EP0820600A1 - Procede de mesure de distances - Google Patents

Procede de mesure de distances

Info

Publication number
EP0820600A1
EP0820600A1 EP96909030A EP96909030A EP0820600A1 EP 0820600 A1 EP0820600 A1 EP 0820600A1 EP 96909030 A EP96909030 A EP 96909030A EP 96909030 A EP96909030 A EP 96909030A EP 0820600 A1 EP0820600 A1 EP 0820600A1
Authority
EP
European Patent Office
Prior art keywords
type
additional
fir filter
transmission line
kilometric
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96909030A
Other languages
German (de)
English (en)
Inventor
Andreas Jurisch
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Siemens AG
Original Assignee
Siemens AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siemens AG filed Critical Siemens AG
Publication of EP0820600A1 publication Critical patent/EP0820600A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/088Aspects of digital computing
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01RMEASURING ELECTRIC VARIABLES; MEASURING MAGNETIC VARIABLES
    • G01R31/00Arrangements for testing electric properties; Arrangements for locating electric faults; Arrangements for electrical testing characterised by what is being tested not provided for elsewhere
    • G01R31/08Locating faults in cables, transmission lines, or networks
    • G01R31/081Locating faults in cables, transmission lines, or networks according to type of conductors
    • G01R31/085Locating faults in cables, transmission lines, or networks according to type of conductors in power transmission or distribution lines, e.g. overhead

Definitions

  • an electrical energy transmission line with two conductors L 1 and L 2 is fed from two supply points Ua and Ub.
  • a load current I L flows .
  • the individual impedances of the system shown are a further one due to an equivalent impedance Z 1A for the area from the feed point Ua to a measurement point A close to the feed point
  • impedance mZ 1L for the part of the energy transmission line from measuring point A to an assumed fault location F
  • a further substitute impedance (1-m) Z 1L for the rest of the energy transmission line and an additional substitute impedance 1 1B of the other supply point Ub; the equivalent impedance of the
  • Fault point F itself is labeled 3.R f and the current through the fault point is l F.
  • the voltage U RA measured at the measuring point A in the event of a short circuit at the fault location F is composed of several partial voltages.
  • the fault current I FA emitted by the supply point Ua in the event of a short circuit generates a voltage drop across the conductor loop to be measured.
  • the load current I L generates a voltage drop at the equivalent impedance mZ 1L for the line section between the measuring point A and the fault point F.
  • a further partial voltage to be taken into account arises from the fault current I FB fed from the supply point UB from the other end of the line via the fault resistor
  • a current and a voltage are calculated at the fault location, and the phase relationship of the two variables to one another is then determined; If there is a phase deviation, a different voltage is calculated at the fault location and the phase position of the calculated current is determined again. If phase correspondence is finally reached, the location of the fault is inferred from the variables taken into account.
  • EP 0 106 790 AI describes a method for localizing a fault location on an overhead line, in which the calculation of complex current and voltage pointers is carried out in a first method step.
  • a quadratic equation is solved using the complex impedances of the line itself, which are assumed to be known, and the feed-in impedances of both line ends, as well as the type of error. Because of the known complex feed impedances, this method is only suitable for use in fault locations, since the feed impedances in a typical network depend on the switching status of the network and data transmission is therefore required to provide this information in the protective device.
  • a distance protection arrangement must, however, be functional independently of such data connections.
  • a method for testing arrangements is also known (European patent specification EP 0 284 546 B1), which can be used to precisely determine the fault location on an electrical power transmission line.
  • the current and voltage of the energy transmission line or quantities derived therefrom are processed in a filter unit with non-recursive digital filters (FIR filters);
  • FIR filters non-recursive digital filters
  • the values indicating the location of the error are calculated therefrom after error correction.
  • a relatively powerful and thus relatively expensive computer must be used.
  • the invention is based on the method last dealt with above, that is to say relates to a method for carrying out a distance measurement on a multi-phase electrical power transmission line, in which the voltage on a faulty phase conductor is detected, digitized and in a linear-phase, non-recursive digital filter (FIR filter). of a first type (with weighting factors g i ) of a filter unit, which detects current in the faulty phase conductor,
  • the sum of the is used for distance measurement in the case of single-pole earth faults
  • Computing unit is also obtained from the output variable of the additional FIR filter of the first type by multiplying by the difference between the Anac ohmic resistance of the zero system and the co-system of the energy transmission line and a third auxiliary variable from the output variable of the additional FIR filter of the second type
  • a zero current corresponding to the sum of the currents in the phase conductors of this energy transmission line is present in the presence of a parallel multiphase electrical energy transmission line recorded and digitized and the real part of the summed up
  • a distance measurement must not only be carried out quickly in a distance protection device, but it must also be accurate and reliable so that the device does not trigger and thus switch off the energy transmission line to be monitored due to an inaccurate measurement. For this reason, distance protection devices work with so-called repeat measurement; however, additional time is required for this, even if - as will be shown later - the distance measurement itself was accurate.
  • a further development of the method according to the invention is advantageous, in which a further distance measurement is carried out in parallel, in that the voltage on the faulty phase conductor in a supplementary FIR filter of a third type (with weighting factors h i ) in the filter unit to form an output variable is evaluated, the current in the defective phase conductor is evaluated in a further supplementary FIR filter of the third type to form an output auxiliary variable, the total current in an additional supplementary FIR filter of the third type is evaluated to form an additional output auxiliary variable in which A first additional auxiliary variable is formed from the output auxiliary variable of the further supplementary FIR filter of the third type by multiplication with the Telec resistance of the co-system of the energy transmission line, and furthermore from the output variable of the wide one Ren FIR filter of the first type is formed by multiplication with the Telec inductance of the co-system of the energy transmission line, a second additional variable is formed in the arithmetic unit from the output auxiliary size of the additional supplementary FIR filter of the first
  • FIG. 2 shows a component network of an electrical power transmission line to be monitored in the event of a single-pole earth fault, in
  • Figure 3 in the form of a block diagram an embodiment of an arrangement for performing the method according to the invention, in
  • Figure 4 shows another embodiment of an arrangement for
  • Figure 5 shows an additional embodiment
  • FIG. 2 For a single-pole earth fault on a three-phase power transmission line, the equivalent circuit diagram shown in FIG. 2 applies, in which I denotes the co-system, II the opposite system and III the zero system. 2 thus shows the relationships on the multiphase power transmission line in symmetrical components in a representation, which e.g. the book by R. Roeper "Short-circuit currents in three-phase networks", 1984, pages 48 to 51 can be found.
  • a load current I 1FA is generated only by the co-system; in addition, a fault current l F arises.
  • the distribution of the fault current I F among the individual Parts I to III of the component network are calculated as follows using the current distribution factors c 0 and
  • I 0FA is a part of the fault current I F and I 0FB , which denotes the further part of this fault current; the equivalent impedances in the three parts I to III of the component network are defined in accordance with FIG. 1.
  • the current I 0FA corresponds to the sum of the currents in the individual phase conductors of the energy transmission line to be monitored. If one sets up the mesh equation for the mesh entered in FIG. 2, one obtains after the back transformation into natural components:
  • the fault resistance R f and the current division factor c 0 can be combined to form a fictitious fault resistance R cf :
  • the parameters m and R cf are therefore to be determined, which is done with the method known from the above-mentioned European patent 0 284 546 B1.
  • the variables u RA , i OFA and i FA are evaluated after standardization in a filter unit 1 according to FIG. 3. Such an evaluation is carried out using convolution operations (symbolically represented with * in the block diagram).
  • the normalized voltage u RA is fed to a linear-phase, non-recursive digital filter, that is to say an FIR filter 3, via an analog-digital converter 2, which converts the voltage u RA into a number sequence u k after sampling with a correspondingly selected sampling time Ta.
  • a sequence y k the mapping rule of which is:
  • the mapping rule of which is:
  • the standardized variable i FA is converted and the resulting values x k are fed to a further FIR filter 5, which also belongs to the first filter type and whose weight factor distribution is identical to that of the FIR Filters 3;
  • a sequence w k is generated, which is described with:
  • the total current i OFA is supplied to an additional analog-digital converter 7, which outputs a sequence of numbers i ok at the output.
  • This sequence of numbers is folded in an additional FIR filter 8 of the first type, whereby an output variable m k is formed at the output of this filter.
  • an additional output variable n k is generated in an additional FIR filter 9 of the second type.
  • Equation (6) for is equivalent to the procedure in the measurement method according to European patent specification 0 284 546 two different times T 1 and T 2 set up and resolved according to the two unknown quantities m and R cf.
  • the following specification for m and R cf is obtained :
  • R 1 ⁇ G * l FA1.2 denotes a first auxiliary variable Hl
  • the index numbers "1" and "2" identify the values of I FA and I OFA sampled at different sampling times.
  • the quantities R and X required for the polygon arrangement are obtained from these calculation results.
  • the actual error resistance is not reconstructed from the calculated virtual error resistance R cf.
  • the actual fault resistance R is calculated using the following formula:
  • the angle ⁇ normally has a very small value in energy systems. A range of 0..6 ° is sometimes specified. It can therefore be assumed that the correction of the direct measurement will have relatively little influence on the determined reactance X. Since it is relatively easy to set an arc reserve, the virtual error resistance R cf is also not corrected. With these requirements, the sizes used for polygon classification are calculated according to the following rule: It is with the Telec reactance and with denotes the Telec resistance of the energy transmission line to be monitored.
  • This type of calculation of the quantities used for the polygon arrangement has the advantage that no parameters for describing the pre-impedances of the line to be protected are necessary.
  • a method is used which can be illustrated by the block diagram shown in FIG. 4.
  • a zero current ioMA of a neighboring system (not shown) (sum of the currents in the phase conductors of the neighboring system) is supplied after standardization to an additional analog-to-digital converter 12, which is followed by an arithmetic logic unit 13.
  • This arithmetic unit generates an additional variable ZG1 at its one output AI, which corresponds to the real part Re ⁇ K OM ) ⁇ l OAM ;
  • a further additional variable ZG2 is formed at the output A2 corresponds to the imaginary part lm ⁇ K OM ] ⁇ l OAM .
  • the sums of these portions with the size x k are formed in subordinate summers 14 and 15.
  • Inductive coupling through the zero-sequence current of the neighboring system is taken into account by means of the complex correction factor k OM .
  • the real and imaginary part of the complex factor k OM each represents a parameter of the protective device.
  • F * I O ⁇ 1 F * (l OA1 + Im ⁇ kOM ⁇ ⁇ l OAM1 )
  • F * I OA2 F * (l OA2 + Im ⁇ k OM ⁇ ⁇ I OMA 2 )
  • G * I OA1 - G * (l OA1 + Re ⁇ k OM ⁇ ⁇ I OMA1 )
  • G * I OA2 G * (l OA2 + Re ⁇ k OM ⁇ ⁇ I OMA2 )
  • a filter device 16 is constructed differently here in that, in addition to the FIR filters 3, 5, 6, 8 and 9 according to the exemplary embodiment according to FIG. 3, it has a supplementary FIR filter 17 of a third type with weight factors hi, in which the voltage u RA is evaluated by a folding operation; at the output of the additional FIR filter 17 there is an output auxiliary variable o k .
  • a further supplementary FIR filter 18 of the third type is arranged in the filter unit 16, in which the current in the faulty phase conductor of the energy transmission line to be monitored is evaluated; On the output side, a further auxiliary output variable p k occurs at this FIR filter 18.
  • the filter unit 16 is also equipped with an additional additional FIR filter 19 of the third type by evaluating the total current i OFA .
  • An additional auxiliary output variable r k results at the output of this additional FIR filter 19.
  • Frequency range are linked via the p operator.
  • the individual FIR filters can therefore be generated by folding a basic filter with a basic filter.
  • the convolution theorem of the Fourier transform is used here.
  • a transversal filter with a transfer function according to the following equation (21) is expediently used as the basic filter:
  • index numbers "1" and "2" again identify the values of i FA and I OFA sampled at different sampling times.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Mathematical Physics (AREA)
  • Theoretical Computer Science (AREA)
  • General Physics & Mathematics (AREA)
  • Emergency Protection Circuit Devices (AREA)
  • Locating Faults (AREA)

Abstract

Selon ce procédé de mesure de protection de distance sur une ligne de transmission d'énergie électrique à phases multiples, la tension et le courant du conducteur de phase défectueux sont détectés, numérisés et évalués dans des filtres numériques non récursifs à réponse en phase linéaire (filtres à réponse impulsionnelle finie) faisant partie d'une unité de filtres. Les facteurs de pondération des filtres à réponse impulsionnelle finie sont librement prédéterminés et les erreurs sont corrigées par un facteur de correction. Dans un ordinateur, la distance entre le point défectueux et des valeurs de mesure de l'impédance indiquant le site de mesure est dérivée des valeurs de sortie de l'unité de filtres. Afin de pouvoir mesurer avec précision les distances dans le cas de courts-circuits monopolaires à la terre, un courant total (IOFA) égal à la somme des courants dans les conducteurs de phase de la ligne de transmission d'énergie est détecté, numérisé et évalué dans des filtres supplémentaires à réponse impulsionnelle finie (8, 9) de l'unité de filtres (1) afin de former des valeurs de sortie (mk, nk). L'ordinateur (10) calcule quatre valeurs auxiliaires qui permettent de calculer, avec les valeurs de sortie (yk, mk, nk, wk, vk) de l'unité de filtres (1), un facteur de longueur (m) et une résistance (Rf) proportionnelle à la résistance au point défectueux. On calcule l'impédance de mesure (R, X) qui caractérise la distance du point défectueux en multipliant le facteur de longueur (m) par la résistance kilométrique (R'1) du système associé et en y additionnant la valeur de résistance (Rf), puis en multipliant la réactance kilométrique (L'1) du système associé par le facteur de longueur (m).
EP96909030A 1995-04-13 1996-04-03 Procede de mesure de distances Withdrawn EP0820600A1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19514698 1995-04-13
DE1995114698 DE19514698C1 (de) 1995-04-13 1995-04-13 Verfahren zum Durchführen einer Distanzmessung
PCT/DE1996/000628 WO1996032652A1 (fr) 1995-04-13 1996-04-03 Procede de mesure de distances

Publications (1)

Publication Number Publication Date
EP0820600A1 true EP0820600A1 (fr) 1998-01-28

Family

ID=7760042

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96909030A Withdrawn EP0820600A1 (fr) 1995-04-13 1996-04-03 Procede de mesure de distances

Country Status (3)

Country Link
EP (1) EP0820600A1 (fr)
DE (1) DE19514698C1 (fr)
WO (1) WO1996032652A1 (fr)

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPQ113799A0 (en) 1999-06-22 1999-07-15 University Of Queensland, The A method and device for measuring lymphoedema
SE522376C2 (sv) 2000-07-11 2004-02-03 Abb Ab Metod och anordning för fellokalisering för distributionsnätverk
DE10146294C1 (de) * 2001-09-19 2003-07-17 Edc Gmbh Abstimmung einer Erdschlusslöschspule auch während des Erdschlusses
DE10228062A1 (de) * 2002-06-17 2004-01-08 Universität Ulm Verfahren und Messeinrichtung zum Erfassen einer Gegenspannung oder eines Gegenstroms in einem mehrphasigen Drehstromsystem
AU2003286047A1 (en) 2002-11-27 2004-06-18 Z-Tech (Canada) Inc. Eliminating interface artifact errors in bioimpedance measurements
WO2005122888A1 (fr) 2004-06-18 2005-12-29 The University Of Queensland Detection d'oedeme
EP1827222A1 (fr) 2004-11-26 2007-09-05 Z-Tech (Canada) Inc. Procede des gradients ponderes et systeme de diagnostic de maladie
CA2609111C (fr) 2005-07-01 2016-10-18 Scott Chetham Procede et appareil d'execution de mesures d'impedance en fonction de ladetermination d'une disposition d'electrode au moyen d'une representation affichee
AU2006265761B2 (en) 2005-07-01 2011-08-11 Impedimed Limited Monitoring system
EP1948017B1 (fr) 2005-10-11 2014-04-02 Impedimed Limited Surveillance de l'etat d'hydratation
WO2007135162A1 (fr) * 2006-05-22 2007-11-29 Fmc Tech Limited Procédé de détection de défauts sur une ligne électrique
JP5431147B2 (ja) 2006-05-30 2014-03-05 インぺディメッド リミテッド インピーダンス測定
WO2008064426A1 (fr) 2006-11-30 2008-06-05 Impedimed Limited Appareil de mesure
ES2473278T3 (es) 2007-04-20 2014-07-04 Impedimed Limited Sonda y sistema de monitorización
AU2008324750B2 (en) 2007-11-05 2014-01-16 Impedimed Limited Impedance determination
AU2008207672B2 (en) 2008-02-15 2013-10-31 Impedimed Limited Impedance Analysis
JP5616900B2 (ja) 2008-11-28 2014-10-29 インぺディメッド リミテッドImpedimed Limited インピーダンス測定処理
JP5643829B2 (ja) 2009-10-26 2014-12-17 インぺディメッド リミテッドImpedimed Limited インピーダンス測定の分析において用いるための方法及び装置
CA2778770A1 (fr) 2009-11-18 2011-05-26 Chung Shing Fan Distribution de signal pour des mesures d'electrode de patient
CN102147443B (zh) * 2011-01-13 2013-07-17 国网电力科学研究院 基于自适应电流的单端测距方法
EP3088906B1 (fr) * 2015-04-30 2017-08-30 General Electric Technology GmbH Détection d'emplacement de défaillance, appareil de protection de distance et procédé associé
CN117406024B (zh) * 2023-10-19 2024-05-24 国网湖北省电力有限公司荆门供电公司 一种基于mk检验的负序重构技术及在故障区段定位中应用方法

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5829471B2 (ja) * 1978-10-30 1983-06-22 東京電力株式会社 事故点判別方式
SE433405B (sv) * 1982-09-14 1984-05-21 Asea Ab Forfarande och anordning for lokalisering av ett felstelle pa en trefasig kraftledning
DE3709532A1 (de) * 1987-03-23 1988-10-06 Siemens Ag Verfahren zur pruefung von anordnungen
DE4018170A1 (de) * 1990-06-01 1991-12-05 Siemens Ag Verfahren zur pruefung von anordnungen

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9632652A1 *

Also Published As

Publication number Publication date
DE19514698C1 (de) 1996-12-12
WO1996032652A1 (fr) 1996-10-17

Similar Documents

Publication Publication Date Title
EP0820600A1 (fr) Procede de mesure de distances
DE60018666T2 (de) Verfahren zum Berechnen der Entfernung von Fehlerstrom in einem elektrischen Stromversorgungsnetz mit ringformiger Gestaltung
DE60132276T2 (de) Verfahren und Vorrichtung zur Fehlerortung in Versorgungsnetzen
DE19613012C1 (de) Verfahren zum Erzeugen von Fehlerklassifizierungssignalen
EP1693679B1 (fr) Procédé pour la détermination d'un paramètre dans un réseau d'alimentation électrique
DE2155470B2 (de) Verfahren zum digitalen Bestimmen der Lage der Nulldurchgange eines sinus förmigen Wechselstromsignals
EP2937704B1 (fr) Procédé et agencement de reconnaissance d'erreurs sur une ligne de transport d'énergie électrique
DE69830339T2 (de) Fehlerortung in einer serienkompensierten leistungsübertragungsleitung
WO1996013888A1 (fr) Procede de detection d'un defaut a la terre dans une ligne de transmission d'energie electrique
EP2289137A1 (fr) Ensemble et procédé pour produire un signal d erreur
EP0665625B1 (fr) Procédé pour obtenir la valeur d'impédance et pour le traitement dans un dispositif de protection à distance
DE19545267C2 (de) Verfahren zum Gewinnen von fehlerbehaftete Schleifen in einem mehrphasigen elektrischen Energieversorgungsnetz kennzeichnenden Signalen
EP0812427B1 (fr) Procede de reconnaissance de pertes monopolaires a la terre dans un reseau triphase
DE69304160T2 (de) Verfahren zur Bestimmung von Fehlerströmen in Übertragungsleitungen und Fehlerstromfilter zur Durchführung des Verfahrens
EP1307956B1 (fr) Procede et dispositif pour localiser des defauts a la terre monopolaires
EP0795944A2 (fr) Méthode pour détermination des paramètres de fonctionnement d'au moins un relais de distance
DE10253864B4 (de) Verfahren und Anordnung zur Erdschlussüberwachung eines Stators in Sternschaltung
DE102019132071B4 (de) Vorrichtung zum Überwachen eines Versorgungsnetzes
EP1598674B1 (fr) Méthode d'affichage de la terre à grande resistance dans un réseau triphasé
EP1001270B1 (fr) Procédé pour tester une connexion à la terre
EP0877947B1 (fr) Methode de calcul d'une resistance
DE10253865B4 (de) Verfahren zur Ermittelung von ein mehrphasiges elektrotechnisches Betriebsmittel charakterisierenden elektrischen Größen
DE102018113627A1 (de) Verfahren und Vorrichtung zur Fehlerdiagnose in einem eine Ringstruktur aufweisenden elektrischen Netz sowie Computerprogrammprodukt
EP3913382B1 (fr) Procédé et dispositif de détermination de la localisation d'un défaut non symétrique à trois pôles sur une ligne d'un réseau d'alimentation électrique triphasé
DE102020129189A1 (de) Verfahren und Vorrichtung zum lokalen Distanzschutz in einem elektrischen Netz sowie Computerprogramm

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971010

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19991126

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20011016