EP0805512B1 - Kompakt gedruckte Antenne mit geringer Strahlung in Elevationsrichtung - Google Patents

Kompakt gedruckte Antenne mit geringer Strahlung in Elevationsrichtung Download PDF

Info

Publication number
EP0805512B1
EP0805512B1 EP97460016A EP97460016A EP0805512B1 EP 0805512 B1 EP0805512 B1 EP 0805512B1 EP 97460016 A EP97460016 A EP 97460016A EP 97460016 A EP97460016 A EP 97460016A EP 0805512 B1 EP0805512 B1 EP 0805512B1
Authority
EP
European Patent Office
Prior art keywords
antenna
mode
radiating element
slots
antenna according
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP97460016A
Other languages
English (en)
French (fr)
Other versions
EP0805512A1 (de
Inventor
Patrice Brachat
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Orange SA
Original Assignee
France Telecom SA
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by France Telecom SA filed Critical France Telecom SA
Publication of EP0805512A1 publication Critical patent/EP0805512A1/de
Application granted granted Critical
Publication of EP0805512B1 publication Critical patent/EP0805512B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q9/00Electrically-short antennas having dimensions not more than twice the operating wavelength and consisting of conductive active radiating elements
    • H01Q9/04Resonant antennas
    • H01Q9/0407Substantially flat resonant element parallel to ground plane, e.g. patch antenna

Definitions

  • the field of the invention is that of printed planar emission antennas and / or receiving microwave signals.
  • the invention relates to a planar antenna producing a maximum radiation for low elevations.
  • the antenna of the invention has many applications. It can for example be used in a network placed on the roof of a private vehicle, in order to ensure satellite telecommunications. Indeed, some mobiles, and in particular those in connection with geostationary satellites in countries with medium or high latitude (Europe of North for example), require flat antennas producing maximum radiation for low elevations.
  • a printed antenna includes a substrate plate dielectric, a ground plane (consisting of a first conductive deposit deposited on a first face of the dielectric substrate plate), a radiating element (constituted by a second conductive deposit deposited on a second face of the substrate plate dielectric) and antenna feed means.
  • these printed antennas In their current operation, that is to say when they operate in their fundamental mode, these printed antennas generate a radiation diagram having a maximum in the direction perpendicular to the plane containing the antenna.
  • the length of the radiating element is very close to half the length wave taking into account the permittivity of the dielectric substrate used.
  • the printed antennas To be able to generate a radiation having a maximum for weak elevations, i.e. in directions away from the axis perpendicular to the plane containing the antenna, the printed antennas must operate in a higher mode whose current distribution makes it possible to create this type of radiation.
  • the major problem resides in the fact that the higher modes presenting the interest appears for relatively high frequencies compared to those of fundamental mode. This means that to be able to use this type of mode (higher) for the desired frequency band (close to that corresponding to the fundamental mode), the antenna must be very oversized.
  • the invention particularly aims to overcome this major drawback of the state of technique.
  • one of the objectives of the present invention is to provide a printed antenna to obtain radiation for low elevations while with a reduced bulk.
  • the invention also aims to provide such an antenna which retains all the advantages of printed antennas, and in particular a low manufacturing cost.
  • the superior mode chosen is the one in which we want to see operate the antenna, so that the maximum radiation is generated for low elevations.
  • the general principle of the invention consists, for a given higher mode, reduce the resonant frequency only by making notches on the element radiant, that is to say without modifying the overall size of the antenna.
  • the printed antenna of the invention has a smaller footprint than a conventional printed antenna.
  • the notch (s) are arranged substantially perpendicular to the current lines of said selected upper mode.
  • the dimensions (length, width) of the notch (s) are determined from a calculation technique based on an element method finished.
  • said radiating element is in the form of a disc.
  • said upper mode chosen is mode TM21, the streamlines of which form a pattern which is repeated in each quarter of said disc, said radiating element has four radial notches, spaced two by two angularly about 90 °, each of said notches being substantially perpendicular to the current lines in one of said quarters of the disc.
  • said upper mode chosen is mode TM01, the currents of which are arranged radially, said radiating element having at least one circular notch, the one or more notches extending over at least part of the circumference of a circle contained in said disc and having the same center as the latter.
  • each notch cooperates with means of annihilation of its effect, said antenna comprising means for activating / deactivating said means of annihilation.
  • said means for annihilating the effect of a notch comprise a diode connecting the two edges of said notch.
  • This multimode operation makes it possible to cover a solid wide angle with a maximum radiation.
  • said radiating element has a plurality of notches, said activation / deactivation means acting on a time-varying number of annihilation means associated with said plurality of notches, so as to allow multifrequency operation such that each distinct number of annihilation means activated at a given time corresponds to a particular resonant frequency of said selected upper mode.
  • the invention also relates to a dual-band antenna, characterized in that it includes two superimposed antennas, called lower and upper antennas, of the type those presented above, the radiating element of said lower antenna constituting the ground plane of said upper antenna.
  • the invention therefore relates to a planar printed antenna for transmission and / or reception of microwave signals.
  • the antenna presents a fundamental mode, in which it generates a diagram of radiation having a maximum in the direction perpendicular to the plane containing the radiating element, and at least one higher mode, in which it generates a radiation diagram at low elevation.
  • FIG. 2 presents a variation curve, as a function of the frequency, of the Standing wave ratio (ROS) of the conventional antenna in Figure 1. This curve clearly shows the resonant frequencies F1 and F2.
  • ROS Standing wave ratio
  • FIG 3 shows a top view of the first antenna according to the invention.
  • the radiating element 30 has four radial notches 31 to 34, spaced two by two angularly around 90 °.
  • the TM21 mode current lines form a pattern which is repeat according to the quarter of the disc (the currents being represented in dotted lines).
  • the notches 31 to 34 are placed in order to obtain maximum interception of the currents on the element radiating 30. In other words, each notch is substantially perpendicular to the streamlines in one quarter of the disc 30.
  • these values are preferably obtained using a calculation technique (implemented by software) based on an element method finished.
  • the purpose of the first antenna is to decrease the mode's resonant frequency higher TM21.
  • the invention therefore makes it possible to considerably reduce the size of the structure by compared to a conventional antenna. Indeed, to obtain a TM21 mode working on frequency of 1.662 GHz, a solid disk with an approximate diameter is required 119 mm instead of the 73.5 mm diameter of the first antenna of the invention. So, in this specific example, the invention allows a reduction in the size of the antenna about 40%.
  • FIGS. 6 and 9 each show the complete radiation diagram, for the Etheta and Ephi components respectively, of the first antenna of the invention.
  • the radiation patterns were measured at the resonant frequency of the TM21 mode.
  • the directivity is 5.56 dB.
  • Figure 12 shows a top view of the second antenna according to the invention.
  • the radiating element 40 has four circular notches 41 to 44, placed in parallel at the circumference of the disc 40.
  • the current lines of the TM01 mode are circular (the currents, shown in dotted lines, being arranged radially).
  • the notches 41 to 44 are placed in order to obtain maximum interception of the currents on the radiating element 40. In in other words, each notch is substantially perpendicular to the current lines in one of the quarters of disc 40.
  • these values are preferably obtained using the abovementioned calculation technique based on a finite element method.
  • the second antenna aims to decrease the mode resonant frequency upper TM01.
  • the invention therefore makes it possible to considerably reduce the size of the structure by compared to a conventional antenna. Indeed, to obtain a TM01 mode working on the frequency of 2.104 GHz, a solid disc with an approximate diameter is required 117 mm instead of the 73.5 mm diameter of the second antenna of the invention. So, in this specific example, the invention again allows a reduction in the size of the antenna by around 40%.
  • Figures 15 and 18 each present the complete radiation diagram, for the Etheta and Ephi components respectively, of the second antenna of the invention.
  • the radiation patterns were measured at the resonant frequency of the TM01 mode.
  • the radiation patterns are presented in the same way as those Figures 6 and 9.
  • the directivity obtained for this antenna is 6.31 dB.
  • FIG 23 shows a top view of a particular embodiment of a antenna according to the invention, in which each notch cooperates with means 61 annihilation of its effect.
  • the antenna also includes activation means / deactivation of these means 61 of annihilation.
  • These means (not shown) of activation / deactivation are for example an electronic control device.
  • the means for annihilating the effect of a notch comprise a diode varactor 61 connecting the two edges of this notch.
  • the means activation / deactivation act on a variable number in time of diodes, of so that each distinct number of diodes activated at a given time corresponds to a particular resonant frequency of the selected higher mode.
  • Figures 24 and 25 each show a view, respectively from the side and from above, of a particular embodiment of a dual-band antenna according to the invention.
  • This dual band antenna includes two antennas (lower 70 and upper 71) superimposed.
  • the radiating element (for example a disc) 72 of the lower antenna 71 constitutes the ground plane of the upper antenna 71.
  • the lower antenna 70 comprises a ground plane 73, a substrate plate (not shown), a radiating element 72 and a first coaxial supply 74.
  • the upper antenna 71 comprises a ground plane (constituted by the radiating element 72 of the lower antenna 70), a substrate plate (not shown), an element radiating 75 and a second coaxial supply 76.
  • Each antenna 70, 71 operates independently.
  • the two discs 72, 75 are offset so that the attack of the upper disc 75 crosses the lower disc 72 in the middle, so as to minimize the disturbance thus brought.

Landscapes

  • Waveguide Aerials (AREA)

Claims (12)

  1. Ebene gedruckte Antenne zum Senden und/oder Empfangen von Mikrowellensignalen von der Art, die hauptsächlich Folgendes umfasst:
    eine dielektrische Substratplatte (1),
    eine Erdüngsebene (2), bestehend aus einer ersten Ablagerung eines leitfähigen Materials, das auf einer ersten Fläche der dielektrischen Substratplatte aufgebracht wird,
    ein strahlendes Element (30; 40; 50), das aus einer zweiten leitfähigen Ablagerung gebildet wird, das auf eine zweite Fläche der dielektrischen Substratplatte aufgebracht wird,
    Mittel (4) zum Speisen der Antenne,
    wobei die Antenne eine Grundschwingung (TM11) aufweist, bei der sie ein Strahlungsdiagramm erzeugt, das in der senkrechten Richtung auf die das strahlende Element enthaltende Ebene ein Maximum aufweist sowie mindestens eine Oberschwingung (TM21, TM01), in der sie ein Strahlungsdiagramm mit kleinem El-Winkel bzw. kleiner Elevation erzeugt,
    dadurch gekennzeichnet, dass das strahlende Element mindestens einen Einschnitt (31 bis 34; 41 bis 44) aufweist, der so gestaltet ist, dass die Resonanzfrequenz einer gewählten Oberschwingung gesteuert werden kann.
  2. Antenne nach Anspruch 1, dadurch gekennzeichnet, dass der Einschnitt bzw, die Einschnitte (31 bis 34; 41 bis 44) in etwa senkrecht zu den Stromlinien bzw. Feldlinien der gewählten Oberschwingung angeordnet ist bzw. sind.
  3. Antenne nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, dass die Abmessungen des Einschnittes oder der Einschnitte (31 bis 34; 41 bis 44) auf der Grundlage einer auf einer Methode der finiten Elemente basierenden Berechnungstechnik ermittelt werden.
  4. Antenne nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, dass die Einspeisemittel eine Einspeisetechnik aus der Gruppe anwenden, die folgendes umfasst:
    Einspeisung durch Koaxialsonde (4);
    Einspeisung durch Schlitzkopplung (53);
    Einspeisung durch Nähekopplung;
    Einspeisung durch Einspeiseleitung in der Ebene des strahlenden Elementes.
  5. Antenne nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, dass das strahlende Element (30; 40; 50) die Form einer Kreisscheibe aufweist.
  6. Antenne nach Anspruch 5, dadurch gekennzeichnet, dass es sich bei der gewählten Oberschwingung um die Oberschwingung TM21 handelt, deren Stromlinien bzw. Feldlinien ein Muster bilden, das sich in jedem Viertel der Kreisscheibe wiederholt und,
    dass die strahlenden Elemente (30) vier radiale Einschnitte (31 bis 34) aufweisen, die paarweise durch einen Winkel von etwa 90° voneinander getrennt sind, wobei jeder der Einschnitte in etwa senkrecht zu den Stromlinien bzw. Feldlinien in einem der Viertel der Kreisscheibe liegt.
  7. Antenne nach Anspruch 5, dadurch gekennzeichnet, dass es sich bei der gewählten Oberschwingung um die Oberschwingung TM01 handelt, deren Stromlinien bzw. Feldlinien radial verlaufen und,
    dass die strahlenden Elemente (40) mindestens einen kreisförmigen Einschnitt (41 bis 44) dort aufweisen, wo sich die Einschnitte über mindestens einen Teil des Umfangs eines Kreises erstrecken, der in der Kreisscheibe und konzentrisch mit dieser enthalten ist.
  8. Antenne nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, dass jeder Einschnitt mit Mitteln (61) zur Vernichtung seiner Wirkung zusammenwirkt und,
    dass er Mittel zum Aktivieren/Deaktivieren der erwähnten Verriichtungsmittel umfasst.
  9. Antenne nach Anspruch 8, dadurch gekennzeichnet, dass die Mittel zur Vernichtung der Wirkung eines Einschnitts eine Diode (61) umfassen, die beide Ränder des Einschnitts verbindet.
  10. Antenne nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass das strahlende Element eine Vielzahl von Einschnitten aufweist und,
    dass die Mittel zum Aktivieren/Deaktivieren gleichzeitig auf alle mit der Vielzahl von Einschnitten zusammenhängende Vernichtungsmittel (61) wirken, um eine Multimodearbeitsweise zu ermöglichen, so dass
    wenn alle Vernichtungsmittel aktiviert sind, die Antenne in der erwähnten Grundschwingung arbeitet,
    wenn alle Vernichtungsmittel deaktiviert sind, die Antenne in-der gewählten Oberschwingung arbeitet.
  11. Antenne nach einem der Ansprüche 8 oder 9, dadurch gekennzeichnet, dass das strahlende Element eine Vielzahl von Einschnitten aufweist und,
    dass die Mittel zum Aktivieren/Deaktivieren auf eine zeitlich variable Zahl von Vernichtungsmitteln (61) wirken, die mit der Vielzahl von Einschnitten assoziiert sind, um einen Mehrfrequenzbetrieb zu ermöglichen, welcher derart gestaltet ist, dass jede verschiedene Zahl von Vernichtungsmitteln, die zu einem gegebenen Zeitpunkt aktiviert wird, einer bestimmten Resonanzfrequenz der gewählten Oberschwingung entspricht.
  12. Zweibandantenne, dadurch gekennzeichnet, dass sie zwei überlagerte Antennen umfasst, genannt untere Antenne (70) und obere Antenne (71) nach einem der Ansprüche 1 bis 11, wobei das strahlende Element (72) der unteren Antenne die Erdungsebene der oberen Antenne bildet.
EP97460016A 1996-04-24 1997-04-17 Kompakt gedruckte Antenne mit geringer Strahlung in Elevationsrichtung Expired - Lifetime EP0805512B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
FR9605383 1996-04-24
FR9605383A FR2748162B1 (fr) 1996-04-24 1996-04-24 Antenne imprimee compacte pour rayonnement a faible elevation

Publications (2)

Publication Number Publication Date
EP0805512A1 EP0805512A1 (de) 1997-11-05
EP0805512B1 true EP0805512B1 (de) 2002-11-06

Family

ID=9491685

Family Applications (1)

Application Number Title Priority Date Filing Date
EP97460016A Expired - Lifetime EP0805512B1 (de) 1996-04-24 1997-04-17 Kompakt gedruckte Antenne mit geringer Strahlung in Elevationsrichtung

Country Status (5)

Country Link
US (1) US5966096A (de)
EP (1) EP0805512B1 (de)
CA (1) CA2203359A1 (de)
DE (1) DE69716807T2 (de)
FR (1) FR2748162B1 (de)

Families Citing this family (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB9808042D0 (en) * 1998-04-15 1998-06-17 Harada Ind Europ Limited Patch antenna
CN1249851C (zh) * 1999-10-18 2006-04-05 松下电器产业株式会社 使用相同技术的用于无线通信与便携式无线装置的天线
DE10047903A1 (de) * 2000-09-27 2002-04-25 Siemens Ag Mobile Funksende-/Funkempfangseinrichtung mit abstimmbarer Antenne
US6646618B2 (en) 2001-04-10 2003-11-11 Hrl Laboratories, Llc Low-profile slot antenna for vehicular communications and methods of making and designing same
US6456243B1 (en) 2001-06-26 2002-09-24 Ethertronics, Inc. Multi frequency magnetic dipole antenna structures and methods of reusing the volume of an antenna
US6864848B2 (en) * 2001-12-27 2005-03-08 Hrl Laboratories, Llc RF MEMs-tuned slot antenna and a method of making same
US6573867B1 (en) 2002-02-15 2003-06-03 Ethertronics, Inc. Small embedded multi frequency antenna for portable wireless communications
US6943730B2 (en) * 2002-04-25 2005-09-13 Ethertronics Inc. Low-profile, multi-frequency, multi-band, capacitively loaded magnetic dipole antenna
US6744410B2 (en) * 2002-05-31 2004-06-01 Ethertronics, Inc. Multi-band, low-profile, capacitively loaded antennas with integrated filters
US6642889B1 (en) * 2002-05-03 2003-11-04 Raytheon Company Asymmetric-element reflect array antenna
US7298228B2 (en) 2002-05-15 2007-11-20 Hrl Laboratories, Llc Single-pole multi-throw switch having low parasitic reactance, and an antenna incorporating the same
US7276990B2 (en) 2002-05-15 2007-10-02 Hrl Laboratories, Llc Single-pole multi-throw switch having low parasitic reactance, and an antenna incorporating the same
US6859175B2 (en) 2002-12-03 2005-02-22 Ethertronics, Inc. Multiple frequency antennas with reduced space and relative assembly
US6911940B2 (en) * 2002-11-18 2005-06-28 Ethertronics, Inc. Multi-band reconfigurable capacitively loaded magnetic dipole
US7084813B2 (en) * 2002-12-17 2006-08-01 Ethertronics, Inc. Antennas with reduced space and improved performance
US6919857B2 (en) * 2003-01-27 2005-07-19 Ethertronics, Inc. Differential mode capacitively loaded magnetic dipole antenna
US7123209B1 (en) 2003-02-26 2006-10-17 Ethertronics, Inc. Low-profile, multi-frequency, differential antenna structures
US7456803B1 (en) 2003-05-12 2008-11-25 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
US7071888B2 (en) 2003-05-12 2006-07-04 Hrl Laboratories, Llc Steerable leaky wave antenna capable of both forward and backward radiation
US7245269B2 (en) 2003-05-12 2007-07-17 Hrl Laboratories, Llc Adaptive beam forming antenna system using a tunable impedance surface
US7068234B2 (en) 2003-05-12 2006-06-27 Hrl Laboratories, Llc Meta-element antenna and array
US7253699B2 (en) 2003-05-12 2007-08-07 Hrl Laboratories, Llc RF MEMS switch with integrated impedance matching structure
US7164387B2 (en) 2003-05-12 2007-01-16 Hrl Laboratories, Llc Compact tunable antenna
US7154451B1 (en) 2004-09-17 2006-12-26 Hrl Laboratories, Llc Large aperture rectenna based on planar lens structures
FR2856846B1 (fr) * 2003-06-27 2005-10-21 Univ Rennes Antenne imprimee agile en frequence a tres large excursion continue ou discrete
US20060097922A1 (en) * 2004-11-09 2006-05-11 The Mitre Corporation Method and system for a single-fed patch antenna having improved axial ratio performance
TWM284087U (en) * 2005-08-26 2005-12-21 Aonvision Technology Corp Broadband planar dipole antenna
TW200719518A (en) * 2005-11-15 2007-05-16 Ind Tech Res Inst An EMC metal-plate antenna and a communication system using the same
US7307589B1 (en) 2005-12-29 2007-12-11 Hrl Laboratories, Llc Large-scale adaptive surface sensor arrays
US20080129635A1 (en) * 2006-12-04 2008-06-05 Agc Automotive Americas R&D, Inc. Method of operating a patch antenna in a higher order mode
US7505002B2 (en) * 2006-12-04 2009-03-17 Agc Automotive Americas R&D, Inc. Beam tilting patch antenna using higher order resonance mode
FR2912266B1 (fr) * 2007-02-07 2009-05-15 Satimo Sa Antenne imprimee avec encoches dans le plan de masse
JP2008228094A (ja) * 2007-03-14 2008-09-25 Sansei Denki Kk マイクロストリップアンテナ装置
US7868829B1 (en) 2008-03-21 2011-01-11 Hrl Laboratories, Llc Reflectarray
CN101931126A (zh) * 2009-06-18 2010-12-29 鸿富锦精密工业(深圳)有限公司 槽孔天线
US8482475B2 (en) * 2009-07-31 2013-07-09 Viasat, Inc. Method and apparatus for a compact modular phased array element
US8436785B1 (en) 2010-11-03 2013-05-07 Hrl Laboratories, Llc Electrically tunable surface impedance structure with suppressed backward wave
US9466887B2 (en) 2010-11-03 2016-10-11 Hrl Laboratories, Llc Low cost, 2D, electronically-steerable, artificial-impedance-surface antenna
US8994609B2 (en) 2011-09-23 2015-03-31 Hrl Laboratories, Llc Conformal surface wave feed
DE102011011494A1 (de) * 2011-02-17 2012-09-06 Kathrein-Werke Kg Patchantenne sowie Verfahren zur Frequenzabstimmung einer derartigen Patchantenne
US8982011B1 (en) 2011-09-23 2015-03-17 Hrl Laboratories, Llc Conformal antennas for mitigation of structural blockage
EP2712022A1 (de) * 2012-09-24 2014-03-26 Oticon A/s Ortsfestes Kommunikationsgerät mit Antenne
EP2907197A4 (de) * 2012-10-15 2016-07-06 Intel Corp Antennenelement und vorrichtungen dafür
CN107171068A (zh) * 2017-06-22 2017-09-15 天津职业技术师范大学 一种小型双频植入式医用柔性天线
GB2598131A (en) * 2020-08-19 2022-02-23 Univ Belfast Miniature antenna with omnidirectional radiation field

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4053895A (en) * 1976-11-24 1977-10-11 The United States Of America As Represented By The Secretary Of The Air Force Electronically scanned microstrip antenna array
US4089003A (en) * 1977-02-07 1978-05-09 Motorola, Inc. Multifrequency microstrip antenna
CA1197317A (en) * 1982-05-13 1985-11-26 Prakash Bhartia Broadband microstrip antenna with varactor diodes
GB2198290B (en) * 1986-11-29 1990-05-09 Stc Plc Dual band circularly polarised antenna with hemispherical coverage
US4987421A (en) * 1988-06-09 1991-01-22 Mitsubishi Denki Kabushiki Kaisha Microstrip antenna
JP2580505B2 (ja) * 1988-08-10 1997-02-12 郵政省通信総合研究所長 小型マイクロストリップアンテナ
FR2664749B1 (fr) * 1990-07-11 1993-07-02 Univ Rennes Antenne microonde.
US5124713A (en) * 1990-09-18 1992-06-23 Mayes Paul E Planar microwave antenna for producing circular polarization from a patch radiator
JP3239435B2 (ja) * 1992-04-24 2001-12-17 ソニー株式会社 平面アンテナ
FR2726127B1 (fr) * 1994-10-19 1996-11-29 Asulab Sa Antenne miniaturisee a convertir une tension alternative a une micro-onde et vice-versa, notamment pour des applications horlogeres

Also Published As

Publication number Publication date
FR2748162A1 (fr) 1997-10-31
FR2748162B1 (fr) 1998-07-24
DE69716807D1 (de) 2002-12-12
CA2203359A1 (en) 1997-10-24
DE69716807T2 (de) 2003-07-10
EP0805512A1 (de) 1997-11-05
US5966096A (en) 1999-10-12

Similar Documents

Publication Publication Date Title
EP0805512B1 (de) Kompakt gedruckte Antenne mit geringer Strahlung in Elevationsrichtung
EP3669422B1 (de) Patch-antenne mit zwei verschiedenen strahlungsmodi mit zwei getrennten arbeitsfrequenzen, vorrichtung mit einer solchen antenne
EP0886889B1 (de) Breitbandige gedruckte gruppenantenne
EP0427654B1 (de) Wendelförmige Resonanzantenne, bestehend aus je vier Wendelleitern übereinander
EP0714151B1 (de) Breitbandige Monopolantenne in uniplanarer gedruckter Schaltungstechnik und Sende- und/oder Empfangsgerät mit einer derartiger Antenne
EP1407512B1 (de) Antenne
EP0542595B1 (de) Mikrostreifenleiterantenne, insbesondere für Fernsprechübertragungen von Satelliten
EP2194602B1 (de) Antenne mit gemeinsam benützten Elementarstrahlern und Verfahren zum Entwurf einer Mehrstrahlantenne mit gemeinsam benützten Elementarstrahlern
EP0520851B1 (de) Antennenkombination für den Empfang von Signalen von Satelliten und Bodenstationen, insbesondere für den Empfang von digitalen Ton-Rundfunksignalen
CA2148796C (fr) Antenne fil-plaque monopolaire
FR2817661A1 (fr) Dispositif pour la reception et/ou l'emission de signaux multifaisceaux
WO1991009435A1 (fr) Antenne iff aeroportee a diagrammes multiples commutables
WO2006045769A1 (fr) Antenne helice imprimee multibande a fente
EP3011639A1 (de) Quelle für eine parabolantenne
EP0661773A1 (de) Konische, auf einem ebenen Substrat präparierte Streifenleitungsantenne und Verfahren zu ihrer Herstellung
EP1554777A1 (de) Mehrfachstrahlantenne mit photonischem bandlückenmaterial
CA2808511C (fr) Antenne plane pour terminal fonctionnant en double polarisation circulaire, terminal aeroporte et systeme de telecommunication par satellite comportant au moins une telle antenne
WO1993000723A1 (fr) Antenne reseau lineaire
EP0762534B1 (de) Verfahren zur Verbreiterung des Strahlungsdiagramms einer Gruppenantenne mit verteilten Elementen in einem Volumen
EP3942649B1 (de) Kompakte richtantenne, vorrichtung mit einer solchen antenne
FR2522888A1 (fr) Antenne a double reflecteur a transformateur de polarisation incorpore
FR2721757A1 (fr) Antenne omnidirectionnelle en azimut et directive en site et répondeur maritime ainsi équipé.

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE GB

17P Request for examination filed

Effective date: 19980421

17Q First examination report despatched

Effective date: 20010409

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 69716807

Country of ref document: DE

Date of ref document: 20021212

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20030219

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20030807

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

Free format text: REGISTERED BETWEEN 20090528 AND 20090603

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20120327

Year of fee payment: 16

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120430

Year of fee payment: 16

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20130417

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20130417

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131101

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 69716807

Country of ref document: DE

Effective date: 20131101