EP0804495A1 - Blockcopolymerisat und verfahren zu seiner herstellung durch anionische polymerisation - Google Patents

Blockcopolymerisat und verfahren zu seiner herstellung durch anionische polymerisation

Info

Publication number
EP0804495A1
EP0804495A1 EP96939037A EP96939037A EP0804495A1 EP 0804495 A1 EP0804495 A1 EP 0804495A1 EP 96939037 A EP96939037 A EP 96939037A EP 96939037 A EP96939037 A EP 96939037A EP 0804495 A1 EP0804495 A1 EP 0804495A1
Authority
EP
European Patent Office
Prior art keywords
block
units
monomer
block copolymers
styrene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP96939037A
Other languages
English (en)
French (fr)
Inventor
Axel Gottschalk
Reimund Stadler
Karsten Jung
Susanne Brinkmann
Vittoria Balsamo-Hernandez
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0804495A1 publication Critical patent/EP0804495A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08FMACROMOLECULAR COMPOUNDS OBTAINED BY REACTIONS ONLY INVOLVING CARBON-TO-CARBON UNSATURATED BONDS
    • C08F297/00Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer
    • C08F297/02Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type
    • C08F297/04Macromolecular compounds obtained by successively polymerising different monomer systems using a catalyst of the ionic or coordination type without deactivating the intermediate polymer using a catalyst of the anionic type polymerising vinyl aromatic monomers and conjugated dienes

Definitions

  • Block copolymer and process for its preparation by anionic polymerization Block copolymer and process for its preparation by anionic polymerization
  • the invention relates to a novel block copolymer consisting of at least one block A, made up of units of styrene or its technical equivalents (a) and at least one block C, made up of units of a cyclic lactone (c), which can be obtained by amonomic polymerization and a Process for its manufacture.
  • the invention relates in particular to block polymers in which ⁇ -caulrolactone is used as the cyclic lactone (c).
  • the invention further relates to the use of the block copolymers according to the invention for the production of moldings, films or fibers, and to the moldings, films or fibers made from the block copolymers according to the invention.
  • the invention further relates to the use of the block copolymers as phase mediators.
  • Block copolymers in the construction of which styrene and diene monomers are involved, are usually prepared by anionic polymerization. It is also known to convert the living chain ends of polybutadiene remaining in the anionic polymerization prior to further reaction with polymers such as polystyrene with certain coupling reagents Capping This has the advantage that the desired block copolymers can be obtained more quickly and that branched block copolymers can be built up using more functional coupling reagents (see, for example, Morton ", Anionic Polymerization-Pnnciples and Practice", Academic Press, New York, London , 1983, pages 226-230).
  • the diphenylethylene has the effect that the reactivity of the living chain end is reduced and side reactions are thus reduced.
  • t ⁇ union block copolymers have indeed high molecular weights and a narrow molecular weight distribution
  • the implementation of Ketten ⁇ end with diphenylethylene is problematic because it often runs too slow and does not take place quantitatively.
  • an essentially quantitative conversion is required if side reactions are to be suppressed and high yields are to be achieved. This is particularly necessary for processes that are to be carried out on an industrial scale.
  • the object of the invention was to find a polymerization process of the type mentioned at the outset with which block copolymers of this type can be produced quickly, in high yields and purities and with a narrow molecular weight distribution.
  • Ar 1 CH 2 C ⁇ ⁇ ⁇ >
  • Ar 1 and Ar 2 independently is aryl substituted by C ⁇ ⁇ C to 8 ⁇ alkyl or Ci to Cs-alkoxy or halogen may be mono- or polysubstituted, is reacted.
  • a further block B composed of units (b) of a diene, is first added to the living end of block A before the reaction with the diarylethylene I or block C in a manner known per se so that Copolymers of the type of the known rubber-elastic styrene-butadiene block copolymers are obtained, which are then modified by means of block C.
  • the diarylethylene I it has, however, proven to be desirable to add at least one further monomer unit (a) to the block B beforehand. Ingenuity it is sufficient if 1 to 5 equivalents of the monomer unit (a) are added.
  • 1, 1-diphenylethylene is expediently used as diarylethylene I, butadiene-1,3 or isoprene as monomer (b).
  • the block copolymers obtainable by the process according to the invention contain at least one block A which is composed exclusively or essentially of units of styrene or its technical equivalents.
  • conjugated dienes are used as monomers (b) if a block B is provided.
  • monomers (b) e.g. 1,3-butadiene or isoprene
  • other linear and cyclic dienes e.g. those with 4 to 8 carbon atoms into consideration. Examples include 1, 3-butadiene, 1, 3-pentadiene, 2-methylbuta- l, 3-diene, 2, 3-dimethyl-buta-1, 3-diene and conjugated hexadienes, preferably 1,3-hexadiene. Any mixtures of different monomers (b) can also be used to build up block B.
  • the average molecular weight of block A, as well as block B and block C, is not critical in a wide range. In general, the average molecular weights are selected in accordance with the desired properties of the block copolymer. Typically, the average molecular weight is (number average value ⁇ M n) of each block A, optionally B and C of each block in the range from 5000 to 500,000, preferably from 10,000 to 100,000 [g / mol].
  • the block copolymers ⁇ obtainable by the process of this invention may also contain at least one further block D of similar molecular weight, made up of anionically polymerizable monomer (d) containing a functional group.
  • Ais monomers (d) are particularly preferably the C 1 -C 8 -alkyl esters of methacrylic acid or acrylic acid or mixtures thereof.
  • use is made, for example, of methyl, ethyl, n-propyl, i-propyl, n-butyl, i-butyl, s-butyl, t-butyl, pentyl, hexyl, heptyl, Octyl, 2-ethylhexyl, nonyl, decyl, lauryl or stearyl acrylate, preferably methyl acrylate, n-butyl acrylate or 2-ethylhexyl acrylate, and mixtures of these monomers. If such a block to one
  • the type A block is to be polymerized, it is expedient to prepare the living chain end in question in a manner known per se Way to implement with a diphenylethylene of formula I.
  • Methyl methacrylate and mixtures of these monomers (d) are preferably used as esters of methacrylic acid.
  • block copolymers with blocks from other monomers D which have functional groups, such as -OH, -SH, -NHAlkyl and others.
  • functional groups such as -OH, -SH, -NHAlkyl and others.
  • Such polymerization processes in the presence of protective groups are e.g. in S. Nakahama et al, Prog. Polym. Be. Vol. 15, 299-335, 1990.
  • Such monomers include, for example, p-aminostyrene, p-hydroxystyrene, p-vinylbenzoic acid, acrylic or methacrylic acid, acrylic or methacrylamide, maleic acid and their imides or C 1 -C 8 -alkyl esters, fumaric acid and their imides or ci- Ci L -alkyl esters, itaconic acid and their imides or -C-C ⁇ n-alkyl esters, acrylic or methacrylnit ⁇ l or hydroxyalkyl (meth) acrylates.
  • the molecular weight (number average M n ) of block D can vary within wide limits, but is generally in the range from 5,000 to 500,000, preferably in the range from 10,000 to 100,000 [g / mol].
  • styrene monomers (a) are styrene, p-chlorostyrene, ⁇ -methylstyrene, p-methylstyrene, methyltoluene and p-t-butylstyiol.
  • Block A can also be constructed from a mixture of different monomers. However, styrene is preferably used alone.
  • the block copolymers obtainable by the process according to the invention are mostly block copolymers of the type AC or three-block copolymers of the type ABC. However, they can also be, for example, three-block copolymers of the BABC type. It is also possible that they are multi-block copolymers, for example up to 10-block copolymers. In most cases, however, they do not contain more than five or six blocks, since such block copolymers can be readily produced, but are generally too expensive for technical applications.
  • the block copolymers obtainable by the process according to the invention each contain the block (s) as outer blocks, since these are always polymerized last.
  • Particularly preferred block copolymers are polybutadiene-b-poly (- ⁇ -caprolactone), polystyrene-b-poly-butadiene-b-poly (-e-caprolactone).
  • the particularly preferred block copolymers include those in which polybutadiene is is built and has a high proportion of 1, 4 -linking units.
  • the average molecular weights (number average M n ) of the block copolymers obtainable by the process according to the invention are generally not significantly higher than 1,000,000 [g / mol] and are generally not significantly lower than 10,000 [g / mol]. In general, they are in the range from 50,000 to 500,000 [g / mol].
  • Preferred block copolymers have molecular weights (number average M n ) in the range from 75,000 to 250,000 [g / mol].
  • the block copolymers are produced by anionic polymerization.
  • Alkali metal organic compounds preferably lithium alkyl compounds such as methyl lithium, ethyl lithium, n- or s-butyllithium or s-propyllithium, are among the suitable initiators.
  • N- or s-Butyllithiam is particularly preferably used. If, in a known manner, instead of monofunctional initiators, multifunctional - e.g. If bifunctional compounds are used, one obtains, which is easy to see, block copolymers with a mirror-image structure, of which half have the structure according to the invention.
  • Solvents for anionic polymerization can be used which are chemically indifferent to the polymer anions formed. These include straight-chain or branched aliphatic hydrocarbons, such as n-hexane or n-octane, and simple or substituted cyclo aliphatic hydrocarbons, e.g. Cyclohexane or methyl - cyclohexane.
  • Aromatic hydrocarbons for example benzene, toluene or ethylbenzene, can also be used as solvents. It is also possible to use mixtures of different solvents. Cyclohexane and ethylbenzene are among the preferred solvents.
  • ethers such as tetrahydrofuran or diethyl ether and tertiary ames, for example tetramethylethylene diamine or py ⁇ dm, can be present as cosolvents.
  • their proportion in the total amount of solvent is not more than 0.01 to 20, preferably from 0.01 to 2,% by weight.
  • Tetrahydrofuran is usually preferred as a cosolvent.
  • the polymerization to the nonpolar block A or, if appropriate, Bm can be carried out in a nonpolar solvent or solvent mixture, while the polymerization to the polar block C can be carried out in a polar solvent.
  • This can be done by adding a polar solvent to the reaction mixture after the end of the polymerization of a non-polar block.
  • all or part of the non-polar solvent can be learned beforehand from the reaction mixture, for example by distilling off or using reduced pressure.
  • the aforementioned can be used as non-polar solvents; aliphatic or cycloaliphatic ethers, in particular tetrahydrofuran, are preferred as polar solvents
  • the polymerization is carried out, as usual, with inert gas at temperatures from -100 to + 120 ° C., preferably from -80 to + 80 ° C. In general, work is carried out at pressures in which the monomers and solvents do not evaporate at the temperature of the polymer
  • the anionic polymerization is carried out in several stages, in each of which the monomers of the individual blocks are completely polymerized out.
  • the order in which the blocks are produced is not essential to the invention.
  • each living end consisting of a residue of a block B, 1 to 20, preferably 1 to 10 equivalents of the styrene monomer (s) (a) should generally be used.
  • the living end (s) of block B is particularly preferably capped with 1 to 5 equivalents of styrene monomer (a).
  • 1 to 10 preferably 1 to 5, in particular 1 to 3 equivalents are generally used per equivalent of a living chain end.
  • the anionic polymerization is generally ended by adding water or alcohols such as methanol or isopropanol to the reaction mixture in order to deactivate the end groups or excess initiator which are still living.
  • the block copolymers obtained if they contain polybutadiene blocks, can be converted by hydrogenation treatment into polymers in which the aliphatic unsaturated bonds are wholly or partly saturated, i.e. which have a degree of hydrogenation of 50 to 100% by weight, preferably 70 to 100 and in particular 90 to 100% by weight.
  • the hydrogenation is preferably carried out using molecular hydrogen and catalysts based on metals or metal salts of the eighth group of the periodic table.
  • a heterogeneous phase it can e.g. with Raney nickel or preferably in a homogeneous phase with catalysts based on salts, in particular carboxylates, alkoxides or enoates of cobalt, nickel or iron, which are combined with metal alkyls, in particular with aluminum alkyls, or homogeneously by diimines produced in situ from e.g. Tosyl hydrazide take place.
  • Processes for the selective hydrogenation of block copolymers are i.a. in U.S. Patents 3,113,986 and 4,226,952.
  • the polymerization mixture can, as usual, either be heated directly to dryness or treated with steam, the solvent being distilled off. It can also be precipitated in an excess of a non-solvent such as ethanol and mechanically separated and dried or worked up by extruder degassing.
  • a non-solvent such as ethanol
  • the block copolymers obtainable by the process according to the invention can be processed to give moldings, films or fibers. This can be done, for example, by conventional methods such as extrusion or injection molding.
  • the block copolymers are also suitable as phase mediators in polymer blends, for example for mixtures of styrene polymers with polycarbonates, styrene / acrylonitrile copolymers, polyphenylene ethers and polycarbonates, polyphenylene ethers and / or polyarylene ethers such as polyarylene ether sulfones or ketones with polycarbonates.
  • Benzene was used as the solvent for the anionic polymerization, to which a small amount of styrene and enough butyllithium had been added before the start of the polymerization until the light yellow color of the anion formed.
  • the calculated amount of s-butyllithium was introduced as the initiator and the required amount of styrene (s) was added at 40 ° C.
  • s styrene
  • After 4 hours of polymerization a sample of the solution was taken, precipitated in methanol and the molecular weight of the polystyrene block determined. The required amount of butadiene (b) was condensed into the reaction mixture at -10 ° C. and polymerized at 40 ° C.
  • the molecular weights and compositions of the three-block copolymers were then determined by means of GPC and X H-NMR spectroscopy.
  • the molecular characteristics of various three-block copolymers are given in Table 1.
  • the phase behavior of the block copolymers was determined by differential scanning calorimetry (DSC) examined.
  • the corresponding data are compiled in Table 2, from which it can be seen that the three-block copolymers were present in micro-phase separation, which is advantageous with regard to their mechanical properties and their use as phase mediators.
  • the mechanical properties of the block copolymers were determined in tensile-strain experiments. For this purpose, films from toluene solution (Fig. 1) as well as at 180 ° C on melt-pressed samples (Fig. 2) were examined. The 4 cm long samples were clamped in a tension-stretching apparatus and stretched at a speed of 20 mm / min.
  • the three-block copolymers with a higher content of ⁇ -caprolactone behaved like typical semicrystalline polymers.
  • SBC three-block copolymers with a high styrene content also showed very high toughness after melt pressing, as can be seen in the maximum ductility of 600%.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Graft Or Block Polymers (AREA)

Abstract

Verfahren zur Herstellung von Blockcopolymerisaten, enthaltend mindestens einen Block A, aufgebaut aus Einheiten des Styrols oder dessen technischen Äquivalenten (a) und mindestens einen Block C, aufgebaut aus Einheiten eines cyclischen Lactons (c), durch anionische Polymerisation, dadurch gekennzeichnet, daß das nach dem Aufbau des Blocks A verbleibende lebende Kettenende vor der Umsetzung mit dem Monomeren (c) unter den Bedingungen der anionischen Polymerisation mit einem Diarylethylen, insbesondere 1,1-Diphenylethylen umgesetzt wird und wobei vorzugsweise an das lebende Ende des Blockes A vor der Umsetzung mit dem Diarylethylen in an sich bekannter Weise ein weiterer Block B, aufgebaut aus Einheiten eines Diens und ferner mindestens eine weitere Monomereinheit (a) angefügt wird, ferner die Verwendung des Blockcopolymerisats zur Herstellung von Formkörpern, Folien oder Fasern oder als Phasenvermittler in Polymermischungen und die daraus hergestellten Formkörper, Folie oder Fasermaterialien.

Description

Blockcopolymerisat und Verfahren zu seiner Herstellung durch anionische Polymerisation
Beschreibung
Die Erfindung betrifft em neuartiges Blockcopolymerisat aus mm destens einem Block A, aufgebaut aus Einheiten des Styrols oder dessen technischen Äquivalenten (a) und mindestens einem Block C, aufgebaut aus Einheiten eines cyclischen Lactons (c) , aas durch amomscne Polymerisation erhalten werden kann und ein Verfahren zu seiner Herstellung. Die Erfindung betrifft insbesondere Block Polymerisate, bei denen als cyclisches Lacton (c) ε-Caυrolacton eingesetzt wird.
Verwendung eines Blockcopolymerisats nach Anspruch 8 zur Her Stellung von Formkorpem, Eolien oder Fasern oder als Phasen Vermittler m Polymermischungen.
Die Erfindung betrifft ferner die Verwendung der erfinαungs- gemaßen Blockcopolymeren zur Herstellung von Formkorpem, Folien oder Fasern sowie die Formkorper, Folien oder Fasern aus den erfindungsgemaßen Blockcopolymerisaten. Ferner betrifft die Erfindung die Verwendung der Blockcopolymerisate als Phasen Vermittler.
Blockcopolymerisate, an deren Aufbau Styrol- und Dienmonomere beteiligt sind, werden üblicherweise durch anionische Polymen sation hergestellt werden Es ist auch bekannt, die bei -der anionischen Polymerisation verbleibenden lebenden Kettenenden von Polybutadien vor der weiteren Umsetzung mit Polymeren wie Polystyrol mit gewissen Kupplungsreagenzien umzusetzen (zu Verkappen Dies hat den Vorteil, daß die gewünschten Block copolymeren schneller erhalten werden und daß mittels mehr funktioneller Kupplungsreagenzlen verzweigte Blockcopolymere aufgebaut werden können (siehe z. B. Morton" , Anionic Poly merisation-Pnnciples and Practice", Academic Press, New York, London, 1983, Seiten 226 -230) .
Hsieh, Journal of Applied Polymer Science, Bd 22, 1119 (1978) beschreibt Blockcopolymere aus Styrol, Butadien und Laktonen Zunächst wird lebendes Polystyrol-block-Polybutadien (Li) ner gestellt. Vor der Umsetzung mit dem Lakton werden die leoenden Kettenenden m eine Alkoxi-Gruppe überfuhrt, um das Kettenende für die Anbindung des Laktons vorzubereiten
ORIGINAL UNTERLAGEN Der Dissertation von C. Auschra (Mainz 1992) waren Block¬ copolymerisate aus Styrol-, Butadien- und Methylmethacrylat- blocken zu entnehmen. Im Anschluß an die Herstellung von Poly- styrol-b-Polybutadien (Li) werden die lebenden Kettenenden des Butadienblocks mit Diphenylethylen verkappt und danach mit
Methylmethacrylat umgesetzt. Das Diphenylethylen bewirkt, daß die Reaktivität des lebenden Kettenendes herabgesetzt und so Neben¬ reaktionen vermindert werden. Die nach diesem Verfahren erhält¬ lichen Blockcopolymerisate haben zwar hohe Molekulargewichte und eine enge Molekulargewichtsverteilung, die Umsetzung der Ketten¬ enden mit dem Diphenylethylen ist jedoch problematisch, da sie häufig zu langsam abläuft und nicht quantitativ erfolgt. Eine im wesentlichen quantitative Umsetzung ist jedoch erforderlich, sollen Nebenreaktionen unterdruckt und hohe Ausbeuten erzielt werden. Dies ist insbesondere für Verfahren, die im technischen Maßstab ausgeübt werden sollen, notwendig.
Aufgabe der Erfindung war es, ein Polymerisationsverfahren der eingangs erwähnten Art zu finden, mit dem sich derartige Block- copolymere schnell, in hohen Ausbeuten und Reinheiten sowie enger Molekulargewichtsverteilung herstellen lassen.
Diese Aufgabe wird erfindungsgemäß dadurch gelost, daß das nach dem Aufbau des Blocks A verbleibende lebende Kettenende vor der Umsetzung mit dem Monomeren (c) unter den Bedingungen der anioni¬ schen Polymerisation mit einem Diarylethylen der allgemeinen Formel 1
Ar1 CH2= C ^ <>
Ar2
worin Ar1 und Ar2 unabhängig für Aryl steht, das mit Cι~ bis C8~Alkyl oder Ci-bis Cs-Alkoxy oder Halogen ein- oder mehrfach substituiert sein kann, umgesetzt wird.
Nach einer vorteilhaften Ausgestaltung der Erfindung wird an cas lebende Ende des Blockes A vor der Umsetzung mit dem Diaryl- ethyien I bzw. dem Block C in an sich bekannter Weise zunächst ein weiterer Block B, aufgebaut aus Einheiten (b) eines Diens angefugt, sodaß Copolymere vom Typ der bekannten, kautschuK- elastischen Styrol-Butadien-Blockcopolyrnerisate erhalten werden, die dann mittels des Blocks C modifiziert werden. Um das Diaryl- ethyien I an den Block B anbinden zu können, hat es sich aller¬ dings als wünschenswert erwiesen, vorher nocn mindestens eine weitere Monomereinheit (a) an den Block B anzufügen. Erfanrungs- gemäß genügt es, wenn 1 bis 5 Äquivalente der Monomereinheit (a) angefugt werden.
Als Diarylethylen I wird zweckmäßig die einfachste Verbindung dieser Stoffklasse, 1, 1-Diphenylethylen eingesetzt, als Monomer (b) Butadien-1,3 oder Isopren.
Die nach dem erfindungsgemäßen Verfahren erhältlichen Block¬ copolymerisate enthalten mindestens einen Block A, der aus- schließlich oder im wesentlichen aus Einheiten des Styrols bzw. dessen technischen Äquivalenten aufgebaut ist.
Zur Herstellung von Blockstrukturen des Typs B werden als Monomere (b) , wenn ein Block B vorgesehen ist, konjugierte Diene verwendet. Außer Butadien-1,3 oder Isopren kommen für spezielle Aufgaben auch andere, sowohl lineare als auch cyclische Diene, z.B. solche mit 4 bis 8 C-Atomen in Betracht. Als Beispiele seien 1, 3-Butadien, 1, 3-Pentadien, 2-Methylbuta-l, 3-dien, 2, 3-Dimetnyl - buta-1, 3-dien und konjugierte Hexadiene, bevorzugt 1,3-Hexadien genannt. Es können auch beliebige Mischungen unterschiedlicher Monomerer (b) zum Aufbau des Blockes B verwendet werden.
Das mittlere Molekulargewicht des Blockes A, ebenso wie des Blocks B und des Blocks C ist in weiten Bereichen unkritisch. Im allgemeinen werden die mittleren Molekulargewichte entsprechend der gewünschten Eigenschaften des Blockcopolymerisates gewählt. In der Regel liegt das mittlere Molekulargewicht (Zahlenmittel¬ wert Mn) jedes Blocks A, gegebenenfalls B und jedes BlocKs C im Bereich von 5000 bis 500000, bevorzugt von 10000 bis 100000 [g/mol] .
Die nach dem erfindungsgemäßen Verfahren erhältlichen Block¬ copolymerisate können außerdem mindestens einen weiteren Block D ähnlichen Molekulargewichts enthalten, aufgebaut aus anionisch polymerisierbaren Monomeren (d) , die eine funktionelle Gruppe enthalten.
Ais Monomere (d) eignen sich besonders bevorzugt die Cι-bιs Cι8-Alkylester der Methacrylsäure oder Acrylsäure oder deren Mischungen. Als solche verwendet man beispielsweise die Methyl-, Ethyl-, n-Propyl-, i-Propyl, n-Butyl-, i-Butyl-, s-Butyi-, t-Butyl-, Pentyl-, Hexyl-, Heptyl-, Oktyl-, 2-Ethylhexyl-, Nonyl-, Decyl-, Lauryl- oder Stearylacrylat, bevorzugt Methyl- acrylat, n-Butylacrylat oder 2-Ethylhexylacrylat, sowie Mischungen dieser Monomeren. Wenn ein solcher Block an einen
Block des Typs A anpolymerisiert werden soll, ist es zweckmäßig, das betreffende lebende Kettenende vorher in an sich bekannter Weise mit einem Diphenylethylen der Formel I umzusetzen. Als Ester der Methacrylsäure verwendet man bevorzugt Methylmeth¬ acrylat, sowie Mischungen dieser Monomeren (d) .
Ebenso ist es möglich, Blockcopolymere mit Blocken aus anderen Monomeren D zu bilden, die funktionelle Gruppen aufweisen, wie -OH, -SH, -NHAlkyl u.a. Im allgemeinen ist es erforderlich, solche funktionellen Gruppen vor der Polymerisation durch z.B. Trialkylsilylgruppen zu schützen, da sie die anionische Polymeri- sation stören wurden. Derartige Polymerisationsverfahren m Anwesenheit von Schutzgruppen sind z.B. bei S. Nakahama et al, Prog. Polym. Sei. Vol. 15, 299-335, 1990 beschrieben.
Als solche weitere Monomere kommen z.B. p-Aminostyrol , p-Hydroxy- styrol, p-Vinylbenzoesaure, Acryl- oder Methacrylsäure, Acry.,- oder Methacrylamid, Maleinsäure sowie deren Imide oder Cι-Cιo-Alkylester, Fumarsäure sowie deren Imide oder Ci-CiL-Alkyl- ester, Itakonsaure sowie deren Imide oder Cι-Cιn-Alkylester, Acryl- oder Methacrylnitπl oder Hydroxyalkyl (meth) acrylate in Betracht.
Das Molekulargewicht (Zahlenmittelwert Mn) des Blockes D kann m weiten Grenzen variieren, liegt aber im allgemeinen im Bereich von 5 000 bis 500 000, bevorzugt im Bereich von 10 000 bis 100 000 [g/mol] .
Als Beispiele für Styrolmonomere (a) seien Styrol, p-Chlorstyrol, α-Methylstyrol, p-Methylstyrol, Vmyltoluol und p-t-Butylstyiol genannt. Der Block A kann auch aus einer Mischung unterschied- iicher Monomerer aufgebaut sein. Vorzugsweise wird jedoch Styrol allein verwendet.
Die nach dem erfindungsgemaßen Verfahren erhaltlichen Block¬ copolymerisate sind meist Blockcopolymerisate des Typs AC oder Dreiblockcopolymerisate des Typs ABC. Sie können aber auch beispielsweise Dreiblockcopolymerisate des Typs BABC sein. Ebenso ist es möglich, daß sie Mehrblockcopolymensate, z.B. bis zu 10-Block-Copolymeπsate sind. Meist enthalten sie jedoch nicht mehr als fünf oder sechs Blocke, da solche Blockcopolymerisate zwar ohne weiteres herstellbar, aber für technische Anwendungen in der Regel zu aufwendig sind. Die nach dem erfindungsgemaßen Verfahren erhältlichen Blockcopolymerisate enthalten den bzw. die Blocke C jeweils als äußere Blocke, da diese stets zuletzt polymerisiert werden. Besonders bevorzugte Blockcopolymerisate sind Polybutadien-b-poly(-ε-caprolacton) , Polystyrol-b-poly- butadien-b-poly (-e-caprolacton) . Zu den besonders bevorzugten Blockcopolymerisaten zahlen solche, m denen Polybutadien ein- gebaut ist und einen hohen Anteil an 1, 4 -verknüpfen Einheiten aufweist.
Die mittleren Molekulargewichte (Zanlenmittelwert Mn) der nach dem erfindungsgemaßen Verfahren erhältlichen Blockcopolymerisate sind insgesamt meist nicht wesentlich hoher als 1.000.000 [g/mol] und sind meist nicht wesentlich niedriger als 10.000 [g/mol] . Im allgemeinen liegen sie im Bereich von 50.000 bis 500.000 [g/mol] . Bevorzugte Blockcopolymerisate haben Molekulargewichte (Zahlen mittelwert Mn) im Bereich von 75.000 bis 250.000 [g/mol] .
Erfindungsgemaß werden die Blockcopolymerisate durch anionische Polymerisation hergestellt.
Als Initiatoren für die anionische Polymerisationsreaktion sind Verbindungen geeignet, die die Monomeren m ihre Anionen über¬ fuhren. Alkalimetallorgamsche Verbindungen, bevorzugt Lithium- alkylverbmdungen wie Methyllithium, Ethyllithium, n- oder s-Butyllithium oder s-Propyllithium, zahlen zu den geeigneten Initiatoren. Besonders bevorzugt wird n- oder s-Butyllithiam verwendet. Wenn man m bekannter Weise anstelle von monofunktio¬ nellen Initiatoren mehrfunktionelle - z.B. bifunktionelle - Verbindungen verwendet, erhalt man, w..e leicht einzusehen ist, Blockcopolymere mit spiegeloildlichem Aufbau, von denen uede Hälfte den erfindungsgemaßen Aufbau aufweist.
Als Losungsmittel für die anionische Polymerisation können solche verwendet werden, die sich gegenüber den gebildeten Polymer- Anionen chemisch indifferent verhalten. Hierzu zahlen ge-rad kettige oder verzweigte alipnatische Kohlenwasserstoffe, wie n-Hexan oder n-Octan sowie einfache oder substituierte cyclo aliphatische Kohlenwasserstoffe, z.B. Cyclohexan oder Metnyl - cyclohexan. Ebenso können aromatische Kohlenwasserstoffe, beispielsweise Benzol, Toluol oder Ethylbenzol als Losungsmittel verwendet werden. Es ist auch möglich, Mischungen aus unter schiedlichen Losungsmitteln zu verwenden. Zu den bevorzugten Losungsmitteln zahlen Cyclohexan und Ethylbenzol.
Ferner können Ether wie Tetrahydrofüran oder Diethylether sowie tertiäre Amme, z.B. Tetramethylethylendiamm oder Pyπdm als Cosolventien enthalten sein. Im allgemeinen betragt deren Anteil an der Gesamtlosungsmittelmenge nicht mehr als 0,01 bis 20, bevorzugt von 0,01 bis 2 Gew.-%. Tetrahydrofüran wird in der Regel als Cosolvens bevorzugt. Es kann aber auch vorteilhaft sein, die amoniscne Polymerisation m unterschiedlichen Lösungsmitteln oder Losungsmittelgemiscnen, j e nach der Natur des zu polymerisierenden Monomeren bzw Monomerengemisches auszuführen. So kann die Polymerisation zum unpolaren Block A oder gegebenenfalls B m einem unpolarer Lösungsmittel oder Losungsmittelgemisch durchgeführt werαen, wahrend die Polymerisation zu dem polaren Block C in einem polaren Losungsmittel vorgenommen werden kann. Dies kann dadurch geschehen, daß nach Beendigung der Polymerisation eines unpolaren Blockes em polares Losungsmittel zum Reaktionsgemisch zugegeber wird. Es ist aber auch möglich, das unpolare Reaktionsgemisch zu einem polaren Losungsmittel zu geben Ebenso kann das urpolare Losungsmittel vorher ganz oder teilweise aus dem Reaktionsgemisch entlernt werden, z.B. durch Abdestillieren oder Anwendung von vermindertem Druck. Als unpolare Losungsmittel können die vor¬ genannten verwendet werden; als polare Losungsmittel werαen aliphatische oder cycloaliphatische Ether, insbesondere Tetra nydrofuran bevorzugt
Wird beispielsweise 1,3-Butadιen m einem unpolaren Losungsmittel zum Block B umgesetzt, ist der Anteil der über die Kohlenstoff - atome 1 und 4 miteinander verknüpften Butadiene sehr hoch (zu¬ meist über 80 %) , wodurch em Block A mit tiefer Glasubergangs- temperatur (etwa zwischen -80 bis -100°C) resultieren Kann.
Wie üblich ist es erforderlich, alle Einsatzstoffe pemlicn von Sauerstoff und protonenaktiven Verunreinigungen zu befreien, was durch Vor-Umsatz mit einer geringen Menge einer metallorganischen Verbindung oder durch adsorptive Reinigung, z.B. mit Calcium hydriα geschehen kann. Die Polymerisation wird wie üblich mter Inertgas bei Temperaturen von -100 bis +120°C, bevorzugt oei -80 bis +80°C vorgenommen. Im allgemeinen wird bei Drucken gearbeitet, bei denen die Monomeren und Losungsmittel bei der Polymeπsati onstemperatur nicht verdampfen
Erfindungsgemaß wird die anionische Polymerisation in meπreren Stufen durchgeführt, m denen jeweils die Monomeren der emzelnen Blocke vollständig auspolymeπsiert werden Dabei ist die Reihen¬ folge der Herstellung der Blocke nicht erfmdungswesentlicn.
Erfindungswesentlich ist, daß das lebende Ende des Blockes A bzw. B (aas letztere nach Umsetzung mit einer geringen Menge αes Mono¬ meren (a)) zunächst mit einem Diphenylethylen der allgemeinen Formel I umgesetzt (verkappt)wird, bevor die Umsetzung mit den Monomeren (c) erfolgt. Werden Blockcopolymerisate des Typs BAB - z.B durch Verwendung bifunktioneller Initiatoren - herσe stellt, müssen selbstverständlich beide lebenden Enden verkappt werden.
Für jedes lebende Ende, das aus einem Rest eines Blocks B be- steht, soll in der Regel 1 bis 20, bevorzugt 1 bis 10 Äquivalente des oder der Styrolmonomeren (a) eingesetzt werden. Besonders bevorzugt wird das bzw. die lebenden Enden des Blockes B mit jeweils 1 bis 5 Äquivalenten des Styrolmonomeren (a) verkappt.
Für die anschließende Umsetzung mit einer Diphenylethylen-Verbin- dung der allgemeinen Formel I verwendet man in der Regel davon 1 bis 10, bevorzugt 1 bis 5, insbesondere von 1 bis 3 Äquivalente pro Äquivalent eines lebenden Kettenendes.
Nachdem der Aufbau des Blockcopolymerisates abgeschlossen ist, wird die anionische Polymerisation im allgemeinen dadurch beendet, daß das Reaktionsgemisch mit Wasser oder Alkoholen wie Methanol oder Isopropanol versetzt wird, um die weiterhin leben¬ den Endgruppen bzw. überschüssigen Initiator zu desaktivieren.
Die erhaltenen Blockcopolymeren können, sofern sie Polybutadien- Blocke enthalten, durch Hydrierbehandlung in Polymere übergeführt werden, in denen die aliphatischen ungesättigten Bindungen ganz oder teilweise abgesättigt sind, d.h. die einen Hydrierungsgrad von 50 bis 100 Gew.-% aufweisen, bevorzugt 70 bis 100 und ins¬ besondere 90 bis 100 Gew.-%.
Die Hydrierung wird vorzugsweise mit molekularem Wasserstoff und Katalysatoren auf Basis von Metallen oder Metallsalzen der achten Gruppe des Periodensystems durchgeführt. Sie kann in heterogener Phase z.B. mit Raney-Nickel oder bevorzugt in homogener Phase mit Katalysatoren auf Basis von Salzen, insbesondere Carboxylaten, Alkoxiden oder Enoiaten des Kobalts, Nickels oder Eisens, die mit Metallalkylen, insbesondere mit Aluminiumalkylen, kombiniert sind oder homogen durch in situ erzeugte Diimine aus z.B. Tosyl- hydrazid erfolgen. Verfahren zur selektiven Hydrierung von Block¬ copolymeren werden u.a. in den US-Patentschriften 3 113 986 und 4 226 952 beschrieben.
Das Polymerisationsgemisch kann zur Isolierung des Polymeren wie üblich wahlweise direkt zur Trockne erhitzt oder mit Wasserdampf behandelt werden, wobei das Losungsmittel abdestilliert wird. Es kann auch in einem Überschuß eines Nichtlosungsmittels wie Ethanol gefällt und mechanisch abgetrennt und getrocknet oder durch Extruderentgasung aufgearbeitet werden. Die nach dem erfindungsgemäßen Verfahren erhältlichen Block¬ copolymerisate können zu Formkorpem, Folien oder Fasern ver¬ arbeitet werden. Dies kann beispielsweise nach üblichen Verfahren wie Extrusion oder Spritzguß erfolgen. Die Blockcopolymerisate eignen sich auch als Phasenvermittler in Polymerblends, z.B. für Mischungen aus Styrolpolymeren mit Polycarbonaten, Styrol/Acryl - nitril-Copolymerisaten, Polyphenylenethern und Polycarbonaten, Polyphenylenethern und/oder Polyarylenethern wie Polyarylenether- sulfonen oder -ketonen mit Polycarbonaten.
Beispiele
Herstellung der Blockcopolymerisate
Alle Monomeren sowie das Lösungsmittel wurden vor dem Einsatz von Sauerstoff und protonenaktiven Substanzen so weit wie möglich befreit. Alle Arbeitsschritte wurden unter Luft- und Feuchtig¬ keitsanschluß in einem 6 1-Glasrührautoklaven durchgeführt. Die Lösungsmittelmenge betrug jeweils 3500 ml, die Gesamtmenge an Monomeren 600 g, die je nach gewünschter Zusammensetzung auf die verschiedenen Monomere verteilt wurde.
Als Losungsmittel für die anionische Polymerisation wurde Benzol verwendet, das vor Beginn der Polymerisation mit einer kleinen Menge Styrol und soviel Butyllithium versetzt wurde, bis sich die hellgelbe Farbe des Anions bildete. Für die Polymerisation wurde die berechnete Menge s-Butyllithium als Initiator vorgelegt und die erforderliche Menge Styrol (s) bei 40°C zugegeben. Nach 4 Stunden Polymerisationszeit wurde eine Probe der Losung -genommen, in Methanol gefällt und das Molekulargewicht des Polystyrolblocks bestimmt. Die benotigte Menge Butadien (b) wurde bei -10°C in das Reaktionsgemisch einkondensiert und bei 40°C polymerisiert. Nεch 12 Stunden Polymerisationszeit wurde eine Probe gezogen, gefällt und das Molekulargewicht des Styrol-Butadien-Blockcopolymeren be- stimmt. Vor der Verkappung mit Diphenylethylen (DPE) wurden 2 ml Styrol zugesetzt. Nach 4 Stunden wurden 2 ml DPE eingespritzt. Nach 30 min. wurde bis auf -25°C abgekühlt und die berechnete Menge ε-Caprolacton (c) zugegeben und stark gerührt. Die Reaktion wurde nach einigen weiteren Minuten mit einem Gemisch aus Benzol und Essigsäure (5/1) abgebrochen und das Styrol-Butadien-Capro- lacton-Dreiblockcopolymere in Methanol gefällt.
Danach wurden die Molekulargewichte und Zusammensetzungen der Dreiblockcopolymeren mittels GPC und XH-NMR-Spektroskopie be- stimmt. Die molekularen Charakteristika verschiedener Dreiblock- copolymere sind in der Tabelle 1 angegeben. Das Phasenverhalten der Blockcopolymere wurde durch Differential Scanning Calorimetry (DSC) untersucht. Die entsprechenden Daten sind in der Tabelle 2 zusammengestellt, woraus hervorgeht, daß die Dreiblockcopolymere mikrophasensepariert vorlagen, was hinsichtlich ihrer mechani¬ schen Eigenschaften und ihrer Verwendung als Phasenvermittler vorteilhaft ist.
Die mechanischen Eigenschaften der Blockcopolymeren wurden in Zug-Dehnungs-Experimenten bestimmt. Hierzu wurden sowohl Filme aus toluolischer Lösung (Abb. 1) als auch bei 180°C an schmelz- gepreßten Proben (Abb. 2) untersucht. In einer Zug-Dehnungs- Apparatur wurden die jeweils 4 cm langen Proben eingespannt und bei einer Geschwindigkeit von 20 mm/min gedehnt. Die Dreiblock¬ copolymere mit höherem Gehalt an ε-Caprolacton verhielten sich wie typische semikristalline Polymere. Überraschenderweise zeig- ten auch SBC-Dreiblockcopolymere mit hohem Styrolanteil nach dem Schmelzpressen eine sehr hohe Zähigkeit, wie es sich in der maximalen Dehnbarkeit von 600 % zeigt.
Tabelle 1: Molekulare Charakteristika
a) aus einer IH-NMR-Messung bestimmt b) bestimmt mittels Gelpermeationschromatographie (nach Eichung mit einem Polystyrolstandard)
Tabelle 2 . Kalometrische Daten (Aufheizen nach Kristallisation)*
*Extrapolation auf eine Heizrate von 0 [K/min]

Claims

Patentansprüche
1. Verfahren zur Herstellung von Blockcopolymeπsaten, ent- haltend mindestens einen Block A, aufgebaut aus Einheiten des Styrols oder dessen technischen Äquivalenten (a) und mindestens einen Block C, aufgebaut aus Einheiten eines cyclischen Lactons (c) , durch anionische Polymerisation, da¬ durch gekennzeichnet, daß das nach dem Aufbau des BIOCKS A verbleibende lebende Kettenende vor der Umsetzung mit dem Monomeren (c) unter den Bedingungen der anionischen Poly¬ merisation mit einem Diarylethylen der allgemeinen Formel I
Ar1 CH2= C ^ <ϊ>
Ar2 worin Ar1 und Ar2 unabhängig für Aryl steht, das mit C,- bis C8-Alkyl oder Cχ-bis Cs-Alkoxy oder Halogen em- oder mehrfach substituiert sein kann, umgesetzt wird.
2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß an das lebende Ende des Blockes A vor der Umsetzung mit dem Diaryl ethyien I in an sich bekannter Weise em weiterer Block B, aufgebaut aus Einheiten eines Diens und ferner mindestens eine weitere Monomereinheit (a) angefugt wird.
3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, daß 1 bis 5 Äquivalente der Monomereinheit (a) angefugt werden.
4. Verfahren nach Anspruch 1 oder 3, dadurch gekennzeichnet, daß als Diarylethylen I Diphenylethylen eingesetzt wird.
5. Verfahren nach emem der Ansprüche 1 bis 4, dadurcn ge<enn- zeichnet, daß als Monomer (b) Butadιen-1,3 oder Isopren ein¬ gesetzt wird.
6. Verfahren nach einem der Ansprüche 1 bis 4, dadurcn ge<enn- zeichnet, daß als Monomer (c) ε-Caprolacton eingesetzt wird.
Verfahren nach einem der Ansprüche 1 bis 6, dadurch ge<enn- zeichnet, daß man die Polymerisation in mindestens zwe_ unterschiedlichen Losungsmitteln oder Losungsmittelgemischen durchfuhrt .
8. Blockcopolymerisat, erhältlich nach dem Verfahren nach einem der Ansprüche 1 bis 7.
9. Verwendung eines Blockcopolymerisats nach Anspruch 8 zur Herstellung von Formkorpem, Folien oder Fasern oder als
Phasenvermittler in Polymermischungen.
10. Formkorper, Folie oder Fasermaterial, hergestellt aus einem Blockcopolymerisat nach Anspruch 9.
EP96939037A 1995-11-15 1996-11-14 Blockcopolymerisat und verfahren zu seiner herstellung durch anionische polymerisation Withdrawn EP0804495A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19542643A DE19542643A1 (de) 1995-11-15 1995-11-15 Verfahren zur Herstellung von Blockcopolymerisaten durch anionische Polymerisation
DE19542643 1995-11-15
PCT/EP1996/004990 WO1997018250A1 (de) 1995-11-15 1996-11-14 Blockcopolymerisat und verfahren zu seiner herstellung durch anionische polymerisation

Publications (1)

Publication Number Publication Date
EP0804495A1 true EP0804495A1 (de) 1997-11-05

Family

ID=7777567

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96939037A Withdrawn EP0804495A1 (de) 1995-11-15 1996-11-14 Blockcopolymerisat und verfahren zu seiner herstellung durch anionische polymerisation

Country Status (4)

Country Link
US (1) US5932663A (de)
EP (1) EP0804495A1 (de)
DE (1) DE19542643A1 (de)
WO (1) WO1997018250A1 (de)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19642489A1 (de) * 1996-10-15 1998-04-16 Basf Ag Verfahren zur Herstellung von Pfropfcopolymeren
US6642322B2 (en) 1998-01-21 2003-11-04 The University Of North Carolina At Chapel Hill Methods of making telechelic oligomers, methods of making block copolymers, and novel block copolymers
DE10029697A1 (de) * 2000-06-16 2001-12-20 Basf Ag Feststoffhaltige Bindemittelzusammensetzung mit radikalisch polymerisierten Blockcopolymeren
FR2909093B1 (fr) * 2006-11-28 2012-07-13 Arkema France Memoire optique 3d comprenant un copolymere a blocs contenant un monomere photoactif porteur d'un groupement photoisomerisable.
US20100010147A1 (en) * 2008-07-08 2010-01-14 Kraton Polymer U.S. Llc Adhesives prepared from diphenylethylene containing block copolymers
US20100010154A1 (en) * 2008-07-08 2010-01-14 Kraton Polymers U.S. Llc Gels prepared from dpe containing block copolymers

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BE785664A (fr) * 1971-07-02 1973-01-02 Stamicarbon Procede de preparation de copolymeres sequences
US4360643A (en) * 1979-04-04 1982-11-23 Phillips Petroleum Company Method of preparing lactone block copolymers
DE3540047A1 (de) * 1985-11-12 1987-05-14 Basf Ag Polymerisationsinitiator und dessen verwendung zur herstellung von lactonblockcopolymerisaten
DE3607627A1 (de) * 1986-03-07 1987-09-10 Bayer Ag Thermoplastische blockcopolymere auf der basis von cyclischen carbonaten oder estern
JPS62241956A (ja) * 1986-04-15 1987-10-22 Denki Kagaku Kogyo Kk 不飽和ポリエステル樹脂収縮防止剤
CA2030916C (en) * 1989-11-29 2000-06-13 Makoto Katoh Permanent antistatic resin composition
JPH03190911A (ja) * 1989-12-20 1991-08-20 Nippon Paint Co Ltd 星型共重合体およびその製造方法
FR2686088B1 (fr) * 1992-01-10 1995-06-23 Atochem Elf Sa Procede de fabrication de polycondensats multisequences, en etoile ou en reseaux par couplage a l'aide de di- ou multi-aldehydes, et polycondensats ainsi obtenus.

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9718250A1 *

Also Published As

Publication number Publication date
WO1997018250A1 (de) 1997-05-22
US5932663A (en) 1999-08-03
DE19542643A1 (de) 1997-05-22

Similar Documents

Publication Publication Date Title
DE2630568C2 (de) Kautschukartige Polybutadiene, Verfahren zu deren Herstellung und dafür geeignete Katalysatorkomplexe
EP0026916B1 (de) Verfahren zur Herstellung von Mischungen linearer Dreiblockcopolymerisate sowie Formteile aus diesen
DE2402715C3 (de) Verfahren zur Herstellung von Blockcopolymerisaten
DE69605418T2 (de) Gele hergestellt aus triblockkopolymeren
DE102017219342B4 (de) Lineares Butadien-Styrol-Copolymer, Herstellungsverfahren und Zusammensetzung davon und aromatisches Vinylharz und Herstellungsverfahren davon
BE1025613B1 (de) Polybutadien-Kautschuk mit niedrigem cis-Gehalt und Zusammensetzung und aromatisches Vinylharz und Herstellungsverfahren hierfür
DE1595345A1 (de) Blockcopolymerisate
DE1224045B (de) Verfahren zur Herstellung von Blockmischpolymerisaten
DE3938927C2 (de)
DE3787930T2 (de) Anionische Polymerisationsverfahren.
EP0289917B1 (de) Butadien-Styrol-Blockcopolymere mit unsymmetrischem Aufbau und deren Herstellung und Verwendung als Formmassen
EP0312928A1 (de) Verzweigte Copolymerisate und Verfahren zu ihrer Herstellung
DE2156681B2 (de) Polymere Massen auf der Basis von Polypropylen
EP0804495A1 (de) Blockcopolymerisat und verfahren zu seiner herstellung durch anionische polymerisation
DE69124756T2 (de) Verzweigtes Blockcopolymer, Verfahren zur Herstellung und seine Verwendung
DE2442849A1 (de) Verfahren zur herstellung von alphamethylstyrol enthaltenden blockmischpolymerisaten
DE2500690C3 (de) Verfahren zur Herstellung durchsichtiger Blockpolymerisate
EP0672085B1 (de) Mehrphasige polymermischungen
DE69124869T2 (de) Hydriertes und verzweigtes Blockcopolymer und Verfahren zur Herstellung
DE69914869T2 (de) Hochtransparente Polymerzusammensetzung
EP0759049B1 (de) Mehrphasige polymermischungen
EP0292714B1 (de) Thermoplastische Formmassen auf Basis von Polyphenylenether
WO1997047672A1 (de) Blockcopolymerisate und diese enthaltende thermoplastische formmassen
DE3942668A1 (de) Polymerzusammensetzungen und verfahren zu ihrer herstellung
DE2120232C3 (de) Verfahren zur Herstellung eines Blockpolymeren

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19970702

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE DE ES FR GB IT NL

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20000601