the blade. Small trailing edge radii can also be achieved, since there is no need to blow out at the trailing edge of the blade. Due to the divergent design of the cooling channel, effective cooling of the trailing edge area of the blade is achieved. The cooling of local areas can be easily adjusted by designing the divergent channel. In addition, in the case of moving blades with cover plates, the upper area, which is at high risk of creep, can be cooled particularly well towards the blade head. When using the diverging cooling channel, significantly less cooling air is required than, for example, with film cooling of the rear edge. Buckets with the diverging cooling channel can also be produced using the casting process.
- the cooling channel with the cavity via at least one connecting channel connect to.
- the connecting channels between the cavity and the cooling duct act as suction points for cooling air from the cavity and intensify the heat transfer in the trailing edge area of the cavity.
- the cooling fluid enters the cooling channel in a jet and generates extremely high heat transfer coefficients.
- a blade 10 of a turbomachine is shown, consisting from a blade 1 and a blade root 11 with which the blade 10 can be mounted. Between blade 1 and blade root 11 is common A platform 12 is arranged, which the blade root of the Shields around flowing fluids.
- the airfoil 1 has one Front edge area 3, a rear edge area 4, a suction-side wall 5 and a pressure side wall 6, the suction side and the pressure side Wall connected to each other in the area of the front edge 3 and the rear edge 4 are, whereby a cavity 2 is formed with a cross-sectional area A2. Of the The leading edge area 3 is in each case the one flowing around the airfoil 1 Apply fluids first.
- the cavity 2 is essentially radial Direction through the blade 10 and serves as a cooling fluid passage for a cooling fluid 20th
- cooling channel 7 In the area of the rear edge 4 there is a radially extending cooling duct 7 with a Cross-sectional area A7 arranged in the direction of flow to a blade head 13 of the blade 10 diverges out, but in particular in the area of Bucket head can also run parallel.
- the cooling channel 7 can in particular be designed as a diffuser.
- the cooling channel 7 is via connecting channels 8 with a cross-sectional area A8 and an inlet opening 9 in one
- the airfoil center region 14 is connected to the cavity 2.
- the inlet opening 9 of the cooling channel is also arranged at any location can be, for example, closer to the blade root or in the blade root.
- the cooling channel 7 is in the downstream part of the Blade arranged approximately from the center 14 of the airfoil, since there the Load and danger of creep is greatest.
- Cooling fluid 20 flows through the cavity 20 and via the inlet opening 9 and the connecting channels 8 into the cooling channel 7. This stimulates the flow circulation in the region of the trailing edge in the cavity 2. Heated cooling fluid, which tends to get stuck in the area of the rear edge due to the locally increased friction, is thereby mixed with cooler cooling fluid, especially also with the cooling fluid entering the cooling channel 7.
- the trailing edge region is cooled by the cooling fluid passed through the cooling channel 7, the heat transfer coefficient in the cooling channel 7 increasing from the center of the airfoil to the blade head. This is due to the increasing cooling fluid mass flow in the cooling channel 7, which is brought about by the further feeding of cooling fluid via the connecting channels 8. This improves the cooling of the airfoil head 13.
- the flow circulation in the trailing edge area of the cavity and the cooling capacity of the trailing edge area can be set by the design of the cooling channel, the inlet opening and the connecting channels.
- the divergence angle of the cooling channel with the number of connecting channels from the cavity is adjusted so that the cooling of the blade is optimal.
- the cross-sectional area A8 of the connecting channels 8 is smaller than the cross-sectional area A7 of the cooling channel 7 and this in turn is much smaller than the cross-sectional area A2 of the cavity 2 (A8 ⁇ A7 ⁇ A2).
- A8 to A2 is preferably a few percent, in particular 1-5%
- A8 to A7 is preferably several tenths, in particular 30-100%
- A7 to A2 is preferably a few percent, in particular 1-10%.
- the flow velocity of the fluids through the connecting channels as well as in the diffuser channel 7 is much greater than that in the cooling channel A2 due to the selected geometry.
- By appropriate design of the cross sections A8, A7 and A2 it is achieved that the flow velocity of the fluids in the cooling channel 7 remains approximately the same or increases slightly with increasing radius.
- FIG. 3 shows the increase in the cross-sectional area of the cooling channel 7 towards the blade head 13 and the connecting channel 8.
- a Nusselt number Nu is defined as the ratio of the convectively dissipated to the conducted amount of heat.
- V-shaped ribs 30 with a tip 31 and legs 32, 33 are arranged in the cavity 2 on the suction side wall.
- the legs of the ribs are angled at an angle 34 to the main flow direction of the cooling fluid 20.
- the angle 34 is 30 to 60 °, preferably 40 to 50 ° and in particular 45 °.
- the ratio of rib height to cavity height is essentially the same at every point of the rib and is between 5 to 50%.
- the tip of the rib 30 is located at the point where the rib height is at a maximum. In the areas where the cavity 2 merges into the front and rear edge area, the rib 30 tapers in order not to inhibit the passage of the cooling fluid in these areas.
- the ribs, not shown, arranged on the inside of the pressure-side wall 6 are also V-shaped.
- the tip is also at the point where the rib height is maximum.
- the ribs are arranged offset on the pressure side and the suction side wall in the flow direction, so that the flow successively meets a rib 30 on the suction side 5 and a rib on the pressure side.
- the ribs are advantageously arranged in the middle between the ribs of the opposite wall.
- the ribs in combination with the cooling channel 7 ensure cooling of the blade, which leads to an even wall temperature distribution.
- the Cooling fluid 20 is here from turns formed by partitions 40, 41
- the trailing edge area of the blade is directed to the leading edge area and then blown over an opening 42 in the blade head 13.
- a diverging cooling channel 7 for cooling the trailing edge area is arranged.
- the invention is not limited to that shown and described Embodiment limited.
- the design of the cavity and thus of the cooling fluid passage can also take place differently than shown, for example as several individual cooling channels.
- the training of the divergent is essential Cooling channel in connection with the connecting channels between the diffuser and main channel.
- the cross-sectional areas A2, A7 and A8 each become vertical to the direction of flow of the fluids flowing through the cavities.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Turbine Rotor Nozzle Sealing (AREA)
Abstract
Description
Aus der DE 1 601 627 ist ebenfalls eine gekühlte Schaufel bekannt, die an ihrem Hinterkantenbereich einen radial verlaufenden, zur Schaufelspitze hin divergierenden Kühlkanal aufweist. Ueber eine grössere Eintrittsöffnung wird der Kühlkanal mit Kühlluft gespeist. Die Querschnittsfläche dieses Kühlkanales ist dabei in der Schaufelmitte ungefähr gleich gross wie derjenige des Hauptkanales, im Bereich der Schaufelspitze sogar grösser als derjenige des Hauptkanales. Die Wärme-übertragungsraten im Hinterkantenbereich der Schaufel sind deshalb nicht besser als diejenigen im Mittelteil der Schaufel und eine genügende Kühlung der Hinterkanten bereiche der Schaufel lässt sich bei einer thermisch stark belasteten Schaufel nicht mehr gewährleisten.
Unter Verwendung des divergierenden Kühlkanales wird deutlich weniger Kühlluft benötigt als beispielsweise bei einer Filmkühlung der Hinterkante. Schaufeln mit dem divergierenden Kühlkanal können zudem im Gussverfahren hergestellt werden.
Es zeigen:
- Fig. 1
- einen Teillängsschnitt durch die Schaufel;
- Fig. 2
- einen Teilquerschnitt durch die Schaufel entlang der Linie ll-ll in Fig. 1
- Fig. 3
- einen Teilquerschnitt durch die Schaufel entlang der Linie III-III in Fig. 1
- Fig. 4
- einen Teillängsschnitt durch eine weitere erfindungsgemässe Schaufel;
- Fig. 5
- einen Teillängsschnitt durch eine weitere erfindungsgemässe Schaufel.
Der Hinterkantenbereich wird durch das durch den Kühlkanal 7 geleitete Kühlfluid gekühlt, wobei der Wärmeübergangskoeffizient im Kühlkanal 7 von der Schaufelblattmitte zum Schaufelkopf hin zunimmt. Dies ist bedingt durch den ansteigenden Kühlfluidmassenfluss im Kühlkanal 7, der durch die weitere Einspeisung von Kühlfluid über die Verbindungskanäle 8 bewirkt wird. Dies verbessert die Kühlung des Schaufelblattkopfes 13.
Durch die Auslegung des Kühlkanales, der Eintrittsöffnung sowie der Verbindungskanäle kann die Strömungszirkulation im Hinterkantenbereich des Hohlraumes sowie die Kühlleistung des Hinterkantenbereiches eingestellt werden. Zudem wird der Divergenzwinkel des Kühlkanales mit der Anzahl der Verbindungskanäle vom Hohlraum so angepasst, dass die Kühlung der Schaufel optimal ist.
Die Querschnittsfläche A8 der Verbindungskanäle 8 ist dabei kleiner als die Querschnittsfläche A7 des Kühlkanales 7 und diese wiederum ist viel kleiner als die Querschnittsfläche A2 des Hohlraumes 2 (A8 < A7 << A2). A8 zu A2 beträgt dabei vorzugsweise einige Prozent, insbesondere 1 - 5%, A8 zu A7 beträgt dabei vorzugsweise mehrere Zehntel, insbesondere 30 - 100%, A7 zu A2 beträgt dabei vorzugsweise einige Prozent, insbesondere 1 - 10%.
Die Strömungsgeschwindigkeit der Fluide durch die Verbindungskanäle als auch im Diffusorkanal 7 ist durch die gewählte Geometrie viel grösser als diejenige im Kühlkanal A2.
Durch entsprechende Auslegung der Querschnitte A8, A7 und A2 wird erreicht, dass die Strömungsgeschwindigkeit der Fluide im Kühlkanal 7 ungefähr gleich schnell bleibt oder mit wachsendem Radius leicht ansteigt.
Eine Nusselt-Zahl Nu ist definiert als das Verhältnis der konvektiv abgeführten zur geleiteten Wärmemenge. Die Nusselt-Zahl des Kühlkanales NuKühlkanal ist hierbei um ein mehrfaches höher als die Nusselt-Zahl in einem glatten Hohlraum (A2) NuHohlraum. So wurde beispielsweise experimentell festgestellt, dass NuKühlkanal / NuHohlraum.= 10 - 15 beträgt.
Die nicht dargestellten, auf der Innenseite der druckseitigen Wand 6 angeordneten Rippen sind ebenfalls V-förmig. Die Spitze liegt ebenfalls an der Stelle wo die Rippenhöhe maximal ist. Die Rippen sind auf der druck- und der saugseitigen Wand gegeneinander in Strömungsrichtung versetzt angeordnet, so dass die Strömung nacheinander auf eine Rippe 30 der Saugseite 5 und eine Rippe der Druckseite trifft. Vorteilhafterweise werden die Rippen jeweils in der Mitte zwischen den Rippen der gegenüberliegenden Wand angeordnet. Durch die Rippen in Kombination mit dem Kühlkanal 7 wird eine Kühlung der Schaufel gewährleistet, die zu einer gleichmässigen Wandtemperaturverteilung führt.
- 1
- Schaufelblatt
- 2
- Hohlraum
- 3
- Vorderkantenbereich
- 4
- Hinterkantenbereich
- 5
- saugseitige Wand
- 6
- druckseitige Wand
- 7
- Kühlkanal
- 8
- Verbindungskanal
- 9
- Eintrittsöffnung
- 10
- Schaufel
- 11
- Schaufelfuss
- 12
- Plattform
- 13
- Schaufelkopf
- 14
- Schaufelblattmittenbereich
- 20
- Kühlfluid
- 30
- Rippe
- 31
- Spitze
- 32, 33
- Schenkel
- 34
- Anstellwinkel
- 40, 41
- Trennwand
- 42
- Oeffnung
- A2
- Querschnittsfläche Hohlraum
- A7
- Querschnittsfläche Kühlkanal
- A8
- Querschnittsfläche Verbindungskanal
Claims (4)
- Kühlbare Schaufel (10), im wesentlichen bestehend aus einem Schaufelfuss (11) und einem Schaufelblatt (1), welches aus einer druckseitigen (6) und einer saugseitigen Wand (5) aufgebaut ist, die im wesentlichen über einen Hinterkantenbereich (4) und einen Vorderkantenbereich (3) so miteinander verbunden sind, dass mindestens ein als Kühlfluiddurchlass verwendeter Hohlraum (2) gebildet wird,
dadurch gekennzeichnet,
dass im Hinterkantenbereich (4) ein im wesentlichen radial verlaufender, divergierender Kühlkanal (7) angeordnet ist, der über eine Eintrittsöffnung (9) mit dem Hohlraum (2) verbunden ist und dass der Kühlkanal (7) mit dem Hohlraum (2) über mindestens einen Verbindungskanal (8) verbunden ist. - Kühlbare Schaufel nach Anspruch 1,
dadurch gekennzeichnet,
dass dass der divergierende Kühlkanal (7) ein Diffusor ist.. - Kühlbare Schaufel nach Anspruch 1 oder 2,
dadurch gekennzeichnet,
dass sich der Kühlkanal (7) mindestens von einem Mittenbereich (14) des Schaufelblattes (1) bis zu einem Schaufel kopf (13) erstreckt. - Kühlbare Schaufel nach Anspruch 1,
dadurch gekennzeichnet,
dass im Hohlraum (2) mindestens eine Rippe (30) so ausgestaltet ist, dass sie eine Spitze (31) und zwei Schenkel (32, 33) aufweist und dass die Schenkel der Rippe in einem spitzen Winkel (34) gegenüber der Hauptströmungsrichtung eines Kühlfluides (20) angewinkelt sind.
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE19634237A DE19634237A1 (de) | 1996-08-23 | 1996-08-23 | Kühlbare Schaufel |
DE19634237 | 1996-08-23 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0825333A1 true EP0825333A1 (de) | 1998-02-25 |
EP0825333B1 EP0825333B1 (de) | 2001-05-23 |
Family
ID=7803585
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP97810561A Expired - Lifetime EP0825333B1 (de) | 1996-08-23 | 1997-08-08 | Kühlbare Turbinenschaufel |
Country Status (6)
Country | Link |
---|---|
US (1) | US5934874A (de) |
EP (1) | EP0825333B1 (de) |
JP (1) | JP4152458B2 (de) |
CN (1) | CN1105228C (de) |
CZ (1) | CZ267997A3 (de) |
DE (2) | DE19634237A1 (de) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103089335A (zh) * | 2013-01-21 | 2013-05-08 | 上海交通大学 | 适用于涡轮叶片后部冷却腔的w形肋通道冷却结构 |
Families Citing this family (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US10400608B2 (en) * | 2016-11-23 | 2019-09-03 | General Electric Company | Cooling structure for a turbine component |
US11492908B2 (en) | 2020-01-22 | 2022-11-08 | General Electric Company | Turbine rotor blade root with hollow mount with lattice support structure by additive manufacture |
US11242760B2 (en) | 2020-01-22 | 2022-02-08 | General Electric Company | Turbine rotor blade with integral impingement sleeve by additive manufacture |
US11248471B2 (en) | 2020-01-22 | 2022-02-15 | General Electric Company | Turbine rotor blade with angel wing with coolant transfer passage between adjacent wheel space portions by additive manufacture |
US11220916B2 (en) | 2020-01-22 | 2022-01-11 | General Electric Company | Turbine rotor blade with platform with non-linear cooling passages by additive manufacture |
Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986002406A1 (en) * | 1984-10-10 | 1986-04-24 | Paul Marius A | Gas turbine engine |
US4820123A (en) * | 1988-04-25 | 1989-04-11 | United Technologies Corporation | Dirt removal means for air cooled blades |
US5122033A (en) * | 1990-11-16 | 1992-06-16 | Paul Marius A | Turbine blade unit |
Family Cites Families (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3171631A (en) * | 1962-12-05 | 1965-03-02 | Gen Motors Corp | Turbine blade |
GB1070130A (en) * | 1966-01-31 | 1967-05-24 | Rolls Royce | Aeofoil shaped blade for a fluid flow machine such as a gas turbine engine |
SU364747A1 (ru) * | 1971-07-08 | 1972-12-28 | Охлаждаемая лопатка турбол1ашины | |
US4288201A (en) * | 1979-09-14 | 1981-09-08 | United Technologies Corporation | Vane cooling structure |
GB2165315B (en) * | 1984-10-04 | 1987-12-31 | Rolls Royce | Improvements in or relating to hollow fluid cooled turbine blades |
US5695321A (en) * | 1991-12-17 | 1997-12-09 | General Electric Company | Turbine blade having variable configuration turbulators |
US5536143A (en) * | 1995-03-31 | 1996-07-16 | General Electric Co. | Closed circuit steam cooled bucket |
-
1996
- 1996-08-23 DE DE19634237A patent/DE19634237A1/de not_active Withdrawn
-
1997
- 1997-08-08 DE DE59703585T patent/DE59703585D1/de not_active Expired - Lifetime
- 1997-08-08 EP EP97810561A patent/EP0825333B1/de not_active Expired - Lifetime
- 1997-08-22 CZ CZ972679A patent/CZ267997A3/cs unknown
- 1997-08-22 JP JP22623097A patent/JP4152458B2/ja not_active Expired - Lifetime
- 1997-08-23 CN CN97119332A patent/CN1105228C/zh not_active Expired - Lifetime
- 1997-08-25 US US08/916,789 patent/US5934874A/en not_active Expired - Lifetime
Patent Citations (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1986002406A1 (en) * | 1984-10-10 | 1986-04-24 | Paul Marius A | Gas turbine engine |
US4820123A (en) * | 1988-04-25 | 1989-04-11 | United Technologies Corporation | Dirt removal means for air cooled blades |
US5122033A (en) * | 1990-11-16 | 1992-06-16 | Paul Marius A | Turbine blade unit |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN103089335A (zh) * | 2013-01-21 | 2013-05-08 | 上海交通大学 | 适用于涡轮叶片后部冷却腔的w形肋通道冷却结构 |
Also Published As
Publication number | Publication date |
---|---|
CZ267997A3 (cs) | 1998-03-18 |
EP0825333B1 (de) | 2001-05-23 |
JP4152458B2 (ja) | 2008-09-17 |
CN1177676A (zh) | 1998-04-01 |
JPH1089007A (ja) | 1998-04-07 |
DE59703585D1 (de) | 2001-06-28 |
US5934874A (en) | 1999-08-10 |
CN1105228C (zh) | 2003-04-09 |
DE19634237A1 (de) | 1998-02-26 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
DE60018817T2 (de) | Gekühlte Gasturbinenschaufel | |
DE69822100T2 (de) | Turbinenschaufel | |
DE60218776T2 (de) | Filmgekühlte Turbinenschaufel | |
EP0528138B1 (de) | Deckblatt für axialdurchströmte Turbine | |
EP1267039B1 (de) | Kühlkonstruktion für Schaufelblatthinterkante | |
EP1223308B1 (de) | Komponente einer Strömungsmaschine | |
DE60037926T2 (de) | Einrichtung und Methode zum Stabilisieren der Kernströmung in einer Gasturbine | |
EP0825332B1 (de) | Kühlbare Schaufel | |
DE102006004437A1 (de) | Plattform einer Laufschaufel einer Gasturbine, Verfahren zur Herstellung einer Laufschaufel, Dichtungsplatte und Gasturbine | |
EP0799973B1 (de) | Wandkontur für eine axiale Strömungsmaschine | |
EP0798448A2 (de) | Vorrichtung und Verfahren zur Kühlung einer einseitig von Heissgas umgebenen Wand | |
WO2003052240A2 (de) | Gasturbinenanordnung | |
EP1013884A2 (de) | Turbinenschaufel mit aktiv gekültem Deckbandelememt | |
EP1126136B1 (de) | Turbinenschaufel mit luftgekühltem Deckbandelement | |
DE3534905A1 (de) | Hohle, durch ein stroemungsmittel gekuehlte turbinenschaufel | |
EP0698725A2 (de) | Prallgekühltes Wandteil | |
DE10001109A1 (de) | Gekühlte Schaufel für eine Gasturbine | |
DE1946535B2 (de) | Bauteil für ein Gasturbinentriebwerk | |
EP2304185A1 (de) | Turbinenschaufel für eine gasturbine und gusskern zum herstellen in einer solchen | |
DE19904229A1 (de) | Gekühlte Turbinenschaufel | |
EP0892149B1 (de) | Kühlsystem für den Vorderkantenbereich einer hohlen Gasturbinenschaufel | |
WO2003054356A1 (de) | Thermisch belastetes bauteil | |
EP0825333B1 (de) | Kühlbare Turbinenschaufel | |
DE102004002327A1 (de) | Gekühlte Schaufel für eine Gasturbine | |
EP0892151A1 (de) | Kühlsystem für den Vorderkantenbereich einer hohlen Gasturbinenschaufel |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19970812 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
AKX | Designation fees paid |
Free format text: DE FR GB IT |
|
RBV | Designated contracting states (corrected) |
Designated state(s): DE FR GB IT |
|
R17P | Request for examination filed (corrected) |
Effective date: 19980707 |
|
17Q | First examination report despatched |
Effective date: 19990528 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT Effective date: 20010523 |
|
REF | Corresponds to: |
Ref document number: 59703585 Country of ref document: DE Date of ref document: 20010628 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20010803 |
|
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Ref country code: FR Ref legal event code: CA |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20120802 AND 20120808 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ALSTOM TECHNOLOGY LTD., CH Effective date: 20120918 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59703585 Country of ref document: DE Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59703585 Country of ref document: DE Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE Effective date: 20130508 Ref country code: DE Ref legal event code: R081 Ref document number: 59703585 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM, PARIS, FR Effective date: 20130508 Ref country code: DE Ref legal event code: R081 Ref document number: 59703585 Country of ref document: DE Owner name: ALSTOM TECHNOLOGY LTD., CH Free format text: FORMER OWNER: ALSTOM, PARIS, FR Effective date: 20130508 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R082 Ref document number: 59703585 Country of ref document: DE Representative=s name: ROESLER PATENTANWALTSKANZLEI, DE Ref country code: DE Ref legal event code: R081 Ref document number: 59703585 Country of ref document: DE Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: PLFP Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20160822 Year of fee payment: 20 Ref country code: GB Payment date: 20160819 Year of fee payment: 20 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20160822 Year of fee payment: 20 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: CD Owner name: ALSTOM TECHNOLOGY LTD, CH Effective date: 20161110 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R071 Ref document number: 59703585 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: PE20 Expiry date: 20170807 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E Free format text: REGISTERED BETWEEN 20170824 AND 20170830 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION Effective date: 20170807 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP Owner name: ANSALDO ENERGIA IP UK LIMITED, GB Effective date: 20171221 |