EP0825332B1 - Kühlbare Schaufel - Google Patents

Kühlbare Schaufel Download PDF

Info

Publication number
EP0825332B1
EP0825332B1 EP97810493A EP97810493A EP0825332B1 EP 0825332 B1 EP0825332 B1 EP 0825332B1 EP 97810493 A EP97810493 A EP 97810493A EP 97810493 A EP97810493 A EP 97810493A EP 0825332 B1 EP0825332 B1 EP 0825332B1
Authority
EP
European Patent Office
Prior art keywords
rib
height
local
ribs
blade
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810493A
Other languages
English (en)
French (fr)
Other versions
EP0825332A1 (de
Inventor
Kenneth Hall
Bruce Dr. Johnson
Bernhard Dr. Weigand
Shey Dr. Wu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP0825332A1 publication Critical patent/EP0825332A1/de
Application granted granted Critical
Publication of EP0825332B1 publication Critical patent/EP0825332B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D5/00Blades; Blade-carrying members; Heating, heat-insulating, cooling or antivibration means on the blades or the members
    • F01D5/12Blades
    • F01D5/14Form or construction
    • F01D5/18Hollow blades, i.e. blades with cooling or heating channels or cavities; Heating, heat-insulating or cooling means on blades
    • F01D5/187Convection cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2260/00Function
    • F05D2260/20Heat transfer, e.g. cooling
    • F05D2260/221Improvement of heat transfer
    • F05D2260/2212Improvement of heat transfer by creating turbulence

Definitions

  • the invention relates to a coolable blade according to the preamble of the first Claim.
  • Such coolable blades are known for example from DE 32 48 162.
  • a coolable shovel that has a leading edge area Has cooling fluid passage. Extend across the width of the cooling fluid passage ribs for triggering and promoting turbulence, which are at an acute angle, about 30 °, to the inside of the leading edge wall obliquely against the Cooling fluid flow direction are arranged in the cooling fluid passage. Ribs are aligned so that the cooling air is directed to the front edge of the blade becomes.
  • the rib height is between 10 to 33% of the height of the Cooling fluid passage.
  • the rib height is constant across the width of the cooling fluid passage and the cooling arrangement is only for the nasal channel Area of the front edge applicable.
  • the invention has for its object in a coolable blade type mentioned to improve the cooling of the blade and the Increase bucket life.
  • the essence of the invention is therefore that at least one rib which Rib is designed so that it has a tip and two legs which thighs of the rib at an acute angle compared to a straight line running parallel to the main flow direction are angled, the ratio of the local rib height to the local one Cavity height is essentially the same at all points on the rib.
  • the advantages of the invention include the fact that the blade through the design of the ribs with a tip and two legs evenly is cooled and the cooling fluid consumption can be reduced. This takes place in essentially by avoiding dead water areas in the area of Front and rear edge of the cooling channel of the blade.
  • By cooling the Shovel smoothes the surface temperature and the thermal Tensions in the blade are reduced, which increases the lifespan of the Bucket is raised. Due to the reduced cooling fluid consumption, the Turbine efficiency can be increased.
  • the blade can adjust the rib geometry in the cooling fluid passage and thus achieve a uniform surface temperature of the blade. shovel with ribs arranged in the cavity are also simple in terms of casting technology manufacture.
  • an embodiment of the invention is based on a schematic representation of a blade of a turbomachine.
  • the Airfoil 1 shows an airfoil 1 of a turbomachine with a cavity 2 shown in cross section, the cavity serving as a cooling fluid passage.
  • the Airfoil 1 has a leading edge area 3, a trailing edge area 4, a suction side wall 5 and a pressure side wall 6, the suction side and the pressure-side wall in the area of the front edge 3 and the rear edge 4 are interconnected. This essentially creates a double triangular shaped cooling duct with acute angled triangle tips in the area of the Front 3 and rear edge 4 of the blade.
  • On the pressure side wall 6 is a V-shaped rib 7 with a tip 9 and legs 14, 15 is arranged.
  • the V-shaped rib 7 can be designed isosceles, depending on the arrangement the rib tip 9 in the cavity, however, are also rib configurations unequal legs possible.
  • a ratio of a height h1 of the rib 7 to A local height H1 of the cavity 2 is the same size as a ratio a height h2 of the rib 7 to a local height H2 of the cavity 2.
  • Das Ratio of rib height h to cavity height H is thus at every point Rib essentially the same.
  • the rib 9 tapers to the passage the cooling fluid in these areas not to inhibit.
  • Fig. 2 shows the inside of the suction side wall 5 with cut Front edge area 3 and rear edge area 4.
  • One blade 10 one Turbomachine consists of the airfoil 1 and the Blade base 11 with which the blade 10 can be mounted. Between Blade 1 and blade root 11 is usually a platform 12 arranged, which the blade root of those flowing around the airfoil Shields fluids.
  • On the suction side wall there are also V-shaped ribs 7a arranged, here a tip 9a of the ribs on a plane 13 of the Cavity 2 is arranged and the tip 9a is downstream.
  • Level 13 runs radially to the blade and perpendicular to the inside of walls 5 and 6 the blade and is arranged at the widest point of the cavity 2. The Tip 9a is therefore at the point where the local rib height h is maximum.
  • a cooling fluid 20 is passed through the cavity 2, starting from the blade root.
  • the ribs are angled at an angle 8 to the main flow direction of the cooling fluid 20, the main flow direction running essentially parallel to the plane 13.
  • the angle 8 is 30 to 60 °, preferably 40 to 50 ° and in particular 45 °. Downstream of the V-shaped fins, vortices and recirculation zones arise, which increase the heat transfer coefficient.
  • Mean Nusselt number depending on the rib height of the V-shaped rib Ratio of rib height / cavity height [%] 0 18 31 44 Nu / Nu smooth 1 2-4 5 - 7 9-12
  • the Nusselt number Nu is defined as the ratio of the convectively dissipated to the conducted amount of heat.
  • Table 1 the average Nusselt number Nu for different rib heights is compared to the Nusselt number Nu smooth of a channel without ribs, the tips of the V-shaped ribs being arranged downstream. Table 1 clearly shows that the average Nusselt number increases sharply with increased rib height.
  • the ratio of local rib height to local cavity height should therefore be between 5 to 50%, preferably between 20 to 40%.
  • Fig. 3 shows the inside of the pressure side wall 6 with cut Front edge area 3 and rear edge area 4.
  • the on the inside of the pressure-side wall 6 arranged ribs 7b are also V-shaped, their Tip 9b is arranged on the level 13 of the cavity 2.
  • the tip 9b lies thus at the point where the local rib height h is maximum.
  • the ribs on the suction and pressure side to each other in Flow direction arranged offset.
  • the mutual arrangement of the ribs 7a and 7b can be seen from FIG.
  • the ribs are offset from one another in the direction of flow, so that the Flow successively onto a rib 7a of the suction side 5 and a rib 7b of the Print page 6 hits.
  • the ribs are advantageously in the middle arranged between the ribs of the opposite wall.
  • Fig. 5 shows the inside of the pressure side wall 6 with cut Front edge area 3 and rear edge area 4 of the blade 10, which from the Blade 1 and the blade root 11 there.
  • the ribs are also in the Angle 8 angled to the main flow direction of the cooling fluid 20.
  • FIG. 6 shows the suction-side wall with ribs 7a and indicated ribs 7c wherein the ribs 7a are arranged according to FIG. 2 on the suction side.
  • the relationship is of course local Rib height to local cavity height always less than 50%.
  • V-shaped ribs can also be in Buckets with several cooling air passages can be arranged if in the Edge zones of the cooling air diffusers have a high flow resistance.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Turbine Rotor Nozzle Sealing (AREA)

Description

Technisches Gebiet
Die Erfindung betrifft eine kühlbare Schaufel nach dem Oberbegriff des ersten Anspruches.
Stand der Technik
Derartige kühlbare Schaufeln sind beispielsweise bekannt aus DE 32 48 162. Dort wird eine kühlbare Schaufel beschrieben, die in ihrem Vorderkantenbereich einen Kühlfluiddurchlass aufweist. Ueber die Breite des Kühlfluiddurchlasses erstrecken sich Rippen zur Turbulenzauslösung und -förderung, die in einem spitzen Winkel, ungefähr 30°, zu der Innenseite der Vorderkantenwand schräg entgegen der Kühlfluidströmungsrichtung im Kühlfluiddurchlass angeordnet sind. Die Rippen sind somit so ausgerichtet, dass die Kühlluft zur Vorderkante der Schaufel geleitet wird. Die Rippenhöhe beträgt dabei zwischen 10 bis 33% der Höhe des Kühlfluiddurchlasses. Die Rippenhöhe ist dabei jeweils konstant über die Breite des Kühlfluiddurchlasses und die Kühlanordnung ist nur für den Nasenkanal im Bereich der Vorderkante anwendbar.
Bei den hinteren Stufen einer modernen Gasturbine erfordert die hohe Aussentemperatur ebenfalls eine Kühlung der Schaufel, wobei hier die Schaufel aus aerodynamischen Gründen jedoch sehr schlank geformt wird. Dadurch entsteht ein im wesentlichen doppelt dreieckig geformter Kühlkanal (engl.: double triangular-shaped coolant passage) mit spitzwinkligen Dreieckspitzen im Bereich der Vorder- und der Hinterkante der Schaufel. Im Bereich der spitzwinkligen Dreieckspitzen ist der Strömungswiderstand sehr hoch und somit findet in diesen Bereichen praktisch keine Kühlung mehr statt.
Weitere Ausführungen von gekühlten Turbinenschaufeln sind aus US-A-3 171 631 zu entnehmen.
Darstellung der Erfindung
Der Erfindung liegt die Aufgabe zugrunde, bei einer kühlbaren Schaufel der eingangs genannten Art die Kühlung der Schaufel zu verbessern und die Lebensdauer der Schaufel zu erhöhen.
Erfindungsgemäss wird dies durch die Merkmale des ersten Anspruches erreicht.
Kern der Erfindung ist es also, dass bei mindestens einer Rippe, welche Rippe so ausgestaltet ist, dass sie eine Spitze und zwei Schenkel aufweist , welche Schenkel der Rippe in einem spitzen Winkel gegenüber einer parallel zur Hauptströmungsrichtung verlaufenden Gerade angewinkelt sind, das Verhältnis der lokalen Rippenhöhe zur lokalen Hohlraumhöhe im Wesentlichen an allen Punkten der Rippe gleich ist.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass die Schaufel durch die Ausgestaltung der Rippen mit Spitze und zwei Schenkeln gleichmässig gekühlt wird und der Kühlfluidverbrauch gesenkt werden kann. Dies erfolgt im wesentlichen durch eine Vermeidung von Totwassergebieten im Bereich der Vorder- und der Hinterkante des Kühlkanales der Schaufel. Durch die Kühlung der Schaufel wird die Oberflächentemperatur vergleichmässigt und die thermischen Spannungen in der Schaufel werden vermindert, womit die Lebensdauer der Schaufel erhöht wird. Durch den gesenkten Kühlfluidverbrauch kann der Wirkungsgrad der Turbine erhöht werden. Je nach der äusseren Wärmebelastung der Schaufel lässt sich die Rippengeometrie im Kühlfluiddurchlass anpassen und somit eine gleichmässige Oberflächentemperatur der Schaufel erzielen. Schaufeln mit im Hohlraum angeordneten Rippen sind zudem gusstechnisch einfach herzustellen.
Es ist besonders vorteilhaft, die Rippen mit Spitze und zwei Schenkeln in einem doppelt dreieckig mit spitzwinkligen Dreieckspitzen im Bereich der Vorder- und der Hinterkante ausgeformten Hohlraum anzuordnen. Dadurch wird es möglich auch sehr schlank geformte Schaufelprofile, welche einen hohen aerodynamischen Wirkungsgrad aufweisen, mit einem doppelt dreieckig geformtem Kühlkanal effektiv zu kühlen.
Es ist vorteilhaft, das Verhältnis von lokaler Rippenhöhe zu lokaler Hohlraumhöhe konstant zu halten. Dadurch wird die lokale Rippenhöhe im Bereich der Vorderund Hinterkante im Vergleich zur lokalen Rippenhöhe im Bereich der Hohlraummitte verkleinert, wodurch die Sekundärströmung intensiviert wird.
Weitere vorteilhafte Ausgestaltungen der Erfindung ergeben sich aus den weiteren Unteransprüchen.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand einer schematischen Darstellung einer Schaufel einer Strömungsmaschine dargestellt.
Es zeigen:
Fig. 1
einen Teilquerschnitt durch ein Schaufelblatt der Schaufel;
Fig. 2
einen Teillängsschnitt durch die Schaufel entlang der Linie II-II in Fig. 1;
Fig. 3
einen Teillängsschnitt durch die Schaufel entlang der Linie III-III in Fig. 1;
Fig. 4
einen Teillängsschnitt durch die Schaufel parallel versetzt zur Linie II-II in Fig. 1;
Fig. 5
einen Teillängsschnitt durch die Schaufel entlang der Linie V-V in Fig. 1;
Fig. 6
einen Teillängsschnitt durch die Schaufel parallel versetzt zur Linie V-V in Fig. 1;
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt.
Weg zur Ausführung der Erfindung
In Fig. 1 ist ein Schaufelblatt 1 einer Strömungsmaschine mit einem Hohlraum 2 im Querschnitt dargestellt, wobei der Hohlraum als Kühlfluiddurchlass dient. Das Schaufelblatt 1 weist einen Vorderkantenbereich 3, einen Hinterkantenbereich 4, eine saugseitige Wand 5 und eine druckseitige Wand 6 auf, wobei die saugseitige und die druckseitige Wand im Bereich der Vorderkante 3 und der Hinterkante 4 miteinander verbunden sind. Dadurch entsteht ein im wesentlichen doppelt dreieckig geformter Kühlkanal mit spitzwinkligen Dreieckspitzen im Bereich der Vorder- 3 und der Hinterkante 4 der Schaufel. An der druckseitigen Wand 6 ist eine V-förmige Rippe 7 mit einer Spitze 9 und Schenkeln 14, 15 angeordnet. Die V-förmige Rippe 7 kann dabei gleichschenklig ausgelegt sein, je nach Anordnung der Rippenspitze 9 im Hohlraum sind jedoch auch Rippenkonfigurationen mit ungleich langen Schenkeln möglich. Ein Verhältnis einer Höhe h1 der Rippe 7 zu einer lokalen Höhe H1 des Hohlraumes 2 ist dabei gleich gross wie ein Verhältnis einer Höhe h2 der Rippe 7 zu einer lokalen Höhe H2 des Hohlraumes 2. Das Verhältnis von Rippenhöhe h zu Hohlraumhöhe H ist somit an jeder Stelle der Rippe im wesentlichen gleich. In den Bereichen wo der Hohlraum 2 in den Vorderund Hinterkantenbereich übergeht, verjüngt sich die Rippe 9, um den Durchtritt des Kühlfluides in diesen Bereichen nicht zu hemmen.
Fig. 2 zeigt die Innenseite der saugseitigen Wand 5 mit geschnittenem Vorderkantenbereich 3 und Hinterkantenbereich 4. Eine Schaufel 10 einer Strömungsmaschine besteht dabei aus dem Schaufelblatt 1 und dem Schaufelfuss 11, mit dem die Schaufel 10 montiert werden kann. Zwischen Schaufelblatt 1 und Schaufelfuss 11 ist üblicherweise eine Plattform 12 angeordnet, welche den Schaufelfuss von den das Schaufelblatt umströmenden Fluiden abschirmt. An der saugseitigen Wand sind ebenfalls V-förmige Rippen 7a angeordnet, wobei hier eine Spitze 9a der Rippen auf einer Ebene 13 des Hohlraumes 2 angeordnet ist und die Spitze 9a stromabwärts liegt. Die Ebene 13 verläuft radial zur Schaufel und senkrecht zu den Innenseiten der Wände 5 und 6 der Schaufel und ist an der breitesten Stelle des Hohlraumes 2 angeordnet. Die Spitze 9a liegt somit an der Stelle wo die lokale Rippenhöhe h maximal ist.
Durch den Hohlraum 2 wird ausgehend vom Schaufelfuss ein Kühlfluid 20 geleitet. Die Rippen sind dabei in einem Winkel 8 zur Hauptströmungsrichtung des Kühlfluides 20 angewinkelt, wobei die Hauptströmungsrichtung im wesentlichen parallel zur Ebene 13 verläuft. Der Winkel 8 beträgt dabei 30 bis 60°, vorzugsweise 40 bis 50° und insbesondere 45°. Stromabwärts der V-förmigen Rippen entstehen Wirbel und Rezirkulationszonen, welche den Wärmeübergangskoeffizienten erhöhen.
Mittlere Nusselt-Zahl abhängig von der Rippenhöhe der V-förmigen Rippe (aus experimentellen Daten)
Verhältnis Rippenhöhe / Hohlraumhöhe [%] 0 18 31 44
Nu/ Nuglatt 1 2 - 4 5 - 7 9 - 12
Die Nusselt-Zahl Nu ist definiert als das Verhältnis der konvektiv abgeführten zur geleiteten Wärmemenge. In Tabelle 1 wird die mittlere Nusselt-Zahl Nu für verschiedene Rippenhöhen verglichen mit der Nusselt-Zahl Nuglatt eines Kanales ohne Rippen, wobei die Spitzen der V-förmigen Rippen stromabwärts angeordnet sind. Aus der Tabelle 1 ist deutlich ersichtlich, dass die mittlere Nusselt-Zahl mit erhöhter Rippenhöhe stark zunimmt. Das Verhältnis von lokaler Rippenhöhe zu lokaler Hohlraumhöhe sollte somit zwischen 5 bis 50%, vorzugsweise zwischen 20 bis 40% liegen.
Da die Kühlfluidtemperatur in Strömungsrichtung durch Aufnahme von Wärmeenergie zunimmt und damit der Unterschied zwischen Wandtemperatur und Kühlfluid abnimmt, kann das Verhältnis zwischen lokaler Rippenhöhe h und lokaler Hohlraumhöhe H in Strömungsrichtung kontinuierlich erhöht werden, womit gemäss der vorstehenden Tabelle 1 die Nusselt-Zahl erhöht und damit der Wärmeübergang verbessert wird. Dadurch wird die vom Kühlfluid aufgenommene Wärmeenergie an die äussere Wärmelast der Schaufel angepasst. Dies führt zu einer zusätzlichen Vergleichmässigung der Temperaturverteilung in radialer Richtung der Schaufel und damit zu deutlich niedrigeren Spannungen.
Fig. 3 zeigt die Innenseite der druckseitigen Wand 6 mit geschnittenem Vorderkantenbereich 3 und Hinterkantenbereich 4. Die auf der Innenseite der druckseitigen Wand 6 angeordneten Rippen 7b sind ebenfalls V-förmig, wobei ihre Spitze 9b auf der Ebene 13 des Hohlraumes 2 angeordnet ist. Die Spitze 9b liegt somit an der Stelle wo die lokale Rippenhöhe h maximal ist. Wie man aus Fig. 3 ersehen kann sind die Rippen auf Saug- und Druckseite zueinander in Strömungsrichtung versetzt angeordnet.
Aus der Fig. 4 wird die gegenseitige Anordnung der Rippen 7a und 7b ersichtlich. Die Rippen sind gegeneinander in Strömungsrichtung versetzt, so dass die Strömung nacheinander auf eine Rippe 7a der Saugseite 5 und eine Rippe 7b der Druckseite 6 trifft. Vorteilhafterweise werden die Rippen jeweils in der Mitte zwischen den Rippen der gegenüberliegenden Wand angeordnet.
Durch die Anordnung nach Fig. 4 wird die Strömung in die spitzwinkligen Bereiche der Vorder- und Hinterkante geleitet wodurch eine deutlich höhere lokale Nusselt-Zahl erreicht wird, als die in der Tabelle 1 angegebenen mittleren Nusselt-Zahlen. Es werden somit sehr hohe Wärmeübergangszahlen im Bereich der Vorder- und der Hinterkante der Schaufel erzielt, während im Bereich der Kanalmitte niedrigere Wärmeübergangszahlen auftreten.
Fig. 5 zeigt die Innenseite der druckseitigen Wand 6 mit geschnittenem Vorderkantenbereich 3 und Hinterkantenbereich 4 der Schaufel 10, die aus dem Schaufelblatt 1 und dem Schaufelfuss 11 besteht. Die Rippen 7c der druckseitigen Wand sind im Gegensatz zur Fig. 3 so angeordnet, dass ihre Spitze 9c zuerst von der Strömung beaufschlagt wird. Die Rippen sind dabei ebenfalls im Winkel 8 zur Hauptströmungsrichtung des Kühlfluides 20 angewinkelt.
Fig. 6 zeigt die saugseitige Wand mit Rippen 7a und angedeuteten Rippen 7c wobei die Rippen 7a entsprechend Fig. 2 an der Saugseite angeordnet sind. Aus konstruktionstechnischen Gründen ist hier natürlich das Verhältnis lokale Rippenhöhe zu lokaler Hohlraumhöhe immer kleiner 50%.
Durch die Anordnung nach Fig. 6 werden ebenfalls sehr hohe Wärmeübergangszahlen erzielt, welche jedoch gleichförmiger verteilt sind als bei der Anordnung gemäss Fig. 4. Die Wärmeübergangszahlen einer Schaufel gemäss Fig. 6 sind jedoch unterschiedlich an der Druck- und der Saugseite, wodurch diese Anordnung bei unterschiedlicher Wärmebelastung auf der Druckund der Saugseite angewendet wird.
Selbstverständlich ist die Erfindung nicht auf das gezeigte und beschriebene Ausführungsbeispiel beschränkt. Die V-förmigen Rippen können auch in Schaufeln mit mehreren Kühlluftdurchlässen angeordnet werden, falls in den Randzonen der Kühlluftdurchlässe ein hoher Strömungswiderstand vorherrscht.
Bezugszeichenliste
1
Schaufelblatt
2
Hohlraum
3
Vorderkantenbereich
4
Hinterkantenbereich
5
saugseitige Wand
6
druckseitige Wand
7
Rippe
7a, 7c
Rippe saugseitige Wand
7b
Rippe druckseitige Wand
8
Anstellwinkel Rippe
9, 9a, 9b
Rippenspitze
10
Schaufel
11
Schaufelfuss
12
Plattform
13
Ebene
14, 15
Schenkel der V-förmigen Rippen
20
Kühlfluid
h, h1, h2
lokale Rippenhöhe
H, H1, H2
lokale Hohlraumhöhe

Claims (8)

  1. Kühlbare Schaufel (10), im wesentlichen bestehend aus einem Schaufelfuss (11) und einem Schaufelblatt (1), welches Schaufelblatt aus einer druckseitigen (6) und einer saugseitigen Wand (5) aufgebaut ist, die im wesentlichen über einen Hinterkantenbereich (4) und einen Vorderkantenbereich (3) so miteinander verbunden sind, dass mindestens ein als Kühlfluiddurchlass verwendeter Hohlraum (2) gebildet wird, in dem Rippen (7) angeordnet sind, und wobei mindestens eine Rippe (7) so ausgestaltet ist, dass sie eine Spitze (9) und zwei Schenkel (14, 15) aufweist, welche Schenkel (14, 15) der Rippe in einem spitzen Winkel (8) gegenüber einer parallel zur Hauptströmungsrichtung des Kühlfluides (20) verlaufenden Gerade (13) angewinkelt sind, dadurch gekennzeichnet, dass das Verhältnis der lokalen Rippenhöhe (h) zur lokalen Hohlraumhöhe (H) im Wesentlichen an allen Punkten der Rippe (7) gleich ist.
  2. Kühlbare Schaufel nach Anspruch 1,
    dadurch gekennzeichnet, dass der Hohlraum (2) doppelt dreieckig mit spitzwinkligen Dreieckspitzen im Bereich der Vorder- (3) und der Hinterkante (4) ausgeformt ist.
  3. Kühlbare Schaufel nach Anspruch 2,
    dadurch gekennzeichnet, dass die Spitze (9) der Rippe (7) im Bereich der grössten lokalen Höhe (h) der Rippe angeordnet ist.
  4. Kühlbare Schaufel nach Anspruch 3,
    dadurch gekennzeichnet, dass das Verhältnis von lokaler Rippenhöhe (h) zu lokaler Hohlraumhöhe (H) 5 - 50% beträgt.
  5. Kühlbare Schaufel nach Anspruch 3,
    dadurch gekennzeichnet, dass das Verhältnis von lokaler Rippenhöhe (h) zu lokaler Hohtraumhöhe (H) für nacheinander in Hauptströmungsrichtung des Kühlfluides angeordnete Rippen (7) zunimmt.
  6. Kühlbare Schaufel nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Spitzen (9) der Rippen (7) auf der saugseitigen (5) und druckseitigen Wand (6) stromab in Hauptströmungsrichtung des Kühlfluides (20) liegen.
  7. Kühlbare Schaufel nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Spitzen (9) der Rippen (7) auf der saugseitigen (5) oder druckseitigen Wand (6) stromabwärts liegen und auf der gegenüberliegenden Wand (5, 6) stromauf in Hauptströmungsrichtung des Kühlfluides liegen.
  8. Kühlbare Schaufel nach Anspruch 1 oder 2,
    dadurch gekennzeichnet, dass die Schenkel (14, 15) der Rippen in einem Winkel (8) von 30 bis 60° gegenüber der Geraden (13) angewinkelt sind.
EP97810493A 1996-08-23 1997-07-15 Kühlbare Schaufel Expired - Lifetime EP0825332B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19634238 1996-08-23
DE19634238A DE19634238A1 (de) 1996-08-23 1996-08-23 Kühlbare Schaufel

Publications (2)

Publication Number Publication Date
EP0825332A1 EP0825332A1 (de) 1998-02-25
EP0825332B1 true EP0825332B1 (de) 2003-02-05

Family

ID=7803586

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810493A Expired - Lifetime EP0825332B1 (de) 1996-08-23 1997-07-15 Kühlbare Schaufel

Country Status (5)

Country Link
US (1) US5919031A (de)
EP (1) EP0825332B1 (de)
JP (1) JP4017708B2 (de)
CN (1) CN1105227C (de)
DE (2) DE19634238A1 (de)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0945595A3 (de) * 1998-03-26 2001-10-10 Mitsubishi Heavy Industries, Ltd. Gekühlte Gasturbinenschaufel
SE512384C2 (sv) * 1998-05-25 2000-03-06 Abb Ab Komponent för en gasturbin
DE19846332A1 (de) 1998-10-08 2000-04-13 Asea Brown Boveri Kühlkanal eines thermisch hochbelasteten Bauteils
DE19856458B4 (de) * 1998-12-03 2017-08-10 General Electric Technology Gmbh Kühlvorrichtung zur gezielten Beaufschlagung einer zu kühlenden Oberfläche mit einem gasförmigen Kühlmedium sowie Verfahren hierzu
DE50002464D1 (de) 1999-06-28 2003-07-10 Siemens Ag Heissgasbeaufschlagbares bauteil, insbesondere turbinenschaufel
CN100376766C (zh) * 2000-03-22 2008-03-26 西门子公司 涡轮叶片的加固和冷却结构
EP1136651A1 (de) * 2000-03-22 2001-09-26 Siemens Aktiengesellschaft Kühlsystem für eine Turbinenschaufel
US6695582B2 (en) * 2002-06-06 2004-02-24 General Electric Company Turbine blade wall cooling apparatus and method of fabrication
GB0222352D0 (en) * 2002-09-26 2002-11-06 Dorling Kevin Turbine blade turbulator cooling design
SE526847C2 (sv) * 2004-02-27 2005-11-08 Demag Delaval Ind Turbomachine En komponent som innefattar en ledskena eller ett rotorblad för en gasturbin
EP1921269A1 (de) * 2006-11-09 2008-05-14 Siemens Aktiengesellschaft Turbinenschaufel
CN103089335A (zh) * 2013-01-21 2013-05-08 上海交通大学 适用于涡轮叶片后部冷却腔的w形肋通道冷却结构
JP6036424B2 (ja) * 2013-03-14 2016-11-30 株式会社Ihi 冷却促進構造
KR101501444B1 (ko) * 2014-04-30 2015-03-12 연세대학교 산학협력단 냉각 성능 향상을 위한 내부유로 구조를 포함하는 가스터빈 블레이드
CN106481366B (zh) * 2015-08-28 2019-03-26 中国航发商用航空发动机有限责任公司 冷却叶片和燃气涡轮
CN106555617B (zh) * 2017-01-05 2018-07-10 西北工业大学 一种有斜下吹式气膜冷却孔的涡轮叶片
JP6906332B2 (ja) * 2017-03-10 2021-07-21 川崎重工業株式会社 タービン翼の冷却構造
US10590778B2 (en) * 2017-08-03 2020-03-17 General Electric Company Engine component with non-uniform chevron pins
US10787932B2 (en) * 2018-07-13 2020-09-29 Honeywell International Inc. Turbine blade with dust tolerant cooling system
CN110748384B (zh) * 2019-11-29 2021-11-05 大连理工大学 一种涡轮叶片尾缘折线式排气劈缝结构
CN112746871B (zh) * 2021-01-12 2022-06-10 南京航空航天大学 具有梯形横截面的连续波浪肋冷却结构
CN114673687B (zh) * 2022-05-30 2022-08-19 长城汽车股份有限公司 扇叶总成、风扇及车辆

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3171631A (en) * 1962-12-05 1965-03-02 Gen Motors Corp Turbine blade
GB1361256A (en) * 1971-08-25 1974-07-24 Rolls Royce Gas turbine engine blades
GB1410014A (en) * 1971-12-14 1975-10-15 Rolls Royce Gas turbine engine blade
US4775296A (en) 1981-12-28 1988-10-04 United Technologies Corporation Coolable airfoil for a rotary machine
US5052889A (en) * 1990-05-17 1991-10-01 Pratt & Whintey Canada Offset ribs for heat transfer surface
US5403157A (en) * 1993-12-08 1995-04-04 United Technologies Corporation Heat exchange means for obtaining temperature gradient balance
US5536143A (en) * 1995-03-31 1996-07-16 General Electric Co. Closed circuit steam cooled bucket
DE19526917A1 (de) * 1995-07-22 1997-01-23 Fiebig Martin Prof Dr Ing Längswirbelerzeugende Rauhigkeitselemente

Also Published As

Publication number Publication date
EP0825332A1 (de) 1998-02-25
JPH1089006A (ja) 1998-04-07
DE19634238A1 (de) 1998-02-26
JP4017708B2 (ja) 2007-12-05
CN1105227C (zh) 2003-04-09
CN1186150A (zh) 1998-07-01
US5919031A (en) 1999-07-06
DE59709255D1 (de) 2003-03-13

Similar Documents

Publication Publication Date Title
EP0825332B1 (de) Kühlbare Schaufel
EP1267039B1 (de) Kühlkonstruktion für Schaufelblatthinterkante
DE60017437T2 (de) Rippen zur erhöhung der wärmeübertragung einer mittels kühlluft innengekühlten turbinenschaufel
DE60037926T2 (de) Einrichtung und Methode zum Stabilisieren der Kernströmung in einer Gasturbine
DE69714960T3 (de) Wirbelelementkonstruktion für Kühlkanäle eines Gasturbinenrotorschaufelblattes
DE3248163C2 (de)
DE102008003411B4 (de) Windturbinenflügelprofilfamilie
DE60018817T2 (de) Gekühlte Gasturbinenschaufel
DE3248162C2 (de) Kühlbare Schaufel
DE60017541T2 (de) Schaufelblatt für eine axiale Turbomaschine
DE602005000449T2 (de) Kühlung mit Mikrokanälen für eine Turbinenschaufel
EP0528138B1 (de) Deckblatt für axialdurchströmte Turbine
EP0916812B1 (de) Endstufe für axialdurchströmte Turbine
EP1766192B1 (de) Schaufelrad einer turbine mit einer schaufel und mindestens einem kühlkanal
DE3045224A1 (de) Schaufel fuer turbinenmotoren
EP0892149B1 (de) Kühlsystem für den Vorderkantenbereich einer hohlen Gasturbinenschaufel
DE19904229A1 (de) Gekühlte Turbinenschaufel
DE69821443T2 (de) Kühlung der Austrittskante bei Gasturbinenschaufeln
EP3762587B1 (de) Schaufelblatt für eine turbinenschaufel
DE69925447T2 (de) Kühlbare Schaufelblätter
EP0892150B1 (de) Kühlsystem für den Hinterkantenbereich einer hohlen Gasturbinenschaufel
DE60201325T2 (de) Hochdruck-Turbinenschaufel mit gekühlter Abströmkante
DE69816947T2 (de) Gasturbinenschaufel
EP0825333B1 (de) Kühlbare Turbinenschaufel
EP2868867A1 (de) Turbinenschaufel

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980730

AKX Designation fees paid

Free format text: DE FR GB

RBV Designated contracting states (corrected)

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19991111

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ABB (SCHWEIZ) AG

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709255

Country of ref document: DE

Date of ref document: 20030313

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030506

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20031106

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709255

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709255

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709255

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709255

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59709255

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59709255

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160722

Year of fee payment: 20

Ref country code: GB

Payment date: 20160721

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20160721

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59709255

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170714

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20170824 AND 20170830

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170714

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Effective date: 20171221