EP0814924B1 - Sandformqualität durch ölstrommessung zum presshaupt - Google Patents

Sandformqualität durch ölstrommessung zum presshaupt Download PDF

Info

Publication number
EP0814924B1
EP0814924B1 EP96907251A EP96907251A EP0814924B1 EP 0814924 B1 EP0814924 B1 EP 0814924B1 EP 96907251 A EP96907251 A EP 96907251A EP 96907251 A EP96907251 A EP 96907251A EP 0814924 B1 EP0814924 B1 EP 0814924B1
Authority
EP
European Patent Office
Prior art keywords
sand
hydraulic fluid
moulding material
process according
oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96907251A
Other languages
English (en)
French (fr)
Other versions
EP0814924A1 (de
Inventor
Lutz Stegemann
Wilfried Ebrecht
Harald Müller
Hans-Joachim Grosser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kuenkel-Wagner Prozesstechnologie GmbH
Original Assignee
Kuenkel-Wagner Prozesstechnologie GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kuenkel-Wagner Prozesstechnologie GmbH filed Critical Kuenkel-Wagner Prozesstechnologie GmbH
Publication of EP0814924A1 publication Critical patent/EP0814924A1/de
Application granted granted Critical
Publication of EP0814924B1 publication Critical patent/EP0814924B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22CFOUNDRY MOULDING
    • B22C15/00Moulding machines characterised by the compacting mechanism; Accessories therefor
    • B22C15/02Compacting by pressing devices only
    • B22C15/08Compacting by pressing devices only involving pneumatic or hydraulic mechanisms

Definitions

  • the invention relates to a method according to claim 1, in particular the control or regulation of a Multi-stamp press head or block press head of a molding machine for clay-bound molding material (e.g. molding sand).
  • clay-bound molding material e.g. molding sand
  • An electrode 7 is arranged with two poles on a press plate in order to detect the resistance of a finished pressed mold and also to send a corresponding signal to the control device.
  • the same control device calculates the water content of the mold half from the thicknesses and the resistance in order to directly check the properties of the molding sand during the manufacture of the upper and lower mold halves (cf. column 2, lines 15 to 25, 48 to 68 and column 1, Lines 27 to 31).
  • the aforementioned document relates to pressing with press plates, while the person skilled in the art also has access to a compacting device with multiple punches, cf. JP-A 57-142 743 ( Komatsu) or JP-A 55-16 786 (Sintokogio).
  • the latter document relates to the production of sand molds with the same molding material hardness, even when using a complicated model.
  • the relief valve drains oil into a tank (there 12) to keep the specified pressure constant.
  • the problem of the invention is to adapt the parameters that can be influenced in a molding machine in order to maintain a good long-term shape. Constant height of the bale of form should be made possible as well as uniformity of compaction. The time for compression should be adjusted so that a minimum time per mold is achieved.
  • the parameters are to be obtained directly on the molding machine (measured), including a measurement of the volume, the mass or changing their hydraulic fluid to the press head will (claim 1).
  • the measurement of the fluid is surprising a good starting point for the controlled or regulated Improvement of the sand shape.
  • the variants can be used individually or cumulatively, up to all four "alternatives" at the same time.
  • the method used according to the invention simplifies the apparatus expenditure considerably.
  • the measuring principle can be used for the detection of volume flows e.g. Hydraulic oil can be used.
  • the principle is based on the controlled generation of Coriolis forces. These powers occur in a system whenever there is a translational (rectilinear) and rotatory (rotating) Movement overlap.
  • the Temperature of the measuring tubes detected. This signal corresponds to the Product temperature and is also available for external purposes Available.
  • volume per unit of time volume per unit of time
  • volume flow and “mass per Unit of time” is a matter of application (Coriolis, Volumeter, piston accumulator ). If a low pressure surge, contactless, low-wear measuring principle is used, the best results are obtained.
  • the compressibility correction or the corresponding optimization works long-term, by adding or blocking sludge or about the change in moisture content of the molding sand before it is filled into the Molding box (claim 3, claim 4). With every press (Forming) is available via the hydraulic fluid gradient measurement new measured value for the compressibility available, the one desired change of the sand causes. So far from the If this regulation is still desired, it is based on a setpoint-actual value comparison (claim 5, claim 8).
  • the electronic device is also disclosed here Regulation and control technology that the specialist for Carrying out the method based on the measurements of the Uses fluid stream or its derivatives.
  • Figure 1 shows schematically in the left half press rams which are connected to a common oil well Q and which penetrate into a sand ridge R with different depths (deep, normal, high).
  • a model M can be seen on the bottom of the schematically indicated molding box F.
  • the stamps in the left image are too deep in the back of the form penetrated, the stamps in the right drawing are too high.
  • the Stamps in the middle part of the picture have the normal position on the The upper edge of the molding box lies.
  • the one to the right of the three Curves drawn in diagrams show the mean "normal”, the 30 liter oil volume between the retracted position Stamp and end position "normal” in the diagram shows.
  • 45 liters Oil represent the deep penetration of the left stamp in the Diagram and 16 liter oil volume represent that too high lying stamp.
  • the respective remaining height of the Sand bales can be seen in the lower right part diagram.
  • the stamps are 40mm too high for 16 liters of oil; for 30 liters flowed oil is the specified and set setpoint ⁇ reached zero, and when 45 liters of oil flowed, they penetrate Stamp 30mm too deep in the mold box F.
  • a model change is the change from one model volume to another.
  • the amount of molding material that can be arranged in the molding box changes, ie if the model is changed from a deep model to a high model M, it is no longer possible to fill the box with as much molding material in order to achieve the same final height after compression.
  • the movement of the multi-stamps is as a whole about the oil volume measured. This measurement is carried out using a previously described measuring device (Coriolis, Volumeter, Piston measurement). At the end of the press, the actual oil flow registered. If a lot of oil has flowed, the stamps H stand the stamps are deep, little oil has flowed at the end of the press high.
  • a box F after a model change is a changed model filled with the appropriate amount of molding material.
  • Via a calibration curve (a) in the control the height of the ram at the end of the press from the amount of oil flowed determined.
  • the deviation from the level of the ram before Model changes are counteracted by changing the amount of molding material.
  • Another calibration curve is used for this.
  • the second calibration curve (b) results from the manufacturing operation for the previously used models or is a permanently installed curve (e.g. from a model database).
  • the stamps were set too low, the next impression more sand filled.
  • the stamps were due high, the next impression will be less sand filled.
  • FIG. 2 represents the reproducibility of the stamp position and shows the start of the multi-stamp press head H in the left part.
  • an oil quantity q (t) of 30 liters (for example) has flowed, the stamps have moved into their end position after 1 second. If the oil is withdrawn from the plunger, the oil flowing back is compared with the amount of oil that has flowed until the end of the press. A small tolerance range T B is opened to compensate for inaccuracies. If the amount of oil flowing in and the amount of oil flowing back are not the same, an error message is output.
  • the stamps are specifically moved back and forth by positive / negative oil pressures.
  • Figure 3 represents an energy consumption and time requirement minimization.
  • FIG. 1 illustrates schematically the end of the press at about 1 second and shows that the amount of oil flowed there is only small in the same 10 ms interval (T 0 ). The pressing process can already be stopped here.
  • the flow of hydraulic oil per unit of time is determined by monitors the measuring system built into the hydraulic circuit.
  • the Situation "pressing end” is when the volume per unit time strives towards zero. Via curves stored in the control the course of the press can be detected during the movement of the multi-punch.
  • FIG. 4 represents a compressibility correction (VD) and shows two gradients x, y for sand with high compressibility (normal ⁇ , ⁇ y ) and for low compressibility of the sand (large ⁇ , ⁇ x ), where ⁇ x > ⁇ y . Both diagrams therefore show the change in the oil volume per time, with the start of the respective slope characterizing the point in time at which the punches hit the molding sand.
  • VD compressibility correction
  • the time period T 1 until the multiple stamp encounters resistance is relatively short; with low compressible sand (high bulk density), it is comparatively long.
  • the function "volume per unit time” over time in FIG. 4 runs steeply with low compressible sand, with high compressible sand (VD ⁇ ) runs the function "volume flow per Unit of time "comparatively flat.
  • the functions of the courses “Volume per unit of time” over time is recorded.
  • the triggered control according to this speed function an adjustment of the amount of sand filled in or a readjustment the moisture / compressibility in the sand preparation in long term (multiple blends spacing).
  • Too steep drop means "volume per unit of time” for example too low compressibility. There will be more sand filled (short-term), the amount of moisture (compressibility) over the water control in the mixer increased (long-term) by the Increase compressibility. The same applies vice versa to weak waste per time (less water in the mixer).
  • the pressurized units in the molding plant are so regulated that oil consumption is always the same as possible becomes.
  • the storage volumes decrease.
  • the aggregates are smaller.
  • the oil consumption is minimized. Tips in consumption are avoided and no longer need to be buffered.

Description

Die Erfindung betrifft ein Verfahren gemäß Anspruch 1, insbesondere die Steuerung oder Regelung eines Vielstempelpreßhauptes bzw. Blockpreßhauptes einer Formaschine für tongebundenen Formstoff (z.B. Formsand).
Bei aktivem Pressen von oben mit einem Preßhaupt z.B. aus Vielstempeln wird der Weg einzelner Vielstempel bisher über Endschalter (Näherungsinitiatoren) oder induktive Stabmessung erfaßt. Erreichte Positionen werden so registriert und in der Steuerung verarbeitet. Gleichermaßen ist diese Art der Wegmessung für das Preßhaupt - mit oder ohne Vielstempel - als Ganzes möglich.
Aus der US-A 5,409,052 (Kaneto), korrespondierend mit DE-A 43 40 401, ist eine Vorrichtung und ein Verfahren dem Fachmann zugänglich, mit dem gleichzeitig die obere und untere Formhälfte einer Sandform hergestellt werden kann. Die Vorrichtung arbeitet horizontal, um in horizontaler Richtung den Formstoff gegenüber einem zweiseitigen Modell zusammenzupressen. Um die Dicke der Formhälften im Herstellungsprozeß zu erfassen, werden die Endstellungen der Preßplatten mit linearen Weggebern (dort 6,6A) gemessen und einer Steuereinrichtung zugeführt, die daraus die Dicken der Formhälften ableitet. Eine Elektrode 7 ist mit zwei Polen an einer Preßplatte angeordnet, um den Widerstand einer fertig gepreßten Form zu erfassen und ein entsprechendes Signal ebenfalls an die Steuereinrichtung abzugeben. Selbige Steuereinrichtung berechnet aus den Dicken und dem Widerstand den Wassergehalt der Formhälfte, um die Eigenschaften des Formsandes während des Herstellens der oberen und der unteren Formhälfte direkt zu überprüfen (vgl. dort Spalte 2, Zeilen 15 bis 25, 48 bis 68 und Spalte 1, Zeilen 27 bis 31).
Vorgenannte Schrift betrifft das Pressen mit Preßplatten, während der Fachmann auch Zugang zu einer Verdichtungseinrichtung mit Vielstempeln hat, vgl. JP-A 57-142 743 (Komatsu) oder JP-A 55-16 786 (Sintokogio). Letztere Schrift betrifft die Herstellung von Sandformen mit einer gleichen Formstoffhärte, auch bei Verwendung eines komplizierten Modells. Dazu wird dort vorgeschlagen, die Öldrucke in jedem aufgeteilten Zylinder zu messen und ein Entlastungsventil (dort 16) zu aktivieren, wenn der jeweilige Öldruck einen Wert erreicht, der größer als ein vorgegebener Wert ist. Das Entlastungsventil leitet dazu Öl in einen Tank (dort 12) ab, um den vorgegebenen Druck konstant zu halten.
Der Erfindung geht es in ihrer Problemstellung um eine Anpassung der beeinflußbaren Parameter in einer Formmaschine zum Erhalt einer langfristig guten Form. Gleichbleibende Höhe des Formballens soll ebenso wie Gleichförmigkeit der Verdichtung ermöglicht werden. Die Zeit zur Verdichtung soll so angepaßt sein, daß eine minimale Zeit pro Form erreicht wird.
Die Parameter sollen unmittelbar an der Formmaschine erhalten (gemessen) werden, wozu eine Messung des Volumens, der Masse oder deren Änderung des Hydraulikfluids zum Preßhaupt verwendet wird (Anspruch 1). Überraschend ergibt die Messung des Fluids eine gute Ausgangsbasis für die gesteuerte oder geregelte Verbesserung der Sandform.
Vier Möglichkeiten zur Regelung oder Steuerung betreffen die Regelung der Formstoffmenge in dem Formkasten (Anspruch 2, Alt. a), die Messung der Stempelstellung ohne stempelnah angeordnete Sensoren (Anspruch 2, Alt. b), die Erkennung, Erfassung oder Optimierung der Stempel-Endstellung oder der erwünschten Endstellung der Stempel vor ihrer physischen Endstellung (Anspruch 2, Alt. c) für eine bestimmte Modellform ("Preßende") oder die Messung und Veränderung der Verdichtbarkeit des Formstoffs (Anspruch 2, Alt. d).
Die Varianten können einzeln oder kumuliert eingesetzt werden, bis zu allen vier "Alternativen" gleichzeitig.
Werden nacheinander unterschiedlich große Modelle abgeformt, so ist die benötigte Sandmenge als "Formstoff" unterschiedlich. Nach erfolgtem Modellwechsel registriert im Stand der Technik ein mechanisches Höhenerfassungsgerät über den Formkästen den aktuellen Füllstand der Kästen nach dem Pressen. Bei Über- oder Unterscheitung wird die Sandmenge, die im Einfüllbunker für den folgenden Preßvorgang zur Verfügung gestellt wird, entsprechend korrigiert. Damit ist gewährleistet, daß nach erfolgtem Modellwechsel wieder eine optimale Sandmenge eingefüllt und verdichtet werden kann (gemäß dem Regelsignal wird mehr/weniger Formstoff in den Maschinenbunker eingefüllt).
Das gemäß der Erfindung eingesetzte Verfahren vereinfacht den apparativen Aufwand erheblich.
Technische Hilfsmittel zur dynamischen Masse(durchfluß)messung (z.B. Ölstrom als Hydraulikfluid) arbeiten z.B. nach dem Coriolis-Prinzip. Mit dieser dynamischen Massemessung wird ein Meßsignal geliefert, das proportional zum Massestrom (kg/h) ist. Leitfähigkeit, Dichte, Temperatur und Viskosität beeinflussen die Messung nicht.
Das Meßprinzip kann für die Erfassung von Volumenströmen von z.B. Hydrauliköl benutzt werden. Das Prinzip basiert auf der kontrollierten Erzeugung von Coriolis-Kräften. Diese Kräfte treten in einem System immer dann auf, wenn gleichzeitig eine translatorische (geradlinige) und eine rotatorische (drehende) Bewegung sich überlagern.
Bei der praktischen Umsetzung dieses Funktionsprinzips wird anstelle der Drehbewegung eine Oszillation gesetzt. Zwei vom Produkt durchströmte, geradlinige Rohre werden in Schwingung (Resonanz) versetzt und bilden eine Art "Stimmgabel". Durch den Massestrom wird die Phasenlage der Schwingung ein- und auslaufseitig unterschiedlich verändert, was über optische Sensoren erfaßt wird. Die Phasendifferenz ist proportional zum Massedurchfluß und steht als lineares normiertes Ausgangssignal zur Verfügung. Die Resonanzfrequenz der Meßrohre ist abhängig von der schwingenden Masse und damit von der Produktdichte. Eine Regelschaltung stellt sicher, daß das System immer in Resonanz betrieben wird. Aus der Resonanzfrequenz wird dann die Produktdichte errechnet.
Zur rechnerischen Kompensation von Temperatureffekten wird die Temperatur der Meßrohre erfaßt. Dieses Signal entspricht der Produkttemperatur und steht auch für externe Zwecke zur Verfügung.
Eine weitere Methode zur Erfassung von Volumenströmen (= Volumen pro Zeiteinheit) ist mit einem Schraubenvolumeter möglich. Diese arbeiten nach dem Verdrängungsprinzip. Das strömende Hydraulikfluid versetzt die Spindeln im Innern in Rotation, über die abgegriffene Drehbewegung durch induktive Näherungsschalter wird ein Frequenzsignal erzeugt. Damit erhält man das Maß für das pro Zeiteinheit geförderte Volumen.
Welche Art der Messung "Volumenstrom" und "Masse pro Zeiteinheit" genutzt wird, ist Anwendungssache (Coriolis, Volumeter, Kolbenspeicher ...). Wenn ein druckstoßarmes, kontaktloses, verschleißarmes Meßprinzip eingesetzt wird, ergeben sich beste Ergebnisse.
Die Verdichtbarkeitskorrektur oder die entsprechende Optimierung arbeitet langfristig, über Schlämmstoffzugabe oder -sperre oder über Feuchteänderung des Formsandes vor seinem Einfüllen in den Formkasten (Anspruch 3, Anspruch 4). Mit jeder Pressung (Formung) steht über die Hydraulikfluid-Gradientenmessung ein neuer Meßwert für die Verdichtbarkeit zur Verfügung, der eine gewünschte Änderung des Sandes veranlaßt. Soweit von der diesbezüglichen Regelung noch erwünscht, orientiert sie sich an einem Sollwert-Istwert-Vergleich (Anspruch 5, Anspruch 8).
Offenbart ist hier auch die elektronische Vorrichtung der Regelungs- und Steuerungstechnik, die der Fachmann zur Durchführung des Verfahrens basierend auf den Messungen des Fluidstroms oder dessen Derivate einsetzt.
Sechs Beispiele der Erfindung werden anhand von Regelverfahren 1 bis 6 beschrieben. Die Figur 1 bis Figur 4 repräsentieren die Beispiel 1 bis 4 davon.
Figur 1
repräsentiert ein Ausführungsbeispiel für das Regelverfahren 1, bei dem die Sandmenge nach einem Modellwechsel geändert wird, um gleiche Sandballen-Höhen zu erreichen.
Figur 2
repräsentiert ein Ausführungsbeispiel, mit dem ein nach Preßende ausgerissener Stempel anhand einer Ölmengenmessung erkannt werden kann.
Figur 3
betrifft ein Beispiel, wie der Zeitbedarf zur Herstellung einer Sandform aufgrund einer Messung des geflossenen Ölvolumens minimiert werden kann, wodurch auch der Energieverbrauch gesenkt wird.
Figur 4
repräsentiert ein Ausführungsbeispiel für eine Korrektur der Verdichtbarkeit des Sandes durch Messung von Ölfluß-Änderung pro Zeitintervall.
Figur 1 zeigt schematisch in der linken Hälfte Preßstempel, die an eine gemeinsame Ölquelle Q angeschlossen sind und die in einen Sandrücken R mit verschiedenen Tiefen (tief, normal, hoch) eindringen. Am Boden des schematisch angedeuteten Formkastens F ist ein Modell M zu erkennen.
Die Stempel im linken Teilbild sind zu tief in den Formrücken eingedrungen, die Stempel im rechten Teilbild sind zu hoch. Die Stempel im mittleren Teilbild haben die normale Lage, die an der Oberkante des Formkastens liegt. Die rechts neben den drei Schema-Bildern eingezeichneten Kurven zeigen den Mittelwert "normal", der 30 Liter Ölvolumen zwischen Rückzugs-Stellung der Stempel und Endstellung "normal" im Schema-Bild zeigt. 45 Liter Öl repräsentieren das zu tiefe Eindringen der linken Stempel im Schema-Bild und 16 Liter Ölvolumen repräsentieren die zu hoch liegenden Stempel. Die jeweils eingezeichnete Resthöhe des Sandballens ist im rechten unteren Teil-Diagramm zu erkennen. Für 16 Liter Öl liegen die Stempel 40mm zu hoch; für 30 Liter geflossenes Öl ist der festgelegte und eingestellte Sollwert ±Null erreicht, und bei 45 Liter geflossenem Öl dringen die Stempel 30mm zu tief in den Formkasten F ein.
Abhängig von der gemessenen Ölmenge q(t), die zwischen Preßanfang und Preßende geflossen ist, wird die Sandmenge gemäß oberem Teil-Diagramm (b) verändert, namentlich erhöht oder erniedrigt. Bei 30 Liter Öl bleibt sie unverändert, bei 45 Liter Öl wird sie stark erhöht und bei nur 16 Liter geflossenem Öl wird sie stark erniedrigt.
Die in Figur 1 repräsentierte Sandmengenänderung bei Modellwechsel zum Erhalt gleicher Stempeltiefe arbeitet mit Kurven (a) und (b) gemäß den beiden Teil-Diagrammen.
Ein Modellwechsel ist das Umstellen von einem Modellvolumen auf ein anderes. Bei Änderung des Modellvolumens ändert sich die im Formkasten darüber anordbare Formstoffmenge, d.h. wird von einem tiefen Modell auf ein hohes Modell M umgestellt, so kann nicht mehr so viel Formstoff in den Kasten eingefüllt werden, um nach dem Preßverdichten die gleiche Endhöhe zu erreichen.
Die Bewegung der Vielstempel wird als Ganzes über das Ölvolumen gemessen. Dieses Messung erfolgt mittels einer zuvor beschriebenen Meßeinrichtung (Coriolis, Volumeter, Kolbenmessung). Bei Preßende wird die durchgeflossene Ist-Ölmenge registriert. Ist viel Öl geflossen, stehen die Stempel H tief, ist wenig Öl bei Preßende geflossen, stehen die Stempel hoch.
In einen Kasten F wird nach einem Modellwechsel eine dem gewechselten Modell entsprechende Formstoffmenge eingefüllt. Die Stellung der Vielstempel oder des Blockpreßhauptes H wird beim Verdichten erfaßt, indem die geflossene Ölmenge (= Ölvolumen) registriert wird. Über eine Eichkurve (a) in der Steuerung wird aus der geflossenen Ölmenge die Preßstempelhöhe bei Preßende ermittelt. Der Abweichung zum Höhenstand der Preßstempel vor dem Modellwechsel wird durch Formstoff-Mengenändern entgegengewirkt. Dazu wird eine weitere Eichkurve verwendet. Die zweite Eichkurve (b) ergibt sich aus dem Produktionsbetrieb für die vorher gelaufenen Modelle oder ist ein fest installierter Kurvenverlauf (z.B. aus einer Modelldatenbank).
Standen die Stempel beispielsweise zu tief, so wird bei der nächsten Abformung mehr Sand eingefüllt. Standen die Stempel zu hoch, so wird bei der nächsten Abformung weniger Sand eingefüllt.
Figur 2 repräsentiert die Reproduzierbarkeit der Stempelstellung und zeigt im linken Teil den Start des VielstempelPreßhauptes H. Nach Fließen einer Ölmenge q(t) von 30 Litern (beispielhaft) sind die Stempel nach 1 Sekunde in ihre Endstellung verfahren. Wird das Öl aus den Stempelkolben zurückgenommen, so wird das zurückfließende Öl verglichen mit der bis Preßende registrierten geflossenen Ölmenge. Ein kleiner Toleranzbereich TB wird eröffnet, um Ungenauigkeiten auszugleichen. Ist die zugeflossene Ölmenge und die zurückgeflossene Ölmenge nicht gleich, so wird eine Fehlermeldung ausgegeben.
Die Stempel werden gezielt vor- und zurückbewegt durch positive/negative Ölbeaufschlagung.
Nach einem gezielten Vorfahren der Vielstempel sollen sie um einen gleichen oder Teilbetrag davon zurückgefahren werden. Um zu kontrollieren, ob diese Bewegung vollständig ausgeführt worden ist, wird nach Abschluß die geflossene Ölmenge bzw. die gefahrene Höhendifferenz registriert. Die Voll- oder Teilmenge wird erfaßt. Bei nicht erfolgtem ordnungsgemäßen Rückfahren wird eine Fehler- oder Korrekturmeldung ausgelöst.
Nach Preßende ist beispielsweise ein Stempel ausgerissen. Die Rückflußmenge entspricht nicht der Menge beim Vorfahren. Die Maschine muß angehalten und eine Reparatur ausgeführt werden.
Auch die erreichte Endstellung nach Preßende wird über diese Reproduzierbarkeitsmessung verglichen. Rückschlüsse auf Lecks im Hydrauliksystem oder Maschinenfehler sind möglich.
Figur 3 repräsentiert eine Energieverbrauchs- und Zeitbedarfsminimierung.
Gezeigt wird die Zeitbedarfsminimierung und die Minimierung des Energieverbrauchs durch Messung des geflossenen Öls pro gleichem Zeitabschnitt T0. Wenn der Ölfluß für den gleichen Zeitabschnitt einen vorbestimmten (geringen) Wert erreicht oder Null wird, so steht aufgrund der Messung fest, daß ein Preßende nahe ist oder unmittelbar bevorsteht. Der nächste Schritt in der Ablaufsteuerung kann sogleich angefahren werden; Totzeiten oder Warteschleifen sind nicht erforderlich. Figur 3 verdeutlicht schematisch das Preßende bei etwa 1 Sekunde und zeigt, daß dort die Menge des geflossenen Öls nur noch gering im selben lOms-Intervall (T0) ist. Bereits hier kann der Preßvorgang abgebrochen werden.
Das geflossene Volumen an Hydrauliköl pro Zeitenheit wird durch das in den Hydraulikkreis eingebaute Meßsystem überwacht. Die Situation "Preßende" ist die, wenn das Volumen pro Zeiteinheit gegen Null strebt. Über in der Steuerung abgelegte Kurven kann der Preßverlauf bei der Bewegung der Vielstempel erfaßt werden.
Für die Information
Preßende="Abschalten des Druckes"
wird das entsprechende Signal aus dem Istwert
Volumen/Zeiteinheit gegenüber einem Sollwert oder dem Wert Null verglichen und der Preßdruck abgeschaltet.
Damit kann zu einem definierten Zeitpunkt oder bei Volumenstrom pro Zeiteinheit "etwa" Null sofort abgeschaltet und der folgende Bewegungsschritt angesteuert werden. Die Maschinentaktzeit wird verkürzt, der Energieverbrauch wird optimiert und reduziert. Figur 4 repräsentiert eine Verdichtbarkeits-Korrektur (VD) und zeigt zwei Gradienten x,y für Sand hoher Verdichtbarkeit (normales α, αy) und für geringe Verdichtbarkeit des Sandes (großes α, αx), wobei αx > αy. Beide Diagramme zeigen also die Änderung des Ölvolumens pro Zeit, wobei der Beginn der jeweiligen Steigung den Zeitpunkt charakterisiert, zu dem die Stempel auf den Formsand auftreffen.
Bei Sand mit geringer Verdichtbarkeit (mit hohem Schüttgewicht) liegt dieses Auftreffen vergleichsweise spät, da der Sand vergleichsweise tief eingefüllt ist. Die Stempel treffen demgemäß erst spät auf Widerstand, dann aber auf stärkeren Widerstand, was durch den hohen Gradienten gezeigt ist. Anders der Sand mit hoher Verdichtbarkeit, hier ist nur eine schwächere Abnahme des Ölvolumens pro Zeiteinheit zu erkennen, demgemäß aber ein vergleichsweise früherer Beginn dieser Änderung. Beide Gradienten treffen sich zu einem Preßende-Zeitpunkt in demselben Punkt, namentlich bei dem Ölfluß von Null.
In Figur 4 ist zur Verdeutlichung der Beginn des Gradienten x,y auf denselben Punkt verlegt, bei unterschiedlicher Steigung der q'(t) Funktion.
Aufgrund der unterschiedlichen Gradienten kann ein Meßwert für die Änderung der Verdichtbarkeit durch Hinzufügung von mehr Wasser oder weniger Wasser im Mischer, der den Formsand bereitstellt, erfolgen und so eine Verdichtbarkeitskorrektur begründet werden, die immer gleiche Verdichtbarkeit ermöglicht, ohne daß die Verdichtbarkeit selbst gemessen worden wäre, stattdessen nur der Gradient des Ölflusses zu den einzelnen Stempeln.
Annahme ist, daß das gleiche Modell abgeformt und das gleiche Sandvolumen eingefüllt wird. Durch Differenzen in der Formstoffaufbereitung wird verdichtbarkeits-abweichender Formstoff angeliefert.
Gering verdichtbarer Sand liegt tatsächlich relativ tief eingefüllt, hoch verdichtbarer Sand liegt tatsächlich relativ hoch eingefüllt im Formkasten.
Liegt vergleichsweise hoch verdichtbarer Sand vor, so ist die Zeitspanne T1 bis der Vielstempel auf Widerstand stößt (Totzeit, Tothub), relativ gering; bei gering verdichtbarem Sand (hohes Schüttgewicht), ist sie vergleichsweise lang.
Die Funktion "Volumen pro Zeiteinheit" über der Zeit in Figur 4 verläuft bei gering verdichtbarem Sand steil, bei hoch verdichtbarem Sand (VD↑) verläuft die Funktion "Volumenstrom pro Zeiteinheit" vergleichsweise flach. Die Funktionen der Verläufe "Volumen pro Zeiteinheit" über der Zeit werden erfaßt. Die ausgelöste Regelung gemäß dieser Geschwindigkeitsfunktion ist eine Anpassung der eingefüllten Sandmenge oder eine Nachregelung der Feuchte/Verdichtbarkeit in der Sandaufbereitung in langfristiger Hinsicht (mehrere Mischungen Abstand).
Zu steiler Abfall "Volumen pro Zeiteinheit" bedeutet beispielsweise zu geringe Verdichtbarkeit. Es wird mehr Sand eingefüllt (kurzfristig), die Feuchtmenge (Verdichtbarkeit) wird über die Wassersteuerung im Mischer erhöht (langfristig) um die Verdichtbarkeit zu erhöhen. Entsprechendes gilt umgekehrt bei zu schwachem Abfall pro Zeit (weniger Wasser im Mischer).
Zur Steuerung der physikalischen Eigenschaft des Formstoffs kann auch eine Zugabeänderung des Schlämmstoffs oder einer Schlämmstoffzusammensetzung dienen.
Informationshalber wird darauf hingewiesen, daß die Stempel H nicht zur gleichen Zeit beim Vorfahren (Tothub und Totzeit) auf den Formsand treffen und sich dann unterschiedlich schnell in den Formsand hinein bewegen. Die Vereinfachung gemäß der gezeigten Figur 4 ist die, daß eine gleiche Einschütthöhe vorausgesetzt worden ist, so daß bei geringer und hoher Verdichtbarkeit (VD) beide Gradienten zum selben Zeitpunkt T1 beginnen abzufallen; oder anders herum gesagt, sind die beiden Funktionen x und y in Richtung "Tothub" und Totzeit aufeinander zu verschoben dargestellt, um die gekrümmt (1/x, e-x) verlaufenden Funktionen besser graphisch vergleichen zu können. Praktisch liegen unterschiedlich verdichtbare Sande (mit unterschiedlichem Schüttgewicht) auch unterschiedlich hoch eingefüllt, alleine durch die Einfallbewegung in den Formkasten F und den Füllrahmen bedingt, trotz gleicher Masse.
Allgemein gilt:
Schüttgewicht groß niedrig
Verdichtbarkeit VD klein groß
Fließfähigkeit stark klein
mögliche Preßwege gering groß
Einfüllhöhe tiefliegend hochliegend
Das Integral über die Funktionen x oder y (Integral über x·dt von 0 bis Preßende) ergibt bei nicht verschobenen Funktionen die gesamte für die Pressung geflossene Ölmenge Q, die bei x und y verschieden ist.
Ohne Figur wird eine Aggregatkontrolle in einer Formanlage beschrieben
Die beaufschlagten Aggregate in der Formanlage werden so geregelt, daß stets möglichst gleicher Ölverbrauch erreicht wird. Die Speichervolumina verringern sich. Die Aggregate werden kleiner. Die Ölverbräuche minimieren sich. Spitzen im Verbrauch werden vermieden und brauchen nicht mehr gepuffert zu werden.
Mehrere Verbräuche werden über eine Meßeinrichtung im Hydraulikzylinder überwacht. Im Rahmen der steuerungstechnischen Notwendigkeit werden ihre Regelbefehle so ausgelöst, daß der Öldruck/Zeiteinheit für die Gesamtanlage etwa konstant ist.

Claims (10)

  1. Verfahren zum Beeinflussen der Qualität von Formstoff-Formen aus Formstoff-Verdichtungseinrichtungen mit einer über Hydraulikfluid ansteuerbaren Verdichtungseinheit, wobei
    (a) das zur Verdichtungseinheit strömende Hydraulikfluidvolumen (q(t)) oder dessen Masse gemessen wird und der Meßwert direkt und/oder als Änderungswert (q'(t),q"(t)) in einer Steuerung oder Regelung eingesetzt wird;
    (b) das Volumen, die Masse oder deren Änderung gemäß Gruppe (a) eingesetzt werden, um Parameter des Formstoffes oder der Formstoff-Formung, insbesondere des Sandes bzw. der Sandformung, steuernd oder regelnd zu verändern.
  2. Verfahren nach Anspruch 1, bei dem
    (a) die Formstoffmenge verändert wird, die in einen Füllrahmen oder Formkasten eingefüllt wird, bevor der Preßvorgang beginnt; oder/und
    (b) die Verdichtungseinheit abgeschaltet wird oder eine Fehlermeldung abgegeben wird, wenn bei dem Zurückfahren von Stempeln der Verdichtungseinheit auf eine Referenzposition nicht in etwa dasselbe Hydraulikfluidvolumen oder dieselbe Hydraulikfluidmasse von der Messung erfaßt wird, die beim Pressen zu den Stempeln geflossen ist; oder/und
    (c) der Meß- oder Rechenwert Fluidvolumen pro Zeiteinheit oder Fluidmasse pro Zeiteinheit mit Null oder einem kleinen Referenzwert verglichen wird, um das Ende eines Preßvorgangs zu erfassen; oder/und
    (d) die Verdichtbarkeit (VD) des zur Verdichtungseinheit geförderten Formstoffes, insbesondere Formsandes, abhängig von dem Gradienten des Hydraulikfluidvolumens oder dessen Masse verändert wird.
  3. Verfahren nach Anspruch 1 oder 2, bei dem die Änderung der Hydraulikfluidmasse oder des Hydraulikfluidvolumens, insbesondere das Ölvolumen (q(t)) oder seine zumindest erste Ableitung nach der Zeit (dq(t)/dt), zur Veränderung der Verdichtbarkeit des zur Verdichtungseinheit geförderten Formstoffes, insbesondere Formsandes, verwendet wird.
  4. Verfahren nach Anspruch 3, bei dem die Veränderung als der Stellgrößeneinfluß zur Steuerung des zur Formung geförderten Formstoffes langfristig erfolgt.
  5. Verfahren nach einem der Ansprüche 2 bis 4, bei dem der Referenzwert so gewählt wird, daß die Formstoff-Form genügend Härte aufweist, bei gleichzeitig kürzestmöglicher Preßwirkung.
  6. Verfahren nach einem der Ansprüche 2 bis 5, bei dem eine bzw. die Veränderung der Verdichtbarkeit durch Veränderung der Zugabe von Wasser oder/und durch Änderung der Zugabe von Schlämmstoff, Additiven oder einer Zusammensetzung davon erfolgt.
  7. Verfahren nach einem der vorigen Ansprüche, bei dem die Hydraulikfluidmessung in der Verdichtungseinrichtung, insbesondere der Formmaschine, integriert ist oder ihr zugehörig ist.
  8. Verfahren nach Anspruch 2, bei dem die Veränderung der Formstoff-Mengenzufuhr nur bei einem vorhergehendem Modellwechsel aktiviert wird.
  9. Verfahren nach einem der vorigen Ansprüche, bei dem die Verdichtungseinheit Stempel (H) aufweist und Eichkurven (a,b) zur Formstoff-Mengenveränderung herangezogen werden, die die Abhängigkeit der Stempelstellung von dem Hydraulikfluidvolumen (q) und die Abhängigkeit der Formstoffmenge von einem gemessenen Hydraulikfluidvolumen bzw. seiner Ableitung angeben.
  10. Verfahren nach einem der vorigen Ansprüche, bei dem die Verdichtungseinheit Stempel (H) aufweist und alle Stempel an einer gemeinsamen Quelle des Hydraulikfluides angekoppelt sind und ein Volumen-Pro-Zeit-Meßgeber in der Zuleitung zu den Stempeln (H) angeordnet ist.
EP96907251A 1995-03-17 1996-03-15 Sandformqualität durch ölstrommessung zum presshaupt Expired - Lifetime EP0814924B1 (de)

Applications Claiming Priority (6)

Application Number Priority Date Filing Date Title
DE19509211 1995-03-17
DE19509211 1995-03-17
DE19540466 1995-10-30
DE19540466A DE19540466A1 (de) 1995-03-17 1995-10-30 Sandformqualität durch Ölstrommessung zum Preßhaupt
PCT/DE1996/000463 WO1996029163A1 (de) 1995-03-17 1996-03-15 Sandformqualität durch ölstrommessung zum presshaupt
US08/937,674 US5980794A (en) 1995-03-17 1997-09-25 Method of controlling compacting by measuring hydraulic fluid

Publications (2)

Publication Number Publication Date
EP0814924A1 EP0814924A1 (de) 1998-01-07
EP0814924B1 true EP0814924B1 (de) 2000-11-08

Family

ID=27214942

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96907251A Expired - Lifetime EP0814924B1 (de) 1995-03-17 1996-03-15 Sandformqualität durch ölstrommessung zum presshaupt

Country Status (8)

Country Link
US (1) US5980794A (de)
EP (1) EP0814924B1 (de)
CN (1) CN1063113C (de)
AT (1) ATE197418T1 (de)
DE (2) DE19540466A1 (de)
DK (1) DK0814924T3 (de)
ES (1) ES2153953T3 (de)
WO (1) WO1996029163A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19652308B4 (de) * 1995-12-15 2007-03-01 Künkel-Wagner Prozesstechnologie GmbH Dynamische Iterative Stempel-Regelung des Preßvorganges beim Vielstempelpressen
JP3400356B2 (ja) * 1998-07-01 2003-04-28 新東工業株式会社 生型造型方法およびそのシステム
CN1234481C (zh) * 2000-04-13 2006-01-04 新东工业株式会社 型砂的压缩方法及其装置
WO2001081025A1 (fr) * 2000-04-21 2001-11-01 Sintokogio, Ltd. Machine a mouler en matrice et support de modele
TWI448644B (zh) * 2007-05-07 2014-08-11 Cree Inc 照明設備
CN102615250A (zh) * 2012-04-25 2012-08-01 机械工业第三设计研究院 活塞环三工位造型机砂型厚度控制方法及系统

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039294A (en) * 1988-05-31 1991-08-13 L'oreal Apparatus for compacting powder
US5409052A (en) * 1992-11-27 1995-04-25 Sintokogio, Ltd. Device for simultaneously forming cope and drag molds

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5953141B2 (ja) * 1978-07-25 1984-12-24 新東工業株式会社 分割スキ−ズフ−ト方式の鋳型造型方法およびその装置
US4376085A (en) * 1980-06-04 1983-03-08 Cts Corporation Method for producing uniform density and weight briquettes
JPS57142743A (en) * 1981-02-27 1982-09-03 Komatsu Ltd Squeeze head for multiple molds of molding machine
DE3740185A1 (de) * 1987-06-13 1989-06-08 Badische Maschf Gmbh Verfahren und vorrichtung zum verdichten von formstoff in giesserei-formmaschinen
CH681786A5 (de) * 1990-05-16 1993-05-28 Fischer Ag Georg
DE4032659A1 (de) * 1990-10-15 1992-04-16 Kautex Maschinenbau Gmbh Verfahren und vorrichtung zur herstellung von hohlkoerpern aus thermoplastischen kunststoff
DE4114362A1 (de) * 1991-05-02 1992-11-05 Wagner Heinrich Sinto Masch Verfahren zum herstellen einer sandform
JP2520832B2 (ja) * 1992-11-27 1996-07-31 日精樹脂工業株式会社 射出成形機の制御方法
DK169236B1 (da) * 1993-07-20 1994-09-19 Dansk Ind Syndikat Fremgangsmåde ved fremstilling af støbeforme eller dele af sådanne ved sammenpresning af partikelmateriale samt apparat til udøvelse af fremgangsmåden
DE4335403C1 (de) * 1993-10-18 1994-12-15 Karl Hehl Hydraulikeinrichtung

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5039294A (en) * 1988-05-31 1991-08-13 L'oreal Apparatus for compacting powder
US5409052A (en) * 1992-11-27 1995-04-25 Sintokogio, Ltd. Device for simultaneously forming cope and drag molds

Also Published As

Publication number Publication date
ATE197418T1 (de) 2000-11-11
CN1179120A (zh) 1998-04-15
DK0814924T3 (da) 2001-02-12
EP0814924A1 (de) 1998-01-07
DE59606130D1 (de) 2000-12-14
WO1996029163A1 (de) 1996-09-26
ES2153953T3 (es) 2001-03-16
DE19540466A1 (de) 1996-09-19
CN1063113C (zh) 2001-03-14
US5980794A (en) 1999-11-09

Similar Documents

Publication Publication Date Title
EP3310508B1 (de) Verfahren und vorrichtung zum herstellen von formstoff-formen für den metallguss
DE2836692A1 (de) Verfahren und vorrichtung zur verringerung der auf austrieben an den teilfugen von spritzgussformen beruhenden beschaedigungsgefahr
EP1254006B1 (de) Verfahren zur steuerung/regelung des prägeablaufes sowie antriebs- und steuereinrichtung für spritzgiessmaschinen
DE10135345A1 (de) Elektrische Spritzgussmaschine und Verfahren zum Steuern einer elektrischen Spritzgussmaschine
WO2006117173A2 (de) Anlage und verfahren zum herstellen von betonwaren
EP0814924B1 (de) Sandformqualität durch ölstrommessung zum presshaupt
DE3312539C1 (de) Vorrichtung zum Herstellen von kastenlosen Sandgießformen
DE2951716C2 (de)
DE4434679A1 (de) Verdichtungssystem zum Formen und Verdichten von Formstoffen zu Formkörpern in Formkästen
EP0289638A1 (de) Presse, insbesondere zum Herstellen masshaltiger Presslinge aus pulverförmigen Werkstoffen, und Verfahren zum Betrieb einer solchen Presse
EP1568461A1 (de) Spritzgiessmaschine zur Herstellung von Präzisionsteilen
DE4425334A1 (de) Verfahren und Vorrichtung zur Herstellung von Formen oder Formteilen durch Verdichtung von partikelförmigem Material
EP1568456A2 (de) Verfahren und Vorrichtung zum Herstellen von Betonsteinen
DE19611068A1 (de) Kontrolleinrichtung zur Kontrolle der Formstoff-Füllmengen an Formkästen von Betonsteinmaschinen
DE3939728A1 (de) Druck- und spritzgiessmaschine
DE4114362C2 (de)
EP1420930A1 (de) Verfahren und vorrichtung zum automatischen herstellen dünner platten
DE19652308B4 (de) Dynamische Iterative Stempel-Regelung des Preßvorganges beim Vielstempelpressen
DE102004063272A1 (de) Verfahren und Vorrichtung zum Verdichten eines Gemenges
DE2831166A1 (de) Einrichtung zum steuern und regeln an einer kunststeinpresse
DE4009608A1 (de) Verfahren zur herstellung von formlingen aus koernigem und pulverfoermigem werkstoff und vorrichtung zur durchfuehrung des verfahrens
DE2265090A1 (de) Messvorrichtung zur messung der formoeffnungsbewegung einer spritzgiessmaschine
DE2402349A1 (de) Automatische formstoffmengenregeleinrichtung fuer formmaschinen
DE19545753B4 (de) Regelung von Rahmenposition und Preßdruck in Formanlagen
DE102019122144A1 (de) Kunststoffformgebungsmaschine und Verfahren zum Überprüfen einer solchen

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19971013

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

17Q First examination report despatched

Effective date: 19980508

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE DK ES FI FR GB IT LI NL PT SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001108

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001108

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001108

Ref country code: FI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001108

REF Corresponds to:

Ref document number: 197418

Country of ref document: AT

Date of ref document: 20001111

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59606130

Country of ref document: DE

Date of ref document: 20001214

ITF It: translation for a ep patent filed

Owner name: RACHELI & C. S.R.L.

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010208

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010208

REG Reference to a national code

Ref country code: DK

Ref legal event code: T3

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: KELLER & PARTNER PATENTANWAELTE AG

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2153953

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20010331

NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20001108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: KUNKEL-WAGNER PROZESSTECHNOLOGIE G.M.B.H.

Effective date: 20010331

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20040318

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20040331

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050315

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050331

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20070327

Year of fee payment: 12

Ref country code: DK

Payment date: 20070327

Year of fee payment: 12

REG Reference to a national code

Ref country code: DK

Ref legal event code: EBP

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080331

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20080317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080317

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130315

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606130

Country of ref document: DE

Representative=s name: LEONHARD & PARTNER PATENTANWAELTE, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606130

Country of ref document: DE

Representative=s name: LEONHARD & PARTNER PATENTANWAELTE, DE

Effective date: 20150310

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606130

Country of ref document: DE

Owner name: KUENKEL WAGNER GERMANY GMBH, DE

Free format text: FORMER OWNER: KUENKEL-WAGNER PROZESSTECHNOLOGIE GMBH, 31061 ALFELD, DE

Effective date: 20150310

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20150326

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20150528

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59606130

Country of ref document: DE