EP0807787A2 - Brenner - Google Patents

Brenner Download PDF

Info

Publication number
EP0807787A2
EP0807787A2 EP97810221A EP97810221A EP0807787A2 EP 0807787 A2 EP0807787 A2 EP 0807787A2 EP 97810221 A EP97810221 A EP 97810221A EP 97810221 A EP97810221 A EP 97810221A EP 0807787 A2 EP0807787 A2 EP 0807787A2
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
air inlet
plane
overlap
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP97810221A
Other languages
English (en)
French (fr)
Other versions
EP0807787B1 (de
EP0807787A3 (de
Inventor
Klaus Dr. Döbbeling
Hans Peter Knöpfel
Dieter Winkler
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0807787A2 publication Critical patent/EP0807787A2/de
Publication of EP0807787A3 publication Critical patent/EP0807787A3/de
Application granted granted Critical
Publication of EP0807787B1 publication Critical patent/EP0807787B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to the field of combustion technology. It relates to a burner of the double-cone type, in which gaseous fuel is supplied to the combustion air flow before it flows into the interior of the burner.
  • EP 0 321 809 B1 discloses the basic structure of a double-cone type burner to which the invention relates.
  • This burner consists essentially of hollow, part-cone bodies that complement one another, with tangential air inlet slots and feeds for gaseous and liquid fuels, in which the central axes of the hollow part-cone bodies have a conical inclination widening in the flow direction and are offset in the longitudinal direction.
  • a fuel nozzle is placed on the burner head.
  • the gaseous fuel is supplied to the combustion air stream in advance of its inflow into the interior of the burner via gas injectors arranged along the inlet slots.
  • the fuel / air mixture is thus formed directly at the end of the tangential air inlet slots.
  • the air entry level and the gas entry level (Perforation level) thus coincide in this known prior art.
  • the ignition of the flame is only initiated at the stagnation point of the return flow zone.
  • the last gas injectors along the air inlet slots are very close to the burner outlet and thus also in the vicinity of the flame.
  • the length of the pre-mixing section is therefore very short at these points, so that the fuel which is injected from these last nozzles located downstream can only mix poorly with the air.
  • the poor premixing of the fuel with air creates local areas with a rich fuel / air mixture, which leads to higher flame temperatures and thus to higher NOx values.
  • the additional load on the firing front in these regions becomes so high that overheating occurs and the material there has to be protected by an expensive zirconium coating.
  • the invention tries to avoid all of these disadvantages. It is the object of the invention to create a burner of the double-cone type, which is simple in construction and therefore inexpensive to manufacture, and in which an improved premixing of the gaseous fuel from the downstream last gas injection nozzles with the combustion air takes place, so that compared to the known prior art NOx emissions are reduced and the burner front is subjected to less thermal stress, so that expensive special coatings on the burner front can be dispensed with.
  • this is achieved in that the partial cone bodies overlap in a burner according to the preamble of claim 1, the overlap angle increasing in the flow direction of the burner and at the same time the distance of the fuel injectors from the air inlet plane into the burner increasing with an increase in the overlap angle.
  • the fuel injection plane and the air inlet plane therefore no longer coincide, but the fuel injection plane changes along the burner in the position relative to the air inlet plane.
  • the advantages of the invention are, inter alia, that the premixing of the gaseous fuel with the combustion air is improved in the area of the downstream fuel injectors due to the enlarged premixing section, so that the NOx emissions and the thermal load on the burner front are reduced.
  • the burner is characterized by a more stable flame position and lower pulsations.
  • the overlap angle in the cone tip is 0 ° and increases continuously up to the burner front, the maximum overlap angle being 90 °.
  • FIG. 1 shows a perspective view of the burner according to the invention. For a better understanding, it is advantageous if the cuts in FIGS. 2 to 4 are used simultaneously with FIG. 1.
  • the offset of the respective central axes 3, 4 of the partial cone bodies 1, 2 to each other creates a tangential air inlet slot 5, 6 on both sides in a mirror-image arrangement, through which the combustion air 7 enters the interior 8 of the burner.
  • the two partial cone bodies 1, 2 each have a cylindrical starting part 9, 10, which likewise run offset from one another, so that the tangential air inlet slots 5, 6 are also present in this area.
  • a nozzle 11 for atomizing the liquid fuel 12 is accommodated in this cylindrical starting part 9, 10.
  • the burner can also be designed without the cylindrical starting parts 9, 10, so that it is designed to be purely conical. Then the fuel nozzle 11 is accommodated directly in the cone tip.
  • the two partial cone bodies 1, 2 each have a fuel line 13, 14 which are provided with openings 15 which represent fuel injectors.
  • the fuel injectors 15 add gaseous fuel 16 to the combustion air 7 flowing through the tangential air inlet slots 5,
  • the burner has a front plate 18 serving as anchoring for the partial cone bodies 1, 2 with a number of bores 19 through which, if necessary, dilution or cooling air 20 can be supplied to the front part of the combustion chamber 17 or its wall.
  • liquid fuel 12 If liquid fuel 12 is used to operate the burner, it flows through the nozzle 11 and is injected into the burner interior 17 at an acute angle, a homogeneous fuel spray being produced.
  • the tapered liquid fuel profile 23 is of a tangentially flowing rotating combustion air flow 7 enclosed. In the axial direction, the concentration of the liquid fuel 12 is continuously reduced by the mixed-in combustion air 7.
  • the optimum fuel concentration across the cross section is only achieved in the area of the vortex burst, ie in the area of the backflow zone 24.
  • the ignition takes place at the tip of the backflow zone 24. Only at this point does a stable flame front 25 arise.
  • the flame stabilization results from an increase in the number of swirls in the direction of flow along the cone axis. The flame does not kick back inside the burner.
  • the two partial cone bodies 1, 2 partially overlap, the overlap angle ⁇ in the cone tip being 0 ° (ie there is no overlap) and ⁇ then increases continuously in the direction of flow up to the burner outlet, that is to say to the front plate 18. 90 ° can be specified as the maximum overlap angle ⁇ .
  • the air flow 7 is channeled through the overlapped walls of the partial cone bodies 1, 2.
  • the fuel injectors 15 are offset further upstream.
  • the air inlet level 21 and the fuel injection level thus fall 22 no longer together.
  • the fuel injection plane 22 changes its position along the double-cone burner in the direction of the burner front in relation to the air inlet plane 21 such that ever larger premixing distances are reached from the respective fuel injection of the gaseous fuel 16 to the air inlet plane 21.
  • the flame has a more stable position compared to the previously known prior art, in which the partial cone bodies 1, 2 do not overlap and the fuel injection plane 22 corresponds to the air inlet plane 21.
  • the burner according to the invention also has less tendency to pulsate. It is structurally fairly simple (e.g. without complicated transition pieces to extend the pre-mixing section) and is therefore inexpensive to manufacture.
  • the invention is not limited to the embodiment just described.
  • the solution according to the invention can also be used for burners which consist of more than two partial cone bodies, for example for so-called four-slot burners.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)

Abstract

Bei einem Brenner der Doppelkegelbauart zum Verbrennen von flüssigen (12) und gasförmigen Brennstoffen (16) überlappen sich die mindestens zwei Teilkegelkörper (1, 2) zumindestens teilweise, wobei der Überlappungswinkel (δ) in Strömungsrichtung des Brenners zunimmt und gleichzeitig mit Zunahme des Überlappungswinkels (δ) der Abstand der Brennstoffinjektoren (15) von der Lufteintrittsebene (21) in den Brenner zunimmt. Dadurch fallen die Lufteintrittsebene (21) und die Brennstoffinjektionsebene (22) nicht mehr zusammen. Mit der Erfindung wird eine bessere Vormischung des gasförmigen Brennstoffes (16) mit der Verbrennungsluft erreicht, was zu geringeren NOx-Emissionen des Brenners und zu einer geringeren thermischen Belastung der Brennerfront führt. <IMAGE>

Description

    Technisches Gebiet
  • Die Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft einen Brenner der Doppelkegelbauart, bei welchem dem Verbrennungsluftstrom vor seiner Einströmung in den Brennerinnenraum gasförmiger Brennstoff zugeführt wird.
  • Stand der Technik
  • Aus EP 0 321 809 B1 ist der prinzipielle Aufbau eines Brenners der Doppelkegelbauart bekannt, auf den sich die Erfindung bezieht. Dieser Brenner besteht im wesentlichen aus hohlen, sich zu einem Körper ergänzenden Teilkegelkörpern, mit tangentialen Lufteintrittsschlitzen und Zuführungen für gasförmige und flüssige Brennstoffe, bei dem die Mittelachsen der hohlen Teilkegelkörper eine in Strömungsrichtung sich erweiternde Kegelneigung aufweisen und in Längsrichtung zueinander versetzt verlaufen. Im von den Teilkegelkörpern gebildeten kegelförmigen Innenraum ist am Brennerkopf eine Brennstoffdüse plaziert. Der gasförmige Brennstoff wird dem Verbrennungsluftstrom vorgängig seiner Einströmung in den Brennerinnenraum über entlang der Eintrittsschlitze angeordneten Gasinjektoren zugeführt. Die Bildung des Brennstoff/Luft-Gemisches geschieht somit direkt am Ende der tangentialen Lufteintrittsschlitze. Die Lufteintrittsebene und die Gaseintrittsebene (Belochungsebene) fallen somit bei diesem bekannten Stand der Technik zusammen.
  • Die Zunahme des Dralles entlang der Kegelachse, verbunden mit der plötzlichen Querschnittserweiterung am Brenneraustritt, führt dazu, dass sich stromab des Brenneraustrittes auf der Brennerachse eine Rückströmzone bildet, die die Flamme stabilisiert. Erst im Staupunkt der Rückströmzone wird die Zündung der Flamme eingeleitet.
  • Die letzten Gasinjektoren entlang der Lufteintrittsschlitze liegen bei diesem bekannten Stand der Technik sehr nahe am Brenneraustritt und somit auch in der Nähe der Flamme. Die Länge der Vormischstrecke ist somit an diesen Stellen sehr kurz, so dass sich der Brennstoff, der aus diesen stromabwärts gelegenen letzten Düsen eingedüst wird, nur schlecht mit der Luft vermischen kann. Durch die schlechte Vormischung des Brennstoffes mit Luft entstehen örtlich Gebiete mit einem fetten Brennstoff/Luft-Gemisch, welches zu höheren Flammentemperaturen und damit auch zu höheren NOx-Werten führt. Ausserdem wird die zusätzliche Belastung für die Brennfront in diesen Regionen so hoch, dass es zu Überhitzungen kommt und das Material dort durch eine teure Zirkonbeschichtung geschützt werden muss.
  • Will man die Vormischstrecke entlang der Brennerachse verlängern, um die NOx-Emissionen zu reduzieren, so ist dazu ein kompliziertes Übergangsstück zwischen dem Brenner und dem nachfolgenden Teil, beispielsweise einem vor der Brennkammer angeordneten Rohr, notwendig. Durch das Strömungsfeld, das der Brenner stromab erzeugt, ergeben sich in dem nachgeschalteten Teil entweder am Rand oder im Zentrum Probleme mit der axialen Geschwindigkeit. Das führt zu Rückzündungen, so dass der Brenner auf diese Weise nicht betrieben werden kann.
  • Darstellung der Erfindung
  • Die Erfindung versucht, alle diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, einen Brenner der Doppelkegelbauart zu schaffen, welcher einfach aufgebaut und damit preiswert zu fertigen ist und bei welchem eine verbesserte Vormischung des gasförmigen Brennstoffes aus den stromabwärts gelegenen letzten Gasinjektionsdüsen mit der Verbrennungsluft stattfindet, so dass gegenüber dem bekannten Stand der Technik die NOx-Emissionen reduziert werden und die Brennerfront thermisch geringer beansprucht wird, so dass auf teure Spezialbeschichtungen der Brennerfront verzichtet werden kann.
  • Erfindungsgemäss wird dies dadurch erreicht, dass sich bei einem Brenner gemäss dem Oberbegriff des Anspruchs 1 die Teilkegelkörper überlappen, wobei der Überlappungswinkel in Strömungsrichtung des Brenners zunimmt und gleichzeitig mit Zunahme des Überlappungswinkels der Abstand der Brennstoffinjektoren von der Lufteintrittsebene in den Brenner zunimmt. Die Brennstoffinjektionsebene und die Lufteintrittsebene fallen somit nicht mehr zusammen, sondern die Brennstoffinjektionsebene verändert sich entlang des Brenners in der Position zur Lufteintrittsebene.
  • Die Vorteile der Erfindung bestehen unter anderem darin, dass im Bereich der stromab gelegenen Brennstoffinjektoren auf Grund der vergrösserten Vormischstrecke die Vormischung des gasförmigen Brennstoffes mit der Verbrennungsluft verbessert wird, so dass die NOx-Emissionen und die thermische Belastung der Brennerfront verringert werden. Der Brenner zeichnet sich durch eine stabilere Flammenposition und geringere Pulsationen aus.
  • Es ist besonders zweckmässig, wenn der Überlappungswinkel in der Kegelspitze 0° beträgt und stetig bis zur Brennerfront zunimmt, wobei der maximale Überlappungswinkel 90° beträgt.
  • Wenn in der Kegelspitze keine Überlappung der Teilkegelkörper vorgesehen ist, dann kann weiterhin wie beim bekannten Stand der Technik eine hohe Axialgeschwindigkeit innerhalb des Brenners auf der Symmetrieachse erreicht werden.
  • Kurze Beschreibung der Zeichnung
  • In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand eines Brenners, welcher aus zwei Teilkegelkörpern aufgebaut ist, dargestellt.
  • Es zeigen:
  • Fig. 1
    einen Doppelkegelbrenner in perspektivischer Darstellung;
    Fig. 2
    einen schematischen Querschnitt des Brenners gemäss Fig. 1 entlang der Ebene II-II;
    Fig. 3
    einen schematischen Querschnitt des Brenners gemäss Fig. 1 entlang der Ebene III-III;
    Fig. 4
    einen schematischen Querschnitt des Brenners gemäss Fig. 1 entlang der Ebene IV-IV.
  • Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtungen der verschiedenen Medien sind mit Pfeilen bezeichnet.
  • Weg zur Ausführung der Erfindung
  • Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles und der Fig. 1 bis 4 näher erläutert.
  • Fig. 1 zeigt in perspektivischer Darstellung den erfindungsgemässen Brenner. Zum besseren Verständnis ist es vorteilhaft, wenn gleichzeitig zu Fig. 1 die Schnitte in den Fig. 2 bis 4 herangezogen werden.
  • Der Brenner gemäss Fig. 1 besteht aus zwei hohlen Teilkegelkörpern 1, 2, die versetzt zueinander aufeinander liegen. Die Versetzung der jeweiligen Mittelachsen 3, 4 der Teilkegelkörper 1, 2 zueinander schafft auf beiden Seiten in spiegelbildlicher Anordnung jeweils einen tangentialen Lufteintrittsschlitz 5, 6, durch welche die Verbrennungsluft 7 in den Innenraum 8 des Brenners gelangt. Die beiden Teilkegelkörper 1, 2 haben jeweils einen zylindrischen Anfangsteil 9, 10, die ebenfalls versetzt zueinander verlaufen, so dass auch in diesem Bereich die tangentiale Lufteintrittsschlitze 5, 6 vorhanden sind. In diesem zylindrischen Anfangsteil 9, 10 ist eine Düse 11 zur Zerstäubung des flüssigen Brennstoffes 12 untergebracht. Der Brenner kann auch ohne die zylindrischen Anfangsteile 9, 10 ausgeführt sein, so dass er rein kegelig ausgebildet ist. Dann ist die Brennstoffdüse 11 direkt in der Kegelspitze untergebracht. Die beiden Teilkegelkörper 1, 2 weisen je eine Brennstoffleitung 13, 14 auf, die mit Öffnungen 15 versehen sind, welche Brennstoffinjektoren darstellen. Durch die Brennstoffinjektoren 15 wird gasförmiger Brennstoff 16 der durch die tangentialen Lufteintrittsschlitze 5, 6 strömenden Verbrennungsluft 7 zugemischt.
  • Brennraumseitig 17 weist der Brenner eine als Verankerung für die Teilkegelkörper 1, 2 dienende Frontplatte 18 mit einer Anzahl Bohrungen 19 auf, durch welche nötigenfalls Verdünnungs- bzw. Kühlluft 20 dem vorderen Teil des Brennraumes 17 bzw. dessen Wand zugeführt werden kann.
  • Wird zum Betrieb des Brenners flüssiger Brennstoff 12 verwendet, so strömt dieser durch die Düse 11 und wird in einem spitzen Winkel in den Brennerinnenraum 17 eingedüst, wobei sich ein homogener Brennstoffspray einstellt. Das kegelige Flüssigbrennstoffprofil 23 wird von einem tangential einströmenden rotierenden Verbrennungsluftstrom 7 umschlossen. In axialer Richtung wird die Konzentration des Flüssigbrennstoffes 12 fortlaufend durch die eingemischte Verbrennungluft 7 verringert. Die optimale Brennstoffkonzentration über den Querschnitt wird erst im Bereich des Wirbelaufplatzens, d.h. im Bereich der Rückströmzone 24 erreicht. Die Zündung erfolgt an der Spitze der Rückströmzone 24. Erst an dieser Stelle entsteht eine stabile Flammenfront 25. Die Flammenstabilisation ergibt sich durch Zunahme der Drallzahl in Strömungsrichtung entlang der Kegelachse. Ein Rückschlagen der Flamme in das Innere des Brenners tritt nunmehr nicht auf.
  • Wird gasförmiger Brennstoff 16 verbrannt, so geschieht die Gemischbildung mit der Verbrennungsluft 7 in den Lufteintrittsschlitzen 5, 6. Erfindungsgemäss überlappen sich die beiden Teilkegelkörper 1, 2 teilweise, wobei der Überlappungswinkel δ in der Kegelspitze 0° beträgt (d.h. dort liegt keine Überlappung vor) und δ dann in Strömungsrichtung bis zum Brennerausgang, also bis zur Frontplatte 18, stetig zunimmt. Als maximaler Überlappungswinkel δ können 90° angegeben werden.
  • Wenn in der Kegelspitze bzw. im zylindrischen Anfangsteil 9, 10 der beiden Teilkegelkörper 1, 2 der Überlappungswinkel 0° beträgt, also die beiden Teilkegelkörper 1, 2 sich in diesem Bereich nicht überlappen, dann hat das den Vorteil, dass dadurch weiterhin eine hohe Axialgeschwindigkeit innerhalb des Brenners auf der Symmetrieachse erreicht wird.
  • Durch die überlappten Wände der Teilkegelkörper 1, 2 wird die Luftströmung 7 kanalisiert.
  • Im gleichen Masse, wie sich der Überlappungswinkel δ ändert, sind die Brennstoffinjektoren 15 weiter stromauf versetzt. Damit fallen die Lufteintrittsebene 21 und die Brennstoffinjektionsebene 22 nicht mehr zusammen. Die Brennstoffinjektionsebene 22 ändert entlang des Doppelkegelbrenners in Richtung Brennerfront ihre Position zur Lufteintrittsebene 21 dermassen, dass immer grössere Vormischstrecken von der jeweiligen Brennstoffeindüsung des gasförmigen Brennstoffes 16 bis zur Lufteintrittsebene 21 erreicht werden.
  • Dadurch wird eine homogenere Mischung des gasförmigen Brennstoffes 16 und der Verbrennungsluft 7 erzielt, was zu tieferen Flammentemperaturen und damit zu tieferen Nox-Emissionen führt. Diese tieferen Flammentemperaturen im Bereich des Brenneraustrittes reduzieren auch die thermischen Belastungen für das Material an der Brennerfront und machen eine sonst notwendige Zirkonbeschichtung des Materials hinfällig.
  • Ausserdem hat die Flamme im Vergleich zum bisher bekannten Stand der Technik, bei dem sich die Teilkegelkörper 1, 2 nicht überlappen und die Brennstoffinjektionsebene 22 der Lufteintrittsebene 21 entspricht, eine stabilere Position. Zusätzlich ergibt sich als Vorteil, dass der erfindungsgemässe Brenner auch weniger zu Pulsationen neigt. Er ist konstruktiv recht einfach gestaltet (z.B. ohne komplizierte Übergangsstücke zur Verlängerung der Vormischstrecke) und daher kostengünstig zu fertigen.
  • Selbstverständlich ist die Erfindung nicht auf das eben beschriebene Ausführungsbeispiel beschränkt. Die erfindungsgemässe Lösung kann ebenso auch für Brenner verwendet werden, die aus mehr als zwei Teilkegelkörpern bestehen, z.B. für sogenannte Vierschlitzbrenner.
  • Bezugszeichenliste
  • 1
    Teilkegelkörper
    2
    Teilkegelkörper
    3
    Mittelachse von Pos. 1
    4
    Mittelachse von Pos. 2
    5
    tangentialer Lufteintrittsschlitz
    6
    tangentialer Lufteintrittsschlitz
    7
    Verbrennungsluft
    8
    Brennerinnenraum
    9
    zylindrischer Anfangsteil von Pos. 1
    10
    zylindrischer Anfangsteil von Pos. 2
    11
    Brennstoffdüse
    12
    flüssiger Brennstoff
    13
    Brennstoffleitung für Pos. 16
    14
    Brennstoffleitung für Pos. 16
    15
    Brennstoffinjektor für Pos. 16
    16
    gasförmiger Brennstoff
    17
    Brennraum
    18
    Frontplatte
    19
    Bohrung
    20
    Verdünnungs- bzw. Kühlluft
    21
    Lufteintrittsebene
    22
    Brennstoffinjektionsebene
    23
    Flüssigbrennstoffprofil
    24
    Rückströmzone
    25
    Flammenfront
    δ
    Überlappungswinkel

Claims (2)

  1. Brenner zum Verbrennen von flüssigen (12) und gasförmigen Brennstoffen (16), bestehend aus mindestens zwei hohlen, sich zu einem Körper ergänzenden Teilkegelkörpern (1, 2), mit tangentialen Lufteintrittsschlitzen (5, 6), welche mindestens eine Lufteintrittsebene (21) in den Brenner bestimmen, und mit Zuführungen (13, 14) für gasförmige (16) und flüssige Brennstoffe (12), bei welchem die Mittelachsen (3, 4) der hohlen Teilkegelkörper (1, 2) eine in Strömungsrichtung sich erweiternde Kegelneigung aufweisen und in Längsrichtung zueinander versetzt verlaufen, wobei im von den Teilkegelkörpern (1, 2) gebildeten kegelförmigen Innenraum (8) am Brennerkopf eine Brennstoffdüse (11) für den flüssigen Brennstoff (12) plaziert ist und die Zuführungen (13, 14) für den gasförmigen Brennstoff mit Brennstoffinjektoren (15) versehen sind, welche mindestens eine Brennstoffinjektionsebene (22) bestimmen, dadurch gekennzeichnet, dass sich die Teilkegelkörper (1, 2) zumindestens teilweise überlappen, wobei der Überlappungswinkel (δ) in Strömungsrichtung des Brenners zunimmt und gleichzeitig mit Zunahme des Überlappungswinkels (δ) der Abstand der Brennstoffinjektoren (15) von der Lufteintrittsebene (21) in den Brenner zunimmt.
  2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass der Überlappungswinkel (δ) in der Kegelspitze 0° beträgt und stromabwärts stetig bis zur Brennerfront (18) zunimmt, wobei der maximale Überlappungswinkel (δ) 90° beträgt.
EP97810221A 1996-05-17 1997-04-14 Brenner Expired - Lifetime EP0807787B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19619873A DE19619873A1 (de) 1996-05-17 1996-05-17 Brenner
DE19619873 1996-05-17

Publications (3)

Publication Number Publication Date
EP0807787A2 true EP0807787A2 (de) 1997-11-19
EP0807787A3 EP0807787A3 (de) 1999-03-24
EP0807787B1 EP0807787B1 (de) 2003-05-28

Family

ID=7794546

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810221A Expired - Lifetime EP0807787B1 (de) 1996-05-17 1997-04-14 Brenner

Country Status (5)

Country Link
US (1) US5921766A (de)
EP (1) EP0807787B1 (de)
JP (1) JP3863631B2 (de)
CN (1) CN1117243C (de)
DE (2) DE19619873A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918191A1 (de) * 1997-11-21 1999-05-26 Abb Research Ltd. Brenner für den Betrieb eines Wärmeerzeugers
EP0959298A3 (de) * 1998-05-18 2000-02-23 United Technologies Corporation Vormischende Brennstoffeinspritzvorrichtung und Betriebsverfahren dafür
US8516825B2 (en) 2003-07-24 2013-08-27 Alstom Technology Ltd Method for reducing the NOx emissions from a burner arrangement comprising a plurality of burners, and burner arrangement for carrying out the method

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1262714A1 (de) * 2001-06-01 2002-12-04 ALSTOM (Switzerland) Ltd Brenner mit Abgasrückführung
US7097448B2 (en) * 2004-05-07 2006-08-29 Peter Chesney Vortex type gas lamp
CA2786597A1 (en) 2010-01-06 2011-07-14 The Outdoor Greatroom Company LLLP Fire container assembly
US10281140B2 (en) 2014-07-15 2019-05-07 Chevron U.S.A. Inc. Low NOx combustion method and apparatus
US11852319B2 (en) * 2021-02-26 2023-12-26 Armando Parra Control means for vortex flame device

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340306A (en) * 1991-12-23 1994-08-23 Asea Brown Boveri Ltd. Device for mixing two gaseous components and burner in which this device is employed
EP0641971A2 (de) * 1993-09-06 1995-03-08 Abb Research Ltd. Verfahren zum Betrieb eines Vormischbrenners
WO1995023316A1 (en) * 1994-02-24 1995-08-31 United Technologies Corporation Tangential entry fuel nozzle

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3570471A (en) * 1969-02-14 1971-03-16 Thermo Electron Corp Radiant tube having uniform high-temperature distribution
DE3662462D1 (en) * 1985-07-30 1989-04-20 Bbc Brown Boveri & Cie Dual combustor
CH674561A5 (de) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
EP0481111B1 (de) * 1990-10-17 1995-06-28 Asea Brown Boveri Ag Brennkammer einer Gasturbine
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
DE4304213A1 (de) * 1993-02-12 1994-08-18 Abb Research Ltd Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
DE19502796B4 (de) * 1995-01-30 2004-10-28 Alstom Brenner

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5340306A (en) * 1991-12-23 1994-08-23 Asea Brown Boveri Ltd. Device for mixing two gaseous components and burner in which this device is employed
EP0641971A2 (de) * 1993-09-06 1995-03-08 Abb Research Ltd. Verfahren zum Betrieb eines Vormischbrenners
WO1995023316A1 (en) * 1994-02-24 1995-08-31 United Technologies Corporation Tangential entry fuel nozzle

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0918191A1 (de) * 1997-11-21 1999-05-26 Abb Research Ltd. Brenner für den Betrieb eines Wärmeerzeugers
US6155820A (en) * 1997-11-21 2000-12-05 Abb Research Ltd. Burner for operating a heat generator
EP0959298A3 (de) * 1998-05-18 2000-02-23 United Technologies Corporation Vormischende Brennstoffeinspritzvorrichtung und Betriebsverfahren dafür
US8516825B2 (en) 2003-07-24 2013-08-27 Alstom Technology Ltd Method for reducing the NOx emissions from a burner arrangement comprising a plurality of burners, and burner arrangement for carrying out the method

Also Published As

Publication number Publication date
JPH1068511A (ja) 1998-03-10
CN1117243C (zh) 2003-08-06
DE59710156D1 (de) 2003-07-03
JP3863631B2 (ja) 2006-12-27
CN1172227A (zh) 1998-02-04
EP0807787B1 (de) 2003-05-28
DE19619873A1 (de) 1997-11-20
EP0807787A3 (de) 1999-03-24
US5921766A (en) 1999-07-13

Similar Documents

Publication Publication Date Title
EP0321809B1 (de) Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
EP0433790B1 (de) Brenner
EP0387532B1 (de) Brennkammer einer Gasturbine
EP0503319B1 (de) Brenner für eine Vormischverbrennung eines flüssigen und/oder gasförmigen Brennstoffes
EP0401529B1 (de) Brennkammer einer Gasturbine
EP0911583B1 (de) Verfahren zum Betrieb eines Vormischbrenners
DE19545310B4 (de) Vormischbrenner
DE19730617A1 (de) Druckzerstäuberdüse
CH680157A5 (de)
DE19640198A1 (de) Vormischbrenner
EP0778445B1 (de) Vormischbrenner
EP0394800B1 (de) Vormischbrenner für die Heissgaserzeugung
EP0816759B1 (de) Vormischbrenner und Verfahren zum Betrieb des Brenners
EP0433789A1 (de) Verfahren für eine Vormischverbrennung eines flüssigen Brennstoffes
EP0851172A2 (de) Brenner zum Betrieb einer Brennkammer mit einem flüssigen und/oder gasförmigen Brennstoff
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
EP0483554B1 (de) Verfahren zur Minimierung der NOx-Emissionen aus einer Verbrennung
EP0807787B1 (de) Brenner
EP0924458B1 (de) Brenner
DE4412315B4 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
EP0730121A2 (de) Vormischbrenner
EP0780628A2 (de) Vormischbrenner für einen Wärmeerzeuger
DE19721937A1 (de) Brenner zum Betrieb eines Aggregates zur Erzeugung eines Heissgases
DE19542164A1 (de) Vormischbrenner
EP0881431A2 (de) Brenner zum Betrieb eines Aggregates zur Erzeugung eines Heissgases

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT NL SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB IT NL SE

17P Request for examination filed

Effective date: 19990824

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020605

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE FR GB IT NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030528

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59710156

Country of ref document: DE

Date of ref document: 20030703

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)
NLV1 Nl: lapsed or annulled due to failure to fulfill the requirements of art. 29p and 29m of the patents act
ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040302

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710156

Country of ref document: DE

Representative=s name: UWE ROESLER, DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20120802 AND 20120808

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710156

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59710156

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

Ref country code: DE

Ref legal event code: R081

Ref document number: 59710156

Country of ref document: DE

Owner name: ALSTOM TECHNOLOGY LTD., CH

Free format text: FORMER OWNER: ALSTOM (SWITZERLAND) LTD., BADEN, CH

Effective date: 20120713

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ALSTOM TECHNOLOGY LTD., CH

Effective date: 20120918

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20160421

Year of fee payment: 20

Ref country code: GB

Payment date: 20160421

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59710156

Country of ref document: DE

Representative=s name: ROESLER, UWE, DIPL.-PHYS.UNIV., DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 59710156

Country of ref document: DE

Owner name: GENERAL ELECTRIC TECHNOLOGY GMBH, CH

Free format text: FORMER OWNER: ALSTOM TECHNOLOGY LTD., BADEN, CH

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20160427

Year of fee payment: 20

Ref country code: FR

Payment date: 20160421

Year of fee payment: 20

Ref country code: SE

Payment date: 20160420

Year of fee payment: 20

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: ALSTOM TECHNOLOGY LTD, CH

Effective date: 20161110

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59710156

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20170413

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20170413

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

Owner name: ANSALDO ENERGIA IP UK LIMITED, GB

Effective date: 20171221