EP0816759B1 - Vormischbrenner und Verfahren zum Betrieb des Brenners - Google Patents

Vormischbrenner und Verfahren zum Betrieb des Brenners Download PDF

Info

Publication number
EP0816759B1
EP0816759B1 EP97810385A EP97810385A EP0816759B1 EP 0816759 B1 EP0816759 B1 EP 0816759B1 EP 97810385 A EP97810385 A EP 97810385A EP 97810385 A EP97810385 A EP 97810385A EP 0816759 B1 EP0816759 B1 EP 0816759B1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
flow
bore
recirculation zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97810385A
Other languages
English (en)
French (fr)
Other versions
EP0816759A2 (de
EP0816759A3 (de
Inventor
Klaus Dr. Döbbeling
Hans Peter Knöpfel
Timothy Dr. Griffin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
General Electric Switzerland GmbH
Original Assignee
Alstom Schweiz AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Alstom Schweiz AG filed Critical Alstom Schweiz AG
Publication of EP0816759A2 publication Critical patent/EP0816759A2/de
Publication of EP0816759A3 publication Critical patent/EP0816759A3/de
Application granted granted Critical
Publication of EP0816759B1 publication Critical patent/EP0816759B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C9/00Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber
    • F23C9/006Combustion apparatus characterised by arrangements for returning combustion products or flue gases to the combustion chamber the recirculation taking place in the combustion chamber
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/02Continuous combustion chambers using liquid or gaseous fuel characterised by the air-flow or gas-flow configuration
    • F23R3/04Air inlet arrangements
    • F23R3/10Air inlet arrangements for primary air
    • F23R3/12Air inlet arrangements for primary air inducing a vortex
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2202/00Fluegas recirculation
    • F23C2202/40Inducing local whirls around flame
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability

Definitions

  • the invention relates to the field of combustion technology. It concerns a premix burner of the double cone type and a method of operating the burner.
  • EP 0 321 809 B1 and DE-A-4416650 describe the basic structure of a burner the double-cone design known to the invention refers.
  • This burner consists essentially of hollow, partial conical bodies that complement one another, with tangential air inlet slots and feeds for gaseous and liquid fuels where the central axes the hollow partial cone body is widening in the direction of flow Have a taper and in the longitudinal direction to each other run staggered.
  • a fuel nozzle on the burner head placed in the part cone bodies formed conical interior.
  • the gaseous fuel becomes the combustion air flow prior to its inflow into the interior of the burner arranged along the entry slots Gas injectors supplied.
  • the formation of the fuel / air mixture thus happens directly at the end of the tangential air inlet slots.
  • the entrance level of the combustion air and the gas entry level (perforation level) fall at this known prior art together.
  • the cause of the vibrations and the extinction at comparatively fuel-rich conditions is the inadequate Flame stabilization of the burner.
  • the burner will stabilized by the inner recirculation zone, which in the Head stage operation is supplied with additional fuel.
  • the outer shear layer of the fuel / air mixture emerging from the burner which has a much larger contact area between fresh gas and exhaust gas compared to the inner one Recirculation zone is available, however, so far not used for stabilization.
  • the invention seeks to remedy this. You have the task based on the well-known burner of the double cone type with simple constructive means and to change it operate in such a way that additional stabilization of the Flame occurs without causing a significant increase of pollutant emission levels is coming.
  • this is achieved in that one Burner according to the preamble of claim 1 in the burner sickle at least one bore is arranged, which the supply of gaseous fuel to the outer recirculation zone serves. According to the invention, this is the case with a method to operate the burner by approx. 3 up to 8% of the total gaseous fuel to the outside Recirculation zone can be mixed.
  • the advantages of the invention include that the flame stability is improved, i.e. there are fewer Pressure pulsations in the flame. Also draws the burner according to the invention compared to the known one State of the art due to a lower lean extinguishing limit off so that it has an expanded operating range. By intensifying the outer reaction front Another advantage is a shorter burnout length.
  • the holes under one An angle of approx. 45 ° to the burner axis is arranged obliquely outwards are. Then there is a particularly intense mix of Fuel with the exhaust gas from the outer recirculation zone possible. The same is advantageously done if the additional holes arranged in the burner sickle are that they inject the fuel in the opposite direction to the swirl direction of the exhaust gas in the recirculation zone cause.
  • FIG. 1 shows a perspective view of the inventive Burner.
  • FIG. 1 shows a perspective view of the inventive Burner.
  • the burner consists of two hollow partial cone bodies 1, 2, which are offset from one another.
  • the two partial cone bodies 1, 2 each have a cylindrical starting part 9, 10, which also run offset to each other, so that in this area too the tangential air inlet slots 5, 6 are present.
  • In this cylindrical starting part 9, 10 is a nozzle 11 for Atomization of the liquid fuel 12 housed.
  • the Burner can also without the cylindrical starting parts 9, 10th be designed so that it is purely conical. Then the fuel nozzle 11 is accommodated directly in the cone tip.
  • the two partial cone bodies 1, 2 each have one Fuel line 13, 14, which are provided with openings 15 which are fuel injectors. Through the Fuel injectors 15 becomes gaseous fuel 16 flowing through the tangential air inlet slots 5, 6 Combustion air 7 added
  • Combustion chamber side 17 has a burner as an anchor for the partial cone body 1, 2 serving front plate 18 with a Number of holes 19 through which dilution or cooling air 20 the front part of the combustion chamber 17 or its wall can be supplied.
  • liquid fuel 12 is used to operate the burner, so it flows through the nozzle 11 and is in one injected acute angle into the burner interior 17, wherein a homogeneous fuel spray is established.
  • the conical Liquid fuel profile 23 is of a tangentially flowing rotating combustion air flow 7 enclosed.
  • concentration of the liquid fuel becomes axial 12 continuously through the mixed combustion air 7 reduced.
  • the optimal fuel concentration over the Cross section is only in the area of the vertebral burst, i.e. reached in the area of the inner recirculation zone 24.
  • the Ignition occurs at the top of the inner recirculation zone 24. This is in the so-called head stage operation (not shown) supplied with additional fuel. Only at this point creates a stable flame front 25.
  • the flame stabilization results from an increase in the swirl number in the direction of flow along the cone axis. The flame strikes back enters the interior of the burner under normal operating conditions not on.
  • this outer recirculation zone is located 28 in the outer area of the combustion chamber 17, close the wall of the combustion chamber 21.
  • the holes 27 can be in different ways in the burner sickle 26 may be arranged, for example parallel to Burner axis 22. In other exemplary embodiments, they can also at an angle to the burner axis 22 of approximately 45 ° be arranged obliquely outwards, so that the additional gaseous fuel 16 injected towards the combustion chamber wall becomes. It is particularly advantageous if the bores 27 are arranged so that the additional gaseous fuel 16 in the counter-swirl direction to the recirculation flow is introduced because then a particularly intensive mixture of the additional fuel with the recirculating exhaust gas and the resulting flame stabilization is particularly high is.
  • the burner is to be operated such that only about 3 to 8% of the total gaseous fuel through the Open openings 27 into the outer recirculation zone 28. Since the cooling air 20 is already mixed in at this point and the recirculating exhaust gases are already part of theirs have given sensible heat to the front panel 18 this additional fuel addition is not worth mentioning Increase in NOx emissions. This is especially true when the injections are small enough to stabilize to avoid at the entrance beams. After Fuel is mixed in after a certain ignition delay Auto ignition and just before or directly on the outer shear layer of the emerging fuel / air mixture.
  • the invention provides an external additional stabilization (by mini pilots), which among other things to an extension the operating range of the burner and to an increased Flame stability leads.
  • FIG. 4 is a concrete embodiment in a cross section presented the invention.
  • the cross section shows the area the burner exit sickle 26.
  • In the sickle 26 are 14 Positions on the circumference with an angular division of approximately 10 ° Bores 26 arranged with a diameter of 0.8 mm.
  • the number and size of the bores 26 was chosen so that approx. 3% of the total fuel mass flow there and in the outer recirculation zone, not shown in Fig. 4 28 can be mixed.
  • the inventive Solution can also be used for burners, which consist of more than two partial cone bodies, e.g. for so-called Four slot burner.
  • the holes 27 can also both in their number and in their position in the Burner sickle 26 vary. You just have to take care that the additional fuel mass flow that goes into the outer recirculation zone is mixed in, no more than accounts for approx. 8% of the total fuel.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pressure-Spray And Ultrasonic-Wave- Spray Burners (AREA)

Description

Technisches Gebiet
Die Erfindung bezieht sich auf das Gebiet der Verbrennungstechnik. Sie betrifft einen Vormischbrenner der Doppelkegelbauart und ein Verfahren zum Betrieb des Brenners.
Stand der Technik
Aus EP 0 321 809 B1 und aus DE-A-4416650 ist der prinzipielle Aufbau eines Brenners der Doppelkegelbauart bekannt, auf den sich die Erfindung bezieht. Dieser Brenner besteht im wesentlichen aus hohlen, sich zu einem Körper ergänzenden Teilkegelkörpern, mit tangentialen Lufteintrittsschlitzen und Zuführungen für gasförmige und flüssige Brennstoffe, bei dem die Mittelachsen der hohlen Teilkegelkörper eine in Strömungsrichtung sich erweiternde Kegelneigung aufweisen und in Längsrichtung zueinander versetzt verlaufen. Im von den Teilkegelkörpern gebildeten kegelförmigen Innenraum ist am Brennerkopf eine Brennstoffdüse plaziert. Der gasförmige Brennstoff wird dem Verbrennungsluftstrom vorgängig seiner Einströmung in den Brennerinnenraum über entlang der Eintrittsschlitze angeordneten Gasinjektoren zugeführt. Die Bildung des Brennstoff/Luft-Gemisches geschieht somit direkt am Ende der tangentialen Lufteintrittsschlitze. Die Eintrittsebene der Verbrennungsluft und die Gaseintrittsebene (Belochungsebene) fallen bei diesem bekannten Stand der Technik zusammen.
Die Zunahme des Dralles entlang der Kegelachse, verbunden mit der plötzlichen Querschnittserweiterung am Brenneraustritt, führt dazu, dass sich stromab des Brenneraustrittes auf der Brennerachse eine Rückströmzone (innere Rezirkulationszone) bildet, die die Flamme stabilisiert. Erst im Staupunkt dieser inneren Rückströmzone wird die Zündung der Flamme eingeleitet.
In bestimmten Betriebszuständen, z.B. nahe der Löschgrenze oder bei magerem Betrieb der Vormischstufe, d.h. beim Übergang zum Kopfstufenbetrieb, bei dem zwecks Anfettung des Brennstoff/Luft-Gemisches zusätzlich Pilotgas in Achsnähe des Brenners eingedüst wird (interne Pilotisierung), neigt der Brenner zu Schwingungen. Das hat wiederum zur Folge, dass der betreibbare Bereich des Brenners, also sein Stabilitätsbereich eingeschränkt wird und der Brenner frühzeitig verlöscht.
Die Ursache für die Schwingungen und das Verlöschen bei vergleichsweise brennstoffreichen Bedingungen ist die unzureichende Flammenstabilisierung des Brenners. Der Brenner wird zwar durch die innere Rezirkulationszone stabilisiert, die im Kopfstufenbetrieb mit Zusatzbrennstoff versorgt wird. Die äussere Scherschicht des aus dem Brenner austretenden Brennstoff/Luft-Gemisches, die eine wesentlich grössere Kontaktfläche zwischen Frischgas und Abgas im Vergleich zur inneren Rezirkulationszone zur Verfügung stellt, wird jedoch bisher nicht zur Stabilisierung benutzt.
Darstellung der Erfindung
Hier will die Erfindung Abhilfe schaffen. Ihr liegt die Aufgabe zugrunde, den bekannten Brenner der Doppelkegelbauart mit einfachen konstruktiven Mitteln so zu verändern und ihn so zu betreiben, dass eine zusätzliche Stabilisierung der Flamme erfolgt, ohne dass es zu einer nennenswerten Erhöhung der Schadstoffemissionswerte kommt.
Erfindungsgemäss wird dies dadurch erreicht, dass bei einem Brenner gemäss dem Oberbegriff des Anspruchs 1 in der Brennersichel mindestens eine Bohrungen angeordnet ist, welche der Zufuhr von gasförmigem Brennstoff in die äussere Rezirkulationszone dient. Erfindungsgemäss wird dies bei einem Verfahren zum Betrieb des Brenners dadurch erreicht, dass ca. 3 bis 8% des gesamten gasförmigen Brennstoffes in die äussere Rezirkulationszone eingemischt werden.
Die Vorteile der Erfindung bestehen unter anderem darin, dass die Flammenstabilität verbessert wird, d.h. es treten geringere Druckpulsationen in der Flamme auf. Ausserdem zeichnet sich der erfindungsgemässe Brenner gegenüber dem bekannten Stand der Technik durch eine niedrigere magere Löschgrenze aus, so dass er einen erweiterten Betriebsbereich aufweist. Durch die Intensivierung der äusseren Reaktionsfront ergibt sich als weiterer Vorteil eine verkürzte Ausbrandlänge.
Es ist besonders zweckmässig, wenn die Bohrungen parallel zur Brennerachse ausgerichtet sind, weil diese Ausführung sehr einfach zu realisieren ist.
Ferner ist es vorteilhaft, wenn die Bohrungen unter einem Winkel von ca. 45° zur Brennerachse schräg nach aussen angeordnet sind. Dann ist eine besonders intensive Mischung des Brennstoffes mit dem Abgas der äusseren Rezirkulationszone möglich. Gleiches wird in vorteilhafter Weise bewirkt, wenn die zusätzlichen Bohrungen in der Brennersichel derart angeordnet sind, dass sie eine Eindüsung des Brennstoffes in Gegendrallrichtung zur Drallrichtung des Abgases in der Rezirkulationszone bewirken.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand eines Brenners der Doppelkegelbauart, der z.B. zum Betrieb einer Gasturbine eingesetzt wird, dargestellt.
Es zeigen:
Fig. 1
eine perspektivische Darstellung des Doppelkegelbrenners;
Fig. 2
einen Längsschnitt des Brenners mit der Brennkammer in schematischer Darstellung;
Fig. 3
einen Querschnitt des Brenners gemäss Fig. 1 entlang der Ebene III-III;
Fig. 4
einen Querschnitt des Brenners gemäss Fig. 1 entlang der Ebene IV-IV.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der verschiedenen Medien ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles und der Fig. 1 bis 4 näher erläutert.
Fig. 1 zeigt in perspektivischer Darstellung den erfindungsgemässen Brenner. Zum besseren Verständnis ist es vorteilhaft, wenn gleichzeitig zu Fig. 1 die Schnitte in den Fig. 2 bis 4 herangezogen werden.
Der Brenner besteht aus zwei hohlen Teilkegelkörpern 1, 2, die versetzt zueinander aufeinander liegen. Die Versetzung der jeweiligen Mittelachsen 3, 4 der Teilkegelkörper 1, 2 zueinander schafft auf beiden Seiten in spiegelbildlicher Anordnung jeweils einen tangentialen Lufteintrittsschlitz 5, 6, durch welche die Verbrennungsluft 7 in den Innenraum 8 des Brenners gelangt. Die beiden Teilkegelkörper 1, 2 haben jeweils einen zylindrischen Anfangsteil 9, 10, die ebenfalls versetzt zueinander verlaufen, so dass auch in diesem Bereich die tangentiale Lufteintrittsschlitze 5, 6 vorhanden sind. In diesem zylindrischen Anfangsteil 9, 10 ist eine Düse 11 zur Zerstäubung des flüssigen Brennstoffes 12 untergebracht. Der Brenner kann auch ohne die zylindrischen Anfangsteile 9, 10 ausgeführt sein, so dass er rein kegelig ausgebildet ist. Dann ist die Brennstoffdüse 11 direkt in der Kegelspitze untergebracht. Die beiden Teilkegelkörper 1, 2 weisen je eine Brennstoffleitung 13, 14 auf, die mit Öffnungen 15 versehen sind, welche Brennstoffinjektoren darstellen. Durch die Brennstoffinjektoren 15 wird gasförmiger Brennstoff 16 der durch die tangentialen Lufteintrittsschlitze 5, 6 strömenden Verbrennungsluft 7 zugemischt.
Brennraumseitig 17 weist der Brenner eine als Verankerung für die Teilkegelkörper 1, 2 dienende Frontplatte 18 mit einer Anzahl Bohrungen 19 auf, durch welche Verdünnungs- bzw. Kühlluft 20 dem vorderen Teil des Brennraumes 17 bzw. dessen Wand zugeführt werden kann.
Wird zum Betrieb des Brenners flüssiger Brennstoff 12 verwendet, so strömt dieser durch die Düse 11 und wird in einem spitzen Winkel in den Brennerinnenraum 17 eingedüst, wobei sich ein homogener Brennstoffspray einstellt. Das kegelige Flüssigbrennstoffprofil 23 wird von einem tangential einströmenden rotierenden Verbrennungsluftstrom 7 umschlossen. In axialer Richtung wird die Konzentration des Flüssigbrennstoffes 12 fortlaufend durch die eingemischte Verbrennungsluft 7 verringert. Die optimale Brennstoffkonzentration über den Querschnitt wird erst im Bereich des Wirbelaufplatzens, d.h. im Bereich der inneren Rezirkulationszone 24 erreicht. Die Zündung erfolgt an der Spitze der inneren Rezirkulationszone 24. Diese wird im sogenannten Kopfstufenbetrieb (nicht dargestellt) mit Zusatzbrennstoff versorgt. Erst an dieser Stelle entsteht eine stabile Flammenfront 25. Die Flammenstabilisation ergibt sich durch Zunahme der Drallzahl in Strömungsrichtung entlang der Kegelachse. Ein Rückschlagen der Flamme in das Innere des Brenners tritt unter normalen Betriebsbedingungen nicht auf.
Wird gasförmiger Brennstoff 16 verbrannt, so geschieht die Gemischbildung mit der Verbrennungsluft 7 in den Lufteintrittsschlitzen 5, 6, also vor Eintritt in den Brennerinnenraum 8.
Erfindungsgemäss sind im Bereich der Brennersichel 26 eine Reihe von Bohrungen 27 angeordnet, die der Zufuhr und Einmischung von zusätzlichem gasförmigem Brennstoff 16 in die äussere Rezirkulationszone 28 dienen. Der zusätzliche gasförmige Brennstoff 16 kann im Extremfall auch nur über eine einzige in der Brennersichel 26 angeordnete Bohrung 27 in die äussere Rezirkulationszone 28 eingebracht werden.
Wie aus Fig. 2 hervorgeht, befindet sich diese äussere Rezirkulationszone 28 im äusseren Bereich des Brennraumes 17, nahe der Wand der Brennkammer 21.
Die Bohrungen 27 können in verschiedener Weise in der Brennersichel 26 angeordnet sein, beispielsweise parallel zur Brennerachse 22. In anderen Ausführungsbeispielen können sie auch unter einem Winkel zur Brennerachse 22 von etwa 45° schräg nach aussen angeordnet sein , so dass der zusätzliche gasförmige Brennstoff 16 in Richtung Brennkammerwand eingedüst wird. Besonders vorteilhaft ist es, wenn die Bohrungen 27 so angeordnet sind, dass der zusätzliche gasförmige Brennstoff 16 in Gegendrallrichtung zur Rezirkulationsströmung eingebracht wird, weil dann eine besonders intensive Mischung des Zusatzbrennstoffes mit dem rezirkulierendem Abgas erfolgt und die darauf beruhende Flammenstabilisierung besonders hoch ist.
Der Brenner ist erfindungsgemäss so zu betreiben, dass nur etwa 3 bis 8% des gesamten gasförmigen Brennstoffes durch die Öffnungen 27 in die äussere Rezirkulationszone 28 gelangen. Da an dieser Stelle bereits die Kühlluft 20 beigemischt ist und die rezirkulierenden Abgase bereits einen Teil ihrer fühlbaren Wärme an die Frontplatte 18 abgegeben haben, bewirkt diese zusätzliche Brennstoffzugabe keine nennenswerte Erhöhung der NOx-Emissionen. Dies trifft insbesondere dann zu, wenn die Eindüsungen genügend klein sind, um eine Stabilisierung an den Eintrittsstrahlen zu vermeiden. Nach der Brennstoffeinmischung erfolgt nach einer gewissen Zündverzugszeit Selbstzündung und zwar kurz vor oder direkt an der äusseren Scherschicht des austretenden Brennstoff/Luft-Gemisches.
Durch die Erfindung wird eine externe Zusatzstabilisierung (durch Minipiloten) realisiert, die u.a. zu einer Erweiterung des Betriebsbereiches des Brenners und zu einer erhöhten Flammenstabilität führt.
Messungen an einem perfekt vorgemischten Versuchsbrenner haben gezeigt, dass eine Verschiebung der mageren Löschgrenze um ca. 100K zu kleineren Temperaturen hin mit einer sehr geringen Zunahme der Schadstoffemissionen (zusätzlich ca. 1,5 vppmd 15%O2, d.h. Konzentration des NOx im trockenen Abgas) möglich ist.
In Fig. 4 ist in einem Querschnitt eine konkrete Ausführung der Erfindung dargestellt. Der Querschnitt zeigt den Bereich der Brenneraustrittssichel 26. In der Sichel 26 sind an 14 Positionen am Umfang mit einer Winkelteilung von etwa 10° Bohrungen 26 mit einem Durchmesser von 0,8mm angeordnet. Die Anzahl und Grösse der Bohrungen 26 wurde so gewählt, dass ca. 3% des gesamten Brennstoffmassenstromes dort austreten und in die in Fig. 4 nicht dargestellte äussere Rezirkulationszone 28 eingemischt werden.
Die erfindungsgemässe Lösung kann ebenso auch für Brenner verwendet werden, die aus mehr als zwei Teilkegelkörpern bestehen, z.B. für sogenannte Vierschlitzbrenner. Die Bohrungen 27 können ausserdem sowohl in ihrer Anzahl als auch in ihrer Position in der Brennersichel 26 variieren. Es ist lediglich darauf zu achten, dass der zusätzliche Brennstoffmassenstrom, der in die äussere Rezirkulationszone eingemischt wird, nicht mehr als ca. 8% des Gesamtbrennstoffes ausmacht.
Bezugszeichenliste
1
Teilkegelkörper
2
Teilkegelkörper
3
Mittelachse von Pos. 1
4
Mittelachse von Pos. 2
5
tangentialer Lufteintrittsschlitz
6
tangentialer Lufteintrittsschlitz
7
Verbrennungsluft
8
Brennerinnenraum
9
zylindrischer Anfangsteil von Pos. 1
10
zylindrischer Anfangsteil von Pos. 2
11
Brennstoffdüse
12
flüssiger Brennstoff
13
Brennstoffleitung für Pos. 16
14
Brennstoffleitung für Pos. 16
15
Brennstoffinjektor für Pos. 16
16
gasförmiger Brennstoff
17
Brennraum
18
Frontplatte
19
Bohrung für Pos. 20
20
Verdünnungs- bzw. Kühlluft
21
Brennkammer
22
Brennerachse
23
Flüssigbrennstoffprofil
24
innere Rezirkulationszone
25
Flammenfront
26
Brennersichel
27
Bohrung
28
äussere Rezirkulationszone

Claims (5)

  1. Brenner zum Verbrennen von flüssigen (12) und gasförmigen Brennstoffen (16), bestehend aus mindestens zwei hohlen, sich zu einem Körper ergänzenden Teilkegelkörpern (1, 2), mit tangentialen Lufteintrittsschlitzen (5, 6) und mit Zuführungen (13, 14) für gasförmige Brennstoffe (16), bei welchem die Mittelachsen (3, 4) der hohlen Teilkegelkörper (1, 2) eine in Strömungsrichtung sich erweiternde Kegelneigung aufweisen und in Längsrichtung zueinander versetzt verlaufen, wobei im von den Teilkegelkörpern (1, 2) gebildeten kegelförmigen Innenraum (8) am Brennerkopf eine Brennstoffdüse (11) für den flüssigen Brennstoff (12) plaziert ist und die Zuführungen (13, 14) für den gasförmigen Brennstoff (16) mit Brennstoffinjektoren (15) versehen sind, und Lufteintrittsschlitze (5, 6) brennraumseitig durch eine Brennersichel (26) abgeschlossen sind, dadurch gekennzeichnet, dass in der Brennersichel (26) mindestens eine Bohrung (27) angeordnet ist, welche zur Zufuhr von gasförmigem Brennstoff (16) vorgesehen ist.
  2. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Bohrung (27) parallel zur Brennerachse (22) angeordnet ist.
  3. Brenner nach Anspruch 1, dadurch gekennzeichnet, dass die mindestens eine Bohrung (27) unter einem Winkel zur Brennerachse (22), vorzugsweise von 45°, schräg nach aussen angeordnet ist.
  4. Verfahren zum Betrieb eines Brenners nach einem der Ansprüche 1 bis 3, wobei im Innenraum (8) des Brenners eine in Strömungsrichtung sich ausbreitende, die Wände des Innenraumes (8) nicht benetzende kegelförmige Flüssigbrennstoffsäule(23) gebildet wird, welche von einem tangential in den Brenner einströmenden rotierenden Verbrennungsluftstrom (7) umschlossen wird, und/oder dem Verbrennungsluftstrom (7) vor seiner Einströmung in den Innenraum (8) des Brenners gasförmiger Brennstoff(16) zugeführt wird, die Zündung des Gemisches erst am Ausgang des Brenners stattfindet, und im Bereich der Brennermündung durch eine innere Rezirkulationszone (24) die Flamme stabilisiert wird, dadurch gekennzeichnet, dass 3 bis 8% des Gesamtbrennstoffmassenstromes in eine äussere Rezirkulationszone (28) eingemischt werden.
  5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, dass der in die äussere Rezirkulationszone (28) eingemischte Brennstoff (16) entgegen zur Drallrichtung der Rezirkulationsströmung eingedüst wird.
EP97810385A 1996-06-29 1997-06-18 Vormischbrenner und Verfahren zum Betrieb des Brenners Expired - Lifetime EP0816759B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19626240 1996-06-29
DE19626240A DE19626240A1 (de) 1996-06-29 1996-06-29 Vormischbrenner und Verfahren zum Betrieb des Brenners
US08/865,102 US5782627A (en) 1996-06-29 1997-05-29 Premix burner and method of operating the burner

Publications (3)

Publication Number Publication Date
EP0816759A2 EP0816759A2 (de) 1998-01-07
EP0816759A3 EP0816759A3 (de) 1998-11-11
EP0816759B1 true EP0816759B1 (de) 2003-01-08

Family

ID=26027058

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97810385A Expired - Lifetime EP0816759B1 (de) 1996-06-29 1997-06-18 Vormischbrenner und Verfahren zum Betrieb des Brenners

Country Status (5)

Country Link
US (1) US5782627A (de)
EP (1) EP0816759B1 (de)
JP (1) JPH1061916A (de)
CN (1) CN1170844A (de)
DE (1) DE19626240A1 (de)

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19839085C2 (de) 1998-08-27 2000-06-08 Siemens Ag Brenneranordnung mit primärem und sekundärem Pilotbrenner
US6672862B2 (en) 2000-03-24 2004-01-06 North American Manufacturing Company Premix burner with integral mixers and supplementary burner system
GB2362847A (en) * 2000-06-02 2001-12-05 Hamworthy Combustion Eng Ltd Fuel burner nozzle
US6360776B1 (en) * 2000-11-01 2002-03-26 Rolls-Royce Corporation Apparatus for premixing in a gas turbine engine
AU2003226079A1 (en) * 2002-04-09 2003-10-27 Sapias, Inc. Asset management platform
US6623267B1 (en) 2002-12-31 2003-09-23 Tibbs M. Golladay, Jr. Industrial burner
US20040202977A1 (en) * 2003-04-08 2004-10-14 Ken Walkup Low NOx burner
WO2006058843A1 (de) * 2004-11-30 2006-06-08 Alstom Technology Ltd Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner
WO2006069861A1 (de) * 2004-12-23 2006-07-06 Alstom Technology Ltd Vormischbrenner mit mischstrecke
DE102006005386B4 (de) * 2006-02-03 2009-04-09 Uhde Gmbh Gasbrenner mit optimierter Düsenanordnung
US20090301054A1 (en) * 2008-06-04 2009-12-10 Simpson Stanley F Turbine system having exhaust gas recirculation and reheat
CN102128453A (zh) * 2011-01-28 2011-07-20 岳阳科德科技有限责任公司 预燃式燃烧器
US8984887B2 (en) * 2011-09-25 2015-03-24 General Electric Company Combustor and method for supplying fuel to a combustor
CZ2014412A3 (cs) * 2014-06-13 2016-04-06 Vysoké Učení Technické V Brně Hořáková hlava injektorového stabilizačního hořáku
US10739006B2 (en) * 2017-03-15 2020-08-11 General Electric Company Fuel nozzle for a gas turbine engine
US10982846B2 (en) * 2017-06-14 2021-04-20 Webster Combustion Technology Llc Vortex recirculating combustion burner head

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2302483A1 (fr) * 1975-02-28 1976-09-24 Heurtey Efflutherm Procede et dispositif d'evaporation et d'oxydation thermique d'effluents liquides
DE3446788A1 (de) * 1984-12-21 1986-07-03 L. & C. Steinmüller GmbH, 5270 Gummersbach Flammenverdampfungsbrenner mit vorbrennkammer
DE3662462D1 (en) * 1985-07-30 1989-04-20 Bbc Brown Boveri & Cie Dual combustor
CH674561A5 (de) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
US4863371A (en) * 1988-06-03 1989-09-05 Union Carbide Corporation Low NOx high efficiency combustion process
JP2713627B2 (ja) * 1989-03-20 1998-02-16 株式会社日立製作所 ガスタービン燃焼器、これを備えているガスタービン設備、及びこの燃焼方法
CH682952A5 (de) * 1991-03-12 1993-12-15 Asea Brown Boveri Brenner für eine Vormischverbrennung eines flüssigen und/oder gasförmigen Brennstoffes.
CH684962A5 (de) * 1991-07-03 1995-02-15 Asea Brown Boveri Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder einer Feuerungsanlage.
EP0548396B1 (de) * 1991-12-23 1995-02-22 Asea Brown Boveri Ag Vorrichtung für die Vermischung zweier gasförmiger Komponenten und Brenner, in welchem diese Vorrichtung eingesetzt wird
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle
DE4304213A1 (de) * 1993-02-12 1994-08-18 Abb Research Ltd Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
DE4411623A1 (de) * 1994-04-02 1995-10-05 Abb Management Ag Vormischbrenner
DE4416650A1 (de) * 1994-05-11 1995-11-16 Abb Management Ag Verbrennungsverfahren für atmosphärische Feuerungsanlagen

Also Published As

Publication number Publication date
EP0816759A2 (de) 1998-01-07
JPH1061916A (ja) 1998-03-06
DE19626240A1 (de) 1998-01-02
EP0816759A3 (de) 1998-11-11
CN1170844A (zh) 1998-01-21
US5782627A (en) 1998-07-21

Similar Documents

Publication Publication Date Title
EP0503319B1 (de) Brenner für eine Vormischverbrennung eines flüssigen und/oder gasförmigen Brennstoffes
EP0321809B1 (de) Verfahren für die Verbrennung von flüssigem Brennstoff in einem Brenner
EP0816759B1 (de) Vormischbrenner und Verfahren zum Betrieb des Brenners
EP0387532B1 (de) Brennkammer einer Gasturbine
DE4446945B4 (de) Gasbetriebener Vormischbrenner
EP0401529B1 (de) Brennkammer einer Gasturbine
WO2006069861A1 (de) Vormischbrenner mit mischstrecke
DE19510744A1 (de) Brennkammer mit Zweistufenverbrennung
EP0433790A1 (de) Brenner
DE10050248A1 (de) Brenner
EP0433789A1 (de) Verfahren für eine Vormischverbrennung eines flüssigen Brennstoffes
EP0394800B1 (de) Vormischbrenner für die Heissgaserzeugung
EP0481111A1 (de) Brennkammer einer Gasturbine
DE69720155T2 (de) Verbrennungsverfahren mit einer tangentialen Zweistromdüse
EP0742411B1 (de) Luftzuströmung zu einer Vormischbrennkammer
EP0924458B1 (de) Brenner
EP0483554B1 (de) Verfahren zur Minimierung der NOx-Emissionen aus einer Verbrennung
EP0807787B1 (de) Brenner
DE4242003A1 (de) Prozesswärmeerzeuger
DE4412315A1 (de) Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbine
EP0866268B1 (de) Verfahren zum Betrieb eines drallstabilisierten Brenners sowie Brenner zur Durchführung des Verfahrens
DE4422535A1 (de) Verfahren zum Betrieb einer Feuerungsanlage
EP0730121A2 (de) Vormischbrenner
EP0740108A2 (de) Brenner
DE19704802A1 (de) Vorrichtung und Verfahren zum Verbrennen von Brennstoff

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB IT

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): AT BE CH DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

RHK1 Main classification (correction)

Ipc: F23C 7/00

17P Request for examination filed

Effective date: 19990423

AKX Designation fees paid

Free format text: DE FR GB IT

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20020405

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: ALSTOM (SWITZERLAND) LTD

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRE;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.SCRIBED TIME-LIMIT

Effective date: 20030108

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030108

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 59709072

Country of ref document: DE

Date of ref document: 20030213

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030315

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

EN Fr: translation not filed
26N No opposition filed

Effective date: 20031009

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080620

Year of fee payment: 12

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080620

Year of fee payment: 12

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090618

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101