EP0806705A1 - Procédé de traitement d'un produit photographique à l'halogénure d'argent - Google Patents

Procédé de traitement d'un produit photographique à l'halogénure d'argent Download PDF

Info

Publication number
EP0806705A1
EP0806705A1 EP97201329A EP97201329A EP0806705A1 EP 0806705 A1 EP0806705 A1 EP 0806705A1 EP 97201329 A EP97201329 A EP 97201329A EP 97201329 A EP97201329 A EP 97201329A EP 0806705 A1 EP0806705 A1 EP 0806705A1
Authority
EP
European Patent Office
Prior art keywords
latex
silver halide
processing
gelatin
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP97201329A
Other languages
German (de)
English (en)
Inventor
Hubert Vandenabeele
Hendrik Lambrecht
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Agfa Gevaert NV
Original Assignee
Agfa Gevaert NV
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Agfa Gevaert NV filed Critical Agfa Gevaert NV
Priority to EP97201329A priority Critical patent/EP0806705A1/fr
Publication of EP0806705A1 publication Critical patent/EP0806705A1/fr
Withdrawn legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/16X-ray, infrared, or ultraviolet ray processes
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/7614Cover layers; Backing layers; Base or auxiliary layers characterised by means for lubricating, for rendering anti-abrasive or for preventing adhesion
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C1/00Photosensitive materials
    • G03C1/76Photosensitive materials characterised by the base or auxiliary layers
    • G03C1/7614Cover layers; Backing layers; Base or auxiliary layers characterised by means for lubricating, for rendering anti-abrasive or for preventing adhesion
    • G03C2001/7635Protective layer
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C5/00Photographic processes or agents therefor; Regeneration of such processing agents
    • G03C5/16X-ray, infrared, or ultraviolet ray processes
    • G03C2005/168X-ray material or process
    • GPHYSICS
    • G03PHOTOGRAPHY; CINEMATOGRAPHY; ANALOGOUS TECHNIQUES USING WAVES OTHER THAN OPTICAL WAVES; ELECTROGRAPHY; HOLOGRAPHY
    • G03CPHOTOSENSITIVE MATERIALS FOR PHOTOGRAPHIC PURPOSES; PHOTOGRAPHIC PROCESSES, e.g. CINE, X-RAY, COLOUR, STEREO-PHOTOGRAPHIC PROCESSES; AUXILIARY PROCESSES IN PHOTOGRAPHY
    • G03C2200/00Details
    • G03C2200/36Latex

Definitions

  • the invention is related to a processing method of a light-sensitive silver halide photographic material having satisfactory surface characteristics after rapid processing in hardener free processing solutions.
  • a solution for this may be offered by coating a thicker antistress layer with an increased amount of binder e.g. gelatin.
  • binder e.g. gelatin.
  • these increased amounts have the advantage of giving rise to more surface glare after processing, an inadmissable contamination or sludge formation may occur in the processing solutions.
  • a thicker antistress layer may retard the processing and drying velocity. This is obviously contradictory to the trend to develop rapid processing systems with films having thin coating layers.
  • fixing solutions free from aluminum ions as a source of hardening agent provide the possibility to enhance the pH value and to reduce the unagreable odour thereof.
  • the objects of the present invention can be attained by a method of processing an image-wise exposed light-sensitive silver halide material by the steps of developing, fixing in a fixer solution containing less than 4 g per litre of aluminum ions expressed as an equivalent amount of aluminum sulphate, rinsing and drying; characterised in that said material comprises a support and on one or both sides thereof at least one light-sensitive silver halide emulsion layer and a gelatinous protective antistress layer, wherein said antistress layer comprises at least one polymer latex in such an amount that there is a ratio by weight of latex to gelatin from 0.5 to 1.5 (more preferably from 0.9 to 1.5) and wherein said material is hardened to such an extent that its swelling degree after immersing said material for 3 minutes in demineralised water of 25 °C is not more than 300 % (and more preferably not more than 200 %).
  • Preferred polymer latices used in the protective antistress layer of the light-sensitive silver halide material used in the processing method according to the present invention are cross-linked polymers and are prepared as described e.g. in US-A 4,301,240 by emulsion polymerisation of aliphatic esters of acrylic and/or methacrylic acid in water in the presence of polyfunctional cross-linking monomers and an emulsifier, followed by saponification of the obtained copolymer.
  • emulsion polymerisation copolymers with a molecular weight well above 500,000 are obtained and the average particle size of the latex is smaller than 150 nm.
  • Another example of the synthesis of ionic cross-linked copolymers can further be found e.g. in EP-A 0 452 568 and the corresponding US-A 5,472,832.
  • a preferred latex of an ionic copolymer for use in the gelatinous protective antistress layer of a light-sensitive silver halide material is a copolymer of butylmethacrylate and acrylamide-N-isobutylsulphonic acid sodium salt as represented in the formula (I).
  • a particularly preferred latex is a polyurethane latex, which is preferably in the form of a dispersion of an aliphatic anionic polyurethane.
  • IMPRANIL 43056 trademarked product from BAYER AG, Leverkusen, Federal Republic of Germany
  • This IMPRANIL-latex is a 40 % aqueous dispersion of polyurethane prepared from DESMODUR W (trademarked product from BAYER AG), which is a dicyclohexylmethane diisocyanate, and a polyester having a low molecular weight of about 800.
  • the average particle size of the latex may vary between 0.02 and 0.2 ⁇ m.
  • the polyurethane is added to the coating solution as an aqueous latex dispersion.
  • An especially useful polyurethane is the one having a highqual amount of urethane groups, in order to get a high degree of cross-linking and as a consequence low tendency to sticking. Moreover the presence of a lubricant in an outermost afterlayer on top of the protective antistress layer comprising said polyurethane dispersion may be favorable.
  • Said polyurethane latex can moreover be loaded with e.g. a developing agent by addition of the aqueous loadable polyurethane latex to a solution of useful agent(s) as e.g. a developing agent in a water-miscible organic solvent as e.g. acetone, or by simultaneous addition of said latex and said solution to an aqueous gelatinous solution as gelatin is a preferred binder for this loaded latex.
  • a mixture of developing agents including a dihydroxybenzene like hydroquinone and a 3-pyrazolidine-1-one developing agent as e.g.
  • 1-phenyl-3-pyrazolidine-1-one also known as "phenidone", being an electron transfer agent or super additive developer, can be used in combination, in that case preferably in a respective molar ratio of from 2/1 to 10/1.
  • dihydroxybenzene or dihydroxybenzenes is (are) preferably present in an amount of from 0.05 to 0.5 g for a coverage of silver halide equivalent with 1 g of silver nitrate.
  • Ascorbic acid, iso-ascorbic acid whether or not in combination with the preferred developing agent(s) can also be used. In this way a so-called "activation material" can be obtained which can be developed by means of an alkaline solution.
  • the latex should be present in the gelatinous protective layer(s) of the material to be processed in an amount in order to reduce the relative deviation of glare measured by reflection measurements as described in ASTME-D523 at a reflection angle of 60° to a value of not more than 2 %. Therefore measurements of glare are performed by means of a reflectometer under an angle of 60° at 10 different sites at the processed film surface in two different developing conditions: one in the presence in the fixer solution of at least 4 g of aluminum expressed as an equivalent amount of aluminum sulphate in the processing solutions and one in the absence thereof as will become clear from the Examples.
  • the commercially available G334 fixer trademarked product from Agfa-Gevaert NV, used in the tests, contains 5.44 g of aluminum sulphate in a fixer solution ready-for-use.
  • developer solutions may contain a hardening agent, but in a preferred embodiment said solutions are also free from hardening agents.
  • said latex polymer(s) coated in the gelatinous protective antistress layer is (are) present in an amount of at least 50 % by weight versus the total amount of gelatin present therein as a binder, and even more preferably in an amount of at least 90%.
  • the maximum ratio by weight of latex polymer(s) to gelatin binder is preferably 1.5.
  • said latex-type (co)polymers may optionally be present in a gelatin free afterlayer (if present) applied over the protective antistress layer and even in one or more emulsion layer(s) coated between said protective antistress layer and a subbed support, the subbing layer of which may be overcoated with at least one gelatinous intermediate layer.
  • the swelling degree of said photographic material to be processed according to the method of this invention after immersing said material for 3 minutes in demineralised water of 25 °C shouldn't exceed 300 % and even more preferred shouldn't exceed 200 %.
  • Said swelling degree expresses the requirement to sufficiently harden the binder in the light-sensitive silver halide photographic material used in processing method of this invention.
  • the following method is applied. After incubating a sample of a light-sensitive silver halide photographic material at 57 °C and 34 % RH for 3 days the thickness (a) of the layer assemblage is measured. Thereafter the sample is immersed in distilled water at 21°C for 3 minutes and the thickness (b) of the swollen layer is measured by means of the technique described in US-A 4,414,304.
  • the swelling ratio is then calculated as: (b-a) /a x 100 (%).
  • Layers and layer arrangements which can be applied to the film material in the processing method according to the present invention are those described in EP-A 0 752 617, in EP-A's 0 712 036 and 0 712 034, in EP-A's 0 677 773 and 0 678 772, in EP-A's 0 610 608; 0 610 609 and in EP-A 0 569 075, in US-A's 4,092,168 and 4,311,787; in DE 2,453,217 and in GB Patent 7,907,440.
  • the gelatin coverage in the protective layer is preferably not higher than about 1.50 g per m 2 and is more preferably in the range from 0.60 to 1.50 g per m 2 .
  • hydrophilic colloid binders differing from gelatin that can be homogeneously mixed therewith are e.g. other proteinaceous colloids, polysaccharides as e.g. starch and polydextranes, as well as synthetic substitutes for gelatin as e.g.
  • poly-N-vinylpyrrolidone polyvinyl alcohol, polyacrylamide, polyacrylic acid, polymethylacrylate, polyethyl-acrylate, polymethyl-methacrylate, polyethylmethacrylate, polyvinyl imidazole, polyvinyl pyrazole and derivatives thereof as well as styrene-male ⁇ c acid or a styrene-male ⁇ c acid anhydrid type copolymer.
  • gelatin Conventional lime-treated or acid treated gelatin can be used. The preparation of such gelatin types has been described in e.g. "The Science and Technology of Gelatin", edited by A.G. Ward and A. Courts, Academic Press 1977, page 295 and next pages.
  • the gelatin can also be an enzyme-treated gelatin as described in Bull. Soc. Sci. Phot. Japan, N° 16, page 30 (1966).
  • said gelatin can be replaced in part or integrally by synthetic polymers as cited hereinbefore or by natural or semi-synthetic polymers. Natural substitutes for gelatin are e.g.
  • Semi-synthetic substitutes for gelatin are modified natural products as e.g. gelatin derivatives obtained by conversion of gelatin with alkylating or acylating agents or by grafting of polymerisable monomers on gelatin, and cellulose derivatives such as hydroxyalkyl cellulose, carboxymethyl cellulose, phthaloyl cellulose, and cellulose sulphates.
  • gelatin in the antistress layer is partially replaced by colloidal silica as it gives rise to a further improvement of the obtained properties of the material processed according to the method of this invention.
  • colloidal silica having an average particle size of not larger than 10 nm and with a surface area of at least 300 m 2 per gram is used.
  • Especially preferred colloidal silica particles have a surface area of 500 m2 per gram and an average grain size smaller than 7 nm.
  • Such type of silica is sold under the name KIESELSOL 500 (KIESELSOL is a registered trade name of Bayer AG, Leverkusen, Germany).
  • Colloidal silica is preferably present at a coverage of at least 50 mg per m 2 . Further the coverage of said colloidal silica in the antistress layer is preferably in the range of 50 mg to 500 mg per m 2 .
  • the antistress layer may further contain friction-lowering substance(s) such as dispersed wax particles (carnaubawax or montanwax) or polyethylene particles, fluorinated polymer particles, silicon polymer particles etc. in order to further reduce the sticking tendency of the layer especially in an atmosphere of high relative humidity.
  • friction-lowering substance(s) such as dispersed wax particles (carnaubawax or montanwax) or polyethylene particles, fluorinated polymer particles, silicon polymer particles etc.
  • the gelatin binder can be forehardened with appropriate hardening agents such as those of the epoxide type, those of the ethylene-imine type, those of the vinylsulfone type as e.g. 1,3-vinylsulphonyl-2-propanol, bis-vinyl-sulphonyl methyl or bis-vinyl sulphonyl ethyl ether, hydroxy substituted vinyl sulphonyl hardeners, chromium salts as e.g. chromium acetate and chromium alum, aldehydes as e.g.
  • non-ionic surfactant(s) having antistatic characteristics such as e.g. polyoxyethylene compounds.
  • said surfactant(s) is (are) present in an optionally present outermost layer at the side of the support where the emulsion layer(s) has (have) been coated.
  • Said layer may be a gelatin free afterlayer or a thin gelatinous layer.
  • a latex polymer having antistatic properties is added to the protective antistress layer containing the latex polymer(s) set forth hereinbefore.
  • a preferred one is the latex of a cross-linked polymer, being a copolymer of an acrylic and/or methacrylic acid ester including 90-99 mole % of acrylate and/or methacrylate units and 1 to 10 mole % of tetraallyloxyethane units as polyfunctional crosslinking monomer, wherein in said copolymer at least 75 % of the ester groups have been transformed into alkali metal carboxylate groups, thus exhibiting ionic characteristics: especially preferred as a cross-linked ionic polymer is poly([c.l.]tetraallyloxyethane-co-methyl acrylate/acrylic acid), the formula (II) of which is given hereinafter with a preferable 3/18/79 molar ratio set forth in EP-A 0 644 456
  • a gelatin-free antistatic afterlayer may further comprise spacing agents and coating aids such as wetting agents as e.g. perfluorinated surfactants.
  • Spacing agents which may also be present in the protective antistress layer generally have an average particle size which is comprised between 0.2 and 10 ⁇ m. Spacing agents can be soluble or insoluble in alkali. Alkali-insoluble spacing agents usually remain permanently in the photographic element, whereas alkali-soluble spacing agents usually are removed therefrom in an alkaline processing bath. Suitable spacing agents can be made i.a. of polymethyl methacrylate, of copolymers of acrylic acid and methyl methacrylate, and of hydroxypropylmethyl cellulose hexahydrophthalate. Other suitable spacing agents have been described in US-A 4,614,708.
  • the coating of the layers of the material used in the processing method according to the present invention may proceed by any coating technique known in the art, e.g. by doctor blade coating, air knife coating, curtain coating, slide hopper coating or meniscus coating, which are coating techniques known from the production of photographic silver emulsion layer materials.
  • the spray coating technique known from US-A 4,218,533, may be applied if an afterlayer is present.
  • preferred thickening agents include aqueous polymers such as polystyrene sulphonic acid, sulphuric acid esters, polysaccharides, polymers having a sulphonic acid group, a carboxylic acid group or a phosphoric acid group, polyacrylamide, polymethacrylic acid or its salt, copolymers from acrylamide and methacrylic acid and salts derived thereof, copolymers from 2-acrylamido-2-methyl-propansulphonic acid, polyvinyl alcohol, alginate, xanthane, carraghenan, synthetic (smectite) clays and the like.
  • aqueous polymers such as polystyrene sulphonic acid, sulphuric acid esters, polysaccharides, polymers having a sulphonic acid group, a carboxylic acid group or a phosphoric acid group, polyacrylamide, polymethacrylic acid or its salt, copolymers from acrylamide and methacrylic acid and
  • Polymeric thickeners well-known from the literature resulting in thickening of the coating solution may be used independently or in combination.
  • Patents concerning thickening agents are e.g. US-A 3,167,410, Belgian Patent No. 558.143, JP-A's 53/18687 and 58/36768 and DE 3 836 945.
  • the silver halide photographic material may contain in the light-sensitive emulsion layer(s) and/or in one or more layers in water-permeable relationship with said silver halide emulsion layer(s) any of the kinds of compounds customarily used in such layers for improving the photographic process, manufacture or preservability (storage).
  • such layers may incorporate one or more coating aids, stabilising agents or antifogging agents as described e.g. in GB-P 1,007,020 filed March 6, 1963 by Agfa A.G., plasticizers, development-modifying agents e.g.
  • thioethers acting as silver chelating agents with at least two sulphur atoms as donors are used.
  • a survey of thioether compounds suitable for incorporation in silver halide emulsion layers of widely varying silver halide composition has been given in the EP-A 0 026 520. Useful compounds have further been described in EP-A's 0 634 688 and 0 674 215.
  • Silver halide emulsion crystals used in the silver halide emulsion layer(s) of the material processed according to the method of the present invention are composed of silver chloride, silver chlorobromide, silver chloroiodide, silver chlorobromoiodide, silver bromide or silver bromoiodide. Regular as well as tabular crystals may be present, as well as mixtures thereof. Crystals having a different crystal habit may be coated in different layers as e.g. in EP-Application No. 95202897, filed October 25, 1995.
  • Silver halide crystals having a regular crystal habit preferably have an average grain size of at least 0.15 ⁇ m, up to at most 1.2 ⁇ m, more preferably up to 1.0 ⁇ m and still more preferably up to 0.8 ⁇ m.
  • Silver halide crystals having tabular ⁇ 111 ⁇ major faces accounting for at least 50 % of the total projected area preferably have an average diameter from 0.5 to 2.5 ⁇ m and an average thickness from 0.06 to at most 0.3 ⁇ m, and even more preferred to at most 0.2 ⁇ m.
  • Said silver halide crystals may have been prepared in gelatin and/or in colloidal silica as a protective colloid. Preparations in colloidal silica have e.g. been described in EP-A 0 754 964; in EP-A's 0 677 773; 0 682 287 and 0 649 051.
  • Supports and subbing layers coated adjacent thereto can be those as described in Chapter XV of RD 36544 and RD 38957 (published September 1994 and September 1996 respectively), polyethylene naphthalate inclusive.
  • the hydrophobic resin support may be provided with one or more subbing layers known to those skilled in the art for adhering thereto a hydrophilic colloid layer.
  • Suitable subbing layers for polyethylene terephthalate supports are described e.g. in US-A 3,397,988, 3,649,336, 4,123,278 and 4,478,907.
  • a useful subbing layer is disclosed e.g. in JP-A 01 166 031.
  • Vinylidene chloride and styrene-butadiene copolymers are the most well-known polymers for practical use as subbing layer ingredients in the material to be processed according to the method of this invention.
  • Photographic silver halide emulsion materials suitable for use in the processing method of the present invention are materials for continuous tone or halftone photography, microphotography and radiography, in black-and-white as well as colour photographic materials. Said materials are thus selected from the group consisting of materials having one or more light-sensitive silver halide emulsion layers at one or at both sides of the support. Preferred materials are X-ray materials, single-side as well as double side coated, and more preferred medical X-ray materials.
  • Said materials may be imagewise exposed by means of any radiation source, depending on their application as has been described e.g. in RD's 36544 and 38957, chapter XVI.
  • Ecological advantages of the processing method of said imagewise exposed materials according to the method of the present invention are related with the use of fixer solutions ready-for-use containing less than 4 g of aluminum per liter expressed as an equivalent amount of aluminum sulphate and, more preferably, without aluminum ions.
  • the developer is free from the generally used well-known glutardialdehyde hardener.
  • a time saving factor is the total processing time: rapid processing proceeds within a time of less than 90 seconds, more preferred within a time of less than 50 seconds e.g. within a time from 20 to 45 seconds, in automatic processing machines as e.g. CURIX HT 530, trade marketed product from Agfa-Gevaert N.V..
  • fixers having high sodium thiosulphate concentrations are preferred over fixers containing ammonium thiosulphate. They are useful in those circumstances wherein no replenishment system is available or where it is desirable to minimise the replenishment amounts. Such fixers retain a high silver binding capacity and a sufficient fixing speed even after prolonged continuous processing without replenishment or with minimum replenishment. An example thereof has been given in Research Disclosure 355 039, p. 736-737, published November 1, 1993.
  • drying preferably proceeds by means of infrared drying means as has e.g. been described in EP-A 0 620 482 for non-destructive testing film materials.
  • infrared drying means as has e.g. been described in EP-A 0 620 482 for non-destructive testing film materials.
  • the improvement of surface characteristics is in the best mode, especially thanks to the composition of the antistress layer.
  • a photographic material was prepared composed of
  • reaction vessel 41.3 ml of solutions 1 and 2 were introduced into a reaction vessel in 28 seconds using the double jet technique.
  • Said reaction vessel initially contained 2.16 liter of destilled water at 45°C, 12.6 grams of potassium bromide and 12.5 grams of gelatin. After one minute the reaction temperature of this mixture was raised to 70°C in 20 minutes and 47.5 grams of phthalated gelatin in 475 ml destilled water were added. After 10 minutes the neutralisation step was started.
  • a double jet precipitation was started using solutions 1 and 2 which continued for 40 minutes 51 seconds. During this precipitation, the pBr value was kept constant at 1.63. The flowing rate of solution 1 was 7.5 ml per minute at the start, linearly increasing to 26.7 ml per minute at the end of the precipitation. Thereafter the second neutralisation phase was started.
  • Second growth step (during which 47.0 % of the total amount of AgNO 3 was used):
  • Emulsions 1 to 4 were each optimally sulphur and gold sensitized in the presence of sodium thiocyanate and anhydro-5,5'-dichloro-3,3'-bis(n.sulfobutyl)-9-ethyloxacarbo-cyanine hydroxide
  • An X-ray photographic material was provided with on top the protective antistress layer covering the silver halide emulsion layer. Use was made of the slide hopper coating technique for simultaneous application of the emulsion coating and the antistress coating.
  • Each emulsion was stabilized with 4-hydroxy-6-methyl-1,3,3a,7-tetra-azaindene and after addition of the normal coating additives the solutions were coated simultaneously together with a protective layer containing 1.1 g gelatine per m 2 per side on both sides of a polyethylene terephthalate film support having a thickness of 175 ⁇ m.
  • the resulting photographic material contained per side an amount of silver halide corresponding to 3.5 grams of AgNO 3 per m 2 .
  • the said protective antistress layer was coated with the following compounds, expressed in grams per square meter per side: gelatin 1.10 polymethylmethacrylate (average particle diameter : 6 ⁇ m) 0.023 1-p-carboxyphenyl-4,4'-dimethyl-3-pyrazolidine-1-one 0.054 C 17 H 15 -CO-NH-(CH 2 -CH 2 -O-) 17 -H 0.0188 formaldehyde 0.1
  • the processing conditions and the composition of the processing solutions is given hereinafter.
  • the processing of the described photographic materials in accordance with this invention proceeds in the processing machine CURIX HT530 (Agfa-Gevaert trademarked name) with the following time (in seconds) and temperature (in °C) characteristics: loading 0.2 sec. developing 9.3 sec. 35°C (developer described below) cross-over 1.4 sec. rinsing 0.9 sec. cross-over 1.5 sec. fixing 6.6 sec. 35°C (fixer described below) cross-over 2.0 sec. rinsing 4.4 sec. 20°C cross-over 4.6 sec. drying 6.7 sec. total 37.6 ⁇ sec.
  • composition of the fixer is Composition of the fixer:
  • ammonium thiosulfate (78% solution) 661 grams sodium sulphite 54 grams boric acid 25 grams sodium acetate-trihydrate 70 grams acetic acid 40 grams water to make 1 liter pH adjusted with acetic acid to 5.30 at 25°C
  • a pH of 5.25 was measured at 25°C.
  • the same materials A and B were processed in the G138 developer and G334 fixer solution, both solutions being trademarked products from Agfa-Gevaert NV, containing glutardialdehyde and aluminum sulphate respectively. G138 and G334 were applied in their normal processing cycle of 90 seconds.

Landscapes

  • Physics & Mathematics (AREA)
  • General Physics & Mathematics (AREA)
  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Materials Engineering (AREA)
  • Silver Salt Photography Or Processing Solution Therefor (AREA)
EP97201329A 1996-05-08 1997-05-02 Procédé de traitement d'un produit photographique à l'halogénure d'argent Withdrawn EP0806705A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP97201329A EP0806705A1 (fr) 1996-05-08 1997-05-02 Procédé de traitement d'un produit photographique à l'halogénure d'argent

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
EP96201260 1996-05-08
EP96201260 1996-05-08
EP97201329A EP0806705A1 (fr) 1996-05-08 1997-05-02 Procédé de traitement d'un produit photographique à l'halogénure d'argent

Publications (1)

Publication Number Publication Date
EP0806705A1 true EP0806705A1 (fr) 1997-11-12

Family

ID=26142776

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97201329A Withdrawn EP0806705A1 (fr) 1996-05-08 1997-05-02 Procédé de traitement d'un produit photographique à l'halogénure d'argent

Country Status (1)

Country Link
EP (1) EP0806705A1 (fr)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022611A1 (fr) * 1999-01-22 2000-07-26 Eastman Kodak Company Couche protectrice de couverture pour éléments photographiques
EP1052542A1 (fr) * 1999-05-14 2000-11-15 Eastman Kodak Company Couche de couverture pour éviter la formation d'un réseau sur la surface des éléments photographiques
EP1146388A1 (fr) * 2000-04-13 2001-10-17 Eastman Kodak Company Couche protectrice en polyuréthane résistante à l'eau pour matériaux d'enregistrement d'images
US6573011B1 (en) 2001-12-21 2003-06-03 Eastman Kodak Company Label with curl and moisture resistant protective layer
WO2004095133A1 (fr) * 2003-04-23 2004-11-04 Konica Minolta Photo Imaging, Inc. Formation d'une image a l'aide d'un materiau photosensible photographique couleur a base d'halogenure d'argent et materiau photosensible photographique couleur a base d'halogenure d'argent

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414304A (en) * 1981-11-12 1983-11-08 Eastman Kodak Company Forehardened high aspect ratio silver halide photographic elements and processes for their use
EP0520393A1 (fr) * 1991-06-25 1992-12-30 EASTMAN KODAK COMPANY (a New Jersey corporation) Elément photographique comprenant une couche protectrice pour l'absorption de contrainte
US5302501A (en) * 1991-10-25 1994-04-12 Fuji Photo Film Co., Ltd. Silver halide photographic material
US5385811A (en) * 1993-04-27 1995-01-31 Fuji Photo Film Co., Ltd. Method for processing silver halide photographic materials
EP0644456A1 (fr) * 1993-09-17 1995-03-22 Agfa-Gevaert N.V. Produit photographique sensible à la lumière avec des propriétés antistatiques conserveés
EP0703491A1 (fr) * 1994-09-26 1996-03-27 Agfa-Gevaert N.V. Matériau photographique à l'halogénure d'argent comprenant un latex dendrimère

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4414304A (en) * 1981-11-12 1983-11-08 Eastman Kodak Company Forehardened high aspect ratio silver halide photographic elements and processes for their use
EP0520393A1 (fr) * 1991-06-25 1992-12-30 EASTMAN KODAK COMPANY (a New Jersey corporation) Elément photographique comprenant une couche protectrice pour l'absorption de contrainte
US5302501A (en) * 1991-10-25 1994-04-12 Fuji Photo Film Co., Ltd. Silver halide photographic material
US5385811A (en) * 1993-04-27 1995-01-31 Fuji Photo Film Co., Ltd. Method for processing silver halide photographic materials
EP0644456A1 (fr) * 1993-09-17 1995-03-22 Agfa-Gevaert N.V. Produit photographique sensible à la lumière avec des propriétés antistatiques conserveés
EP0703491A1 (fr) * 1994-09-26 1996-03-27 Agfa-Gevaert N.V. Matériau photographique à l'halogénure d'argent comprenant un latex dendrimère

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1022611A1 (fr) * 1999-01-22 2000-07-26 Eastman Kodak Company Couche protectrice de couverture pour éléments photographiques
US6232049B1 (en) 1999-01-22 2001-05-15 Eastman Kodak Company Protective overcoat for photographic elements
EP1052542A1 (fr) * 1999-05-14 2000-11-15 Eastman Kodak Company Couche de couverture pour éviter la formation d'un réseau sur la surface des éléments photographiques
EP1146388A1 (fr) * 2000-04-13 2001-10-17 Eastman Kodak Company Couche protectrice en polyuréthane résistante à l'eau pour matériaux d'enregistrement d'images
US6573011B1 (en) 2001-12-21 2003-06-03 Eastman Kodak Company Label with curl and moisture resistant protective layer
EP1321292A2 (fr) * 2001-12-21 2003-06-25 Eastman Kodak Company Etiquette cintrée avec couche résistant à l'humidité
EP1321292A3 (fr) * 2001-12-21 2003-07-23 Eastman Kodak Company Etiquette cintrée avec couche résistant à l'humidité
WO2004095133A1 (fr) * 2003-04-23 2004-11-04 Konica Minolta Photo Imaging, Inc. Formation d'une image a l'aide d'un materiau photosensible photographique couleur a base d'halogenure d'argent et materiau photosensible photographique couleur a base d'halogenure d'argent

Similar Documents

Publication Publication Date Title
US4452882A (en) Silver halide photographic materials and process of developing them
JPH0593977A (ja) アルキルピリジニウム基含有アリールスルホンアミドフエニルヒドラジドを含む高コントラスト写真要素
US5028516A (en) Method of forming an image comprising rapidly developing an infrared sensitized photographic material comprising surfactants
EP0806705A1 (fr) Procédé de traitement d'un produit photographique à l'halogénure d'argent
US5800969A (en) Method of processing a light-sensitive silver halide material
EP0285308B1 (fr) Matériaux photographiques à contraste élevé
US6218094B1 (en) Light-sensitive silver halide material providing improved surface characteristics after processing
EP0345025A1 (fr) Matériau et émulsion d'enregistrement photographique à haut contraste et procédé pour leur développement
US5561038A (en) Silver halide black and white photographic lightsensitive material
JPH04251251A (ja) 高コントラスト現像用現像剤液
EP0992845A1 (fr) Produit photographique à l'halogénure d'argent sensible à la lumière ayant des propriétés de surface améliorées après traitement
US4879209A (en) Photographic proteinaceous layers comprising dextran derivatives
US4820613A (en) Photographic surface layers comprising dextran derivatives
JP2835712B2 (ja) 工業用放射線写真のための材料及びその現像方法
EP0610608B1 (fr) Matériau photographique sensible à la lumière, à base d'halogénure d'argent, pour la restitution d'images médicales enregistrées par laser et méthode de traitement
JP2000122222A (ja) 処理後に改良された表面特性を与える感光性ハロゲン化銀材料
JP3204794B2 (ja) ハロゲン化銀写真感光材料
US6153366A (en) Silver halide photographic light-sensitive material
EP0844520B1 (fr) Matériaux en film comprenant des particules de mattage colorées
JP2843875B2 (ja) ハロゲン化銀写真感光材料の現像処理方法
JP3758101B2 (ja) ハロゲン化銀写真感光材料の現像方法
JP3691205B2 (ja) ハロゲン化銀写真感光材料の処理方法
JP3233720B2 (ja) ハロゲン化銀写真感光材料
JPH06258780A (ja) ハロゲン化銀写真感光材料の処理方法
JP2003302735A (ja) ハロゲン化銀写真感光材料用処理液

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980512

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AGFA-GEVAERT

17Q First examination report despatched

Effective date: 20020228

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20021217