EP0802392B1 - Method and device for identifying a corrected desintegration time of a programmable and frangible projectile - Google Patents

Method and device for identifying a corrected desintegration time of a programmable and frangible projectile Download PDF

Info

Publication number
EP0802392B1
EP0802392B1 EP96118045A EP96118045A EP0802392B1 EP 0802392 B1 EP0802392 B1 EP 0802392B1 EP 96118045 A EP96118045 A EP 96118045A EP 96118045 A EP96118045 A EP 96118045A EP 0802392 B1 EP0802392 B1 EP 0802392B1
Authority
EP
European Patent Office
Prior art keywords
projectile
time
gun
velocity
vov
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96118045A
Other languages
German (de)
French (fr)
Other versions
EP0802392A1 (en
Inventor
André Boss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Oerlikon Contraves AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves AG filed Critical Oerlikon Contraves AG
Publication of EP0802392A1 publication Critical patent/EP0802392A1/en
Application granted granted Critical
Publication of EP0802392B1 publication Critical patent/EP0802392B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/06Electric fuzes with time delay by electric circuitry

Definitions

  • the invention relates to a method for determining a corrected disassembly time a programmable dismountable projectile shot from a gun barrel according to the preamble of claim 1 and a device for performing of the method according to the preamble of claim 9.
  • a device which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel.
  • the measuring device consists of two ring coils arranged at a certain distance from one another.
  • a pulse is generated in short succession in each ring coil due to the change in magnetic flux that occurs.
  • the pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils.
  • a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile.
  • the receiving coil is connected to a counter via a high-pass filter, which is connected on the output side to a timer.
  • a disassembly time is formed from the calculated bullet speed and a target distance to a target object, which is transmitted inductively to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.
  • an attacking target can be destroyed by multiple hits, as is known, for example, from a publication OC 2052 d 94 from the company Oerlikon-Contraves, Zurich, if, after the sub-projectiles have been ejected, Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles.
  • the part carrying the subprojectiles is separated and torn open at predetermined breaking points.
  • the ejected subprojects describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.
  • the invention is based on the object of a method and an apparatus To propose the preamble of claims 1 and 9, by means of which avoiding the aforementioned Disadvantages an optimal hit or shot probability is achievable.
  • the advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability is achieved can.
  • the proposed correction factor for correcting the disassembly time is based only on the shooting elements of the meeting point for the control of the weapon, namely the gun angles ⁇ , ⁇ , the hit time Tf and the lead speed V0v des Storey. This makes it possible to have a simple, minimal effort Integration into existing weapon control systems.
  • 1 denotes a fire control and 2 a gun.
  • the fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search radar 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 .
  • the fire control computer 6 has at least one main filter 7 and a lead computing unit 9 .
  • the main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow radar 5 in the form of estimated target data Z such as position, speed, acceleration, etc.
  • Computing unit 9 forwards. Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.
  • a computer of the gun 2 has an evaluation circuit 10 , an update computing unit 11 and a correction computing unit 12 .
  • the evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile speed, which is arranged at the mouth of a gun barrel 13 and is described in greater detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 .
  • the update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 .
  • the correction computing unit 12 is connected on the input side to the lead computing unit 9 and on the output side to the updating computing unit 11 .
  • a gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 .
  • the connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 .
  • the meaning of the designations on the individual connections between the computing units 10, 11, 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description.
  • 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ).
  • the projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .
  • a support tube 20 fastened to the muzzle of the gun barrel 13 consists of three parts 21, 22, 23. Between the first part 21 and the second or third part 22, 23 , ring coils 24, 25 are arranged for measuring the bullet speed . On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21, 22, 23 to each other is not shown and described. Lines 28, 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement.
  • the projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 .
  • a pulse is generated in short succession in each ring coil.
  • These pulses are fed to the evaluation circuit 10 ( FIG. 1 ), in which the projectile speed is calculated from the time interval between the pulses and a distance a between the ring coils 24, 25 .
  • a disassembly time is calculated, as described in more detail below, which is transmitted inductively in digital form to the receiving coil 31 when the projectile 18 passes through the transmitting coil 27 for the purpose of setting the counter 32 .
  • Pz denotes a point of disassembly of the projectile 18 .
  • the ejected subprojectiles are, depending on the distance from the point of decomposition Pz, evenly distributed on approximately semicircular curves of (in perspective) circular areas F1, F2, F3, F4 of a cone C.
  • F1, F2, F3, F4 On a first abscissa 1, the distance from the point of decomposition Pz is plotted in meters m, while on a second abscissa II, the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m.
  • 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.
  • the lead computation unit 9 calculates a target distance RT from a lead speed VOv and the target data Z, taking meteorological data into account for storeys with primary and secondary ballistics.
  • the lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm.
  • the lead computing unit 9 also determines a gun angle ⁇ of the azimuth and a gun angle ⁇ of the elevation.
  • the quantities ⁇ , ⁇ , Tz or Tf and VOv are referred to as shooting elements of the meeting point and are fed to the correction computing unit 12 via the data transmission 17 .
  • the current (running) time (t) is interpolated or extrapolated.
  • the tachometer value ⁇ can also be read directly from the gun and for the Invoice can be used.
  • the corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t.
  • the newly calculated disassembly time Tz (Vm, t) is fed to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.
  • the disassembly distance Dz ( Fig. 3,4 ) can be kept constant irrespective of the scatter of the projectile speed , so that an optimal meeting or Probability of shooting can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Testing Relating To Insulation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Automatic Assembly (AREA)

Abstract

The disaggregation time determination involves performing a calculation based on an impact distance, RT, to a target determined from sensor data, a projectile velocity, Vm, at a muzzle and a given disaggregation distance, Dz. The disaggregation distance is kept constant by a correction of a disaggregation time using the equation: Tz(Vm) = Tz + K*(Vm-Vov) Tz(Vm) is the corrected disaggregation time. K is a correction factor. Vov is a lead velocity of a projectile. The correction factor is calculated based upon flying time of the projectile, air resistance and a value relating to a position of the gun barrel.

Description

Die Erfindung betrifft ein Verfahren zur Bestimmung einer korrigieten Zerlegungszeit eines aus einem Geschützrohr abgeschossenen programmierbar zerlegbaren Geschosses nach dem Oberbegriff des Anspruchs 1 sowie eine Vorrichtung zur Durchführung des Verfahrens nach dem Oberbegriff des Anspruchs 9.The invention relates to a method for determining a corrected disassembly time a programmable dismountable projectile shot from a gun barrel according to the preamble of claim 1 and a device for performing of the method according to the preamble of claim 9.

Mit der europäischen Patentanmeldung 0 300 255 ist eine Vorrichtung bekannt geworden, die eine an der Mündung eines Geschützrohres angeordnete Messvorrichtung für die Geschossgeschwindigkeit aufweist. Die Messvorrichtung besteht aus zwei in einem bestimmten Abstand voneinander angeordneten Ringspulen. Beim Durchgang eines Geschosses durch die beiden Ringspulen wird aufgrund der dabei auftretenden Aenderung des magnetischen Flusses kurz hintereinander in jeder Ringspule ein Impuls erzeugt. Die Impulse werden einer Auswerteelektronik zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und dem Abstand zwischen den Ringspulen die Geschossgeschwindigkeit errechnet wird. In Bewegungsrichtung des Geschosses ist hinter der Messvorrichtung für die Geschwindigkeit eine Sendespule angeordnet, die mit einer im Geschoss vorgesehenen Empfangsspule zusammenwirkt. Die Empfangsspule ist über ein Hochpassfilter mit einem Zähler verbunden, der ausgangsseitig mit einem Zeitzünder in Verbindung steht. Aus der errechneten Geschossgeschwindigkeit und einer aus Sensordaten ermittelten Treffdistanz zu einem Zielobjekt wird eine Zerlegungszeit gebildet, die unmittelbar nach dem Durchfliegen der Messvorrichtung induktiv auf das Geschoss übertragen wird. Mit dieser Zerlegungszeit wird der Zeitzünder eingestellt, so dass das Geschoss im Bereiche des Zielobjektes zerlegt werden kann.With the European patent application 0 300 255 a device has become known which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel. The measuring device consists of two ring coils arranged at a certain distance from one another. When a bullet passes through the two ring coils, a pulse is generated in short succession in each ring coil due to the change in magnetic flux that occurs. The pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils. In the direction of movement of the projectile, a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile. The receiving coil is connected to a counter via a high-pass filter, which is connected on the output side to a timer. A disassembly time is formed from the calculated bullet speed and a target distance to a target object, which is transmitted inductively to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.

Werden Geschosse mit Subprojektilen verwendet (Munition mit Primär- und Sekundärballistik), so kann wie beispielsweise aus einer Druckschrift OC 2052 d 94 der Firma Oerlikon-Contraves, Zürich, bekannt, ein angreifendes Ziel durch mehrfache Treffer zerstört werden, wenn nach Ausstossen der Subprojektile im Zerlegungszeitpunkt das Erwartungsgebiet des Zieles von einer durch die Subprojektile gebildeten Wolke belegt ist. Bei der Zerlegung eines solchen Geschosses wird der die Subprojektile tragende Teil abgetrennt und an Sollbruchstellen aufgerissen. Die ausgestossenen Subprojektiie beschreiben eine durch die Rotation des Geschosses hervorgerufene drallstabilisierte Flugbahn und liegen gleichmässig verteilt auf annähernd halbkreisförmigen Kurven von Kreisflächen eines Kegels, so dass eine gute Treffwahrscheinlichkeit erreicht werden kann.If projectiles with sub-projectiles are used (ammunition with primary and secondary ballistics), an attacking target can be destroyed by multiple hits, as is known, for example, from a publication OC 2052 d 94 from the company Oerlikon-Contraves, Zurich, if, after the sub-projectiles have been ejected, Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles. When dismantling such a projectile, the part carrying the subprojectiles is separated and torn open at predetermined breaking points. The ejected subprojects describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.

Bei vorstehend beschriebener Vorrichtung kann durch Streuungen in der Zerlegungsdistanz, die beispielsweise durch Streuungen der Geschossgeschwindigkeit und/oder Verwendung nicht aktualisierter Werte verursacht werden, nicht in jedem Fall eine gute Treff-bzw. Abschusswahrscheinlichkeit erreicht werden. Bei grösseren Zerlegungsdistanzen würde wohl die Kreisfläche grösser, die Dichte der Subprojektile jedoch kleiner werden. Bei kleineren Zerlegungsdistanzen tritt der umgekehrte Fall ein: Die Dichte der Subprojektile wäre grösser, die Kreisfläche jedoch kleiner.In the device described above, scattering in the disassembly distance, which, for example, by scattering the bullet speed and / or use not updated values are caused, not always a good meeting or Probability of being shot down. With larger disassembly distances the circular area would probably be larger, but the density of the subprojectiles would be smaller. The reverse occurs with smaller disassembly distances: the density of the subprojectiles would be larger, but the circular area would be smaller.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren und eine Vorrichtung gemäss Oberbegriff der Ansprüche 1 und 9 vorzuschlagen, mittels welchen unter Vermeidung vorstehend erwähnter Nachteile eine optimale Treff- bzw. Abschusswahrscheinlichkeit erreichbar ist.The invention is based on the object of a method and an apparatus To propose the preamble of claims 1 and 9, by means of which avoiding the aforementioned Disadvantages an optimal hit or shot probability is achievable.

Diese Aufgabe wird durch die in den Patentansprüchen 1 und 9 angegebene Erfindung gelöst. Hierbei wird eine gegebene optimale Zerlegungsdistanz zwischen einem Zerlegungspunkt des Geschosses und einem Treffpunkt des Zieles durch Korrektur der Zerlegungszeit des Geschosses gleichbleibend gehalten. Die Korrektur erfolgt indem zur Zerlegungszeit ein mit einer Geschwindigkeitsdifferenz multiplizierter Korrekturfaktor addiert wird. Die Geschossgeschwindigkeitsdifferenz wird aus der Differenz der aktuellen gemessenen Geschossgeschwindigkeit und einer Vorhaltgeschwindigkeit des Geschosses gebildet, wobei die Vorhaltgeschwindigkeit aus dem Mittelwert einer Anzahl vorhergehender, aufeinanderfolgender Geschossgeschwindigkeiten errechnet wird.This object is achieved by the invention specified in claims 1 and 9 solved. Here there is a given optimal disassembly distance between a disassembly point of the floor and a meeting point of the target by correcting the disassembly time of the projectile kept constant. The correction takes place at the disassembly time a correction factor multiplied by a speed difference is added becomes. The bullet speed difference is the difference of the current measured Projectile speed and a projectile speed of the projectile formed, the lead speed from the mean of a number of previous, successive floor speeds is calculated.

Die mit der Erfindung erzielten Vorteile sind darin zu sehen, dass eine gegebene Zerlegungsdistanz von der aktuellen gemessenen Geschossgeschwindigkeit unabhängig ist, so dass eine dauernde optimale Treff- bzw. Abschusswahrscheinlichkeit erzielt werden kann. Der vorgeschlagene Korrekturfaktor für die Korrektur der Zerlegungszeit basiert lediglich auf den Schiesselementen des Treffpunktes für die Steuerung der Waffe, nämlich den Geschützwinkeln α, λ, der Treffzeit Tf und der Vorhaltgeschwindigkeit V0v des Geschosses. Damit ist die Möglichkeit einer einfachen, einen minimaien Aufwand erfordernden Integration in bereits bestehende Waffensteuerungssysteme gegeben.The advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability is achieved can. The proposed correction factor for correcting the disassembly time is based only on the shooting elements of the meeting point for the control of the weapon, namely the gun angles α, λ, the hit time Tf and the lead speed V0v des Storey. This makes it possible to have a simple, minimal effort Integration into existing weapon control systems.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Zeichnung näher erläutert. Es zeigen.

Fig.1
eine schematische Darstellung eines Waffensteuerungs-Systems mit der er findungsgemässen Vorrichtung,
Fig.2
einen Längsschnitt durch eine Mess- und Programmiervorrichtung,
Fig.3
ein Diagramm der Verteilung von Subprojektilen in Abhängigkeit von der Zerlegungsdistanz, und
Fig.4
eine andere Darstellung des Waffensteuerungs-Systems gemäss Fig.1.
The invention is explained in more detail below using an exemplary embodiment in conjunction with the drawing. Show it.
Fig. 1
1 shows a schematic illustration of a weapon control system with the device according to the invention,
Fig. 2
a longitudinal section through a measuring and programming device,
Fig. 3
a diagram of the distribution of subprojectiles as a function of the disassembly distance, and
Fig. 4
another representation of the weapon control system according to Fig.1.

In der Fig.1 ist mit 1 eine Feuerleitung und mit 2 ein Geschütz bezeichnet. Die Feuerleitung 1 besteht aus einem Suchsensor 3 für die Entdeckung eines Zieles 4, einem mit dem Suchradar 3 verbundenen Folgesensor 5 für die Zielerfassung, die 3-D-Zielverfolgung und die 3-D-Zielvermessung, sowie einem Feuerleitungsrechner 6. Der Feuerleitungsrechner 6 weist mindestens ein Hauptfilter 7 und eine Vorhalt-Rechenein-heit 9 auf. Das Hauptfilter 7 ist eingangsseitig mit dem Folgesensor 5 und ausgangsseitig mit der Vorhalt-Recheneinheit 9 verbunden, wobei das Hauptfilter 7 die vom Folgeradar 5 empfangenen 3-D-Zieldaten in Form von geschätzten Zieldaten Z wie Position, Geschwindigkeit, Beschleunigung usw. an die Vorhalt-Recheneinheit 9 weiterleitet. Ueber einen wie-teren Eingang Me können der Vorhalt-Recheneinheit 9 meteorologische Daten zugeführt werden. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen bzw. Anschlüssen wird nachstehend anhand der Funktionsbeschreibung näher erläutert.In Figure 1, 1 denotes a fire control and 2 a gun. The fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search radar 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 . The fire control computer 6 has at least one main filter 7 and a lead computing unit 9 . The main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow radar 5 in the form of estimated target data Z such as position, speed, acceleration, etc. Computing unit 9 forwards. Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.

Ein Rechner des Geschützes 2 weist eine Auswerteschaltung 10, eine Aufdatierungs-Recheneinheit 11 und eine Korrektur-Recheneinheit 12 auf. Die Auswerteschaltung 10 ist eingangsseitig an einer an der Mündung eines Geschützrohres 13 angeordneten, nachstehend anhand der Fig.2 näher beschriebenen Messvorrichtung 14 für die Geschossgeschwindigkeit angeschlossen und ausgangsseitig mit der Vorhalt-Recheneinheit 9 und der Aufdatierungs-Recheneinheit 11 verbunden. Die Aufdatierungs-Recheneinheit 11 ist eingangsseitig an der Vorhalt- und an der Korrektur-Recheneinheit 9,12 angeschlossen und steht ausgangsseitig mit einem in der Messvorrichtung 14 integrierten Programmierteil in Verbindung. Die Korrektur-Recheneinheit 12 ist eingangsseitig mit der Vorhalt-Recheneinheit 9 und ausgangsseitig mit der Aufdatier-Recheneinheit 11 verbunden. Ein Geschützservo 15 und eine auf einen Feuerbefehl ansprechende Auslöseeinrichtung 16 sind ebenfalls an der Vorhalt-Recheneinheit 9 angeschlossen. Die Verbindungen zwischen der Feuerleitung 1 und dem Geschütz 2 sind zu einer Data-Transmission zusammengefasst, die mit 17 bezeichnet ist. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen zwischen den Recheneinheiten 10, 11, 12 sowie zwischen der Feuerleitung 1 und dem Geschütz 2 wird nachstehend anhand der Funktionsbeschreibung näher erläutert. Mit 18 und 18' ist ein Geschoss bezeichnet, das während einer Programmierphase (18) und im Zerlegungszeitpunkt (18') dargestellt ist. Beim Geschoss 18 handelt es sich um ein programmierbares Geschoss mit Primär-und Sekundärballistik, das mit einer Ausstossladung und einem Zeitzünder ausgestattet und mit Subprojektilen 19 gefüllt ist. A computer of the gun 2 has an evaluation circuit 10 , an update computing unit 11 and a correction computing unit 12 . The evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile speed, which is arranged at the mouth of a gun barrel 13 and is described in greater detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 . The update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 . The correction computing unit 12 is connected on the input side to the lead computing unit 9 and on the output side to the updating computing unit 11 . A gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 . The connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 . The meaning of the designations on the individual connections between the computing units 10, 11, 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description. 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ). The projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .

Gemäss Fig.2 besteht ein an der Mündung des Geschützrohres 13 befestigtes Tragrohr 20 aus drei Teilen 21, 22, 23. Zwischen dem ersten Teil 21 und dem zweiten bzw. dritten Teil 22, 23 sind Ringspulen 24, 25 für die Messung der Geschossgeschwindigkeit angeordnet. Am dritten Teil 23 -auch Programmierteil genannt- ist eine in einem Spulenkörper 26 gehaltene Sendespule 27 befestigt. Die Art der Befestigung des Tragrohres 20 und der drei Teile 21, 22, 23 miteinander ist nicht weiter dargestellt und beschrieben. Für die Speisung der Ringspulen sind Leitungen 28, 29 vorgesehen. Am Umfang des Tragrohres 20 sind zwecks Abschirmung von die Messung störenden Magnetfeldern Weicheisenstäbe 30 angeordnet. Das Geschoss 18 weist eine Empfangsspule 31 auf, die über ein Filter 32 und einen Zähler 33 mit einem Zeitzünder 34 verbunden ist. Beim Durchgang des Geschosses 18 durch die beiden Ringspulen 24, 25 wird kurz hinter-einander in jeder Ringspule ein Impuls erzeugt. Diese Impulse werden derAuswerte-schaltung 10 (Fig.1) zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und einem Abstand a zwischen den Ringspulen 24, 25 die Geschossgeschwindigkeit errechnet wird. Unter Berücksichtigung der Geschossgeschwindigkeit wird, wie nachstehend näher beschrieben, eine Zerlegungszeit errechnet, die in digitaler Form beim Durchgang des Geschosses 18 durch die Sendespule 27 zum Zwecke der Einstellung des Zählers 32 induktiv auf die Empfangsspule 31 übertragen wird.According to FIG. 2 , a support tube 20 fastened to the muzzle of the gun barrel 13 consists of three parts 21, 22, 23. Between the first part 21 and the second or third part 22, 23 , ring coils 24, 25 are arranged for measuring the bullet speed . On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21, 22, 23 to each other is not shown and described. Lines 28, 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement. The projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 . When the projectile 18 passes through the two ring coils 24, 25 , a pulse is generated in short succession in each ring coil. These pulses are fed to the evaluation circuit 10 ( FIG. 1 ), in which the projectile speed is calculated from the time interval between the pulses and a distance a between the ring coils 24, 25 . Taking the projectile speed into account, a disassembly time is calculated, as described in more detail below, which is transmitted inductively in digital form to the receiving coil 31 when the projectile 18 passes through the transmitting coil 27 for the purpose of setting the counter 32 .

In der Fig.3 ist mit Pz ein Zerlegungspunkt des Geschosses 18 bezeichnet. Die ausgestossenen Subprojektile liegen je nach Abstand von Zerlegungspunkt Pz gleichmässig verteilt auf annähernd halbkreisförmigen Kurven von (perspektivisch dargestellten) Kreisflächen F1, F2, F3, F4 eines Kegels C. Auf einer ersten Abzisse 1 ist der Abstand vom Zerlegungspunkt Pz in Metern m aufgetragen, während auf einer zweiten Abzisse II die Flächengrössen der Flächen F1, F2, F3, F4 in Quadratmetern m2 und deren Durchmesser in Metern m aufgetragen sind. Bei einem charakteristischem Geschoss mit beispielsweise 152 Subprojektilen und einem Scheitelwinkel des Kegels C von anfänglich 10° ergeben sich in Abhängigkeit vom Abstand die auf der Abzisse II aufgetragenen Werte. Die Dichte der auf den Kreisflächen F1, F2, F3, F4 befindlichen Subprojektile nimmt mit zunehmendem Abstand ab und beträgt bei den gewählten Verhältnissen 64, 16, 7 und 4 Subprojektile pro Quadratmeter. Bei einer vorgegebenen, der nachfolgend beschriebenen Berechnung der Zerlegungszeit zugrunde gelegten Zerlegungsdistanz Dz von beispielsweise 20 m, würde beim angenommenen Beispiel ein Zielgebiet von 3,5 m Durchmesser mit 16 Subprojektilen pro Quadratmeter belegt sein. In Figure 3 , Pz denotes a point of disassembly of the projectile 18 . The ejected subprojectiles are, depending on the distance from the point of decomposition Pz, evenly distributed on approximately semicircular curves of (in perspective) circular areas F1, F2, F3, F4 of a cone C. On a first abscissa 1, the distance from the point of decomposition Pz is plotted in meters m, while on a second abscissa II, the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m. In the case of a characteristic projectile with, for example, 152 subprojectiles and an apex angle of the cone C of initially 10 °, the values plotted on the abscissa II are obtained as a function of the distance. The density of the subprojectiles on the circular areas F1, F2, F3, F4 decreases with increasing distance and is 64, 16, 7 and 4 subprojectiles per square meter with the selected ratios. Given a predetermined disassembly distance Dz on which the disassembly time is based, as described below, for example 20 m, in the assumed example a target area of 3.5 m in diameter would be occupied with 16 subprojectiles per square meter.

In der Fig. 4 ist mit 4 und 4' das abzuwehrende Ziel bezeichnet, das in einer Treff- bzw. Abschussposition (4) und in einer der Treff- bzw. Abschussposition vorhergehenden Position (4') dargestellt.In FIG. 4 , 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.

Die vorstehend beschriebene Vorrichtung arbeitet wie folgt:The device described above works as follows:

Die Vorhalt-Recheneinheit 9 errechnet aus einer Vorhaltgeschwindigkeit VOv und den Zieldaten Z unter Berücksichtigung von meteorologischen Daten bei Geschossen mit Primär-und Sekundärballistik eine Treffdistanz RT.The lead computation unit 9 calculates a target distance RT from a lead speed VOv and the target data Z, taking meteorological data into account for storeys with primary and secondary ballistics.

Die Vorhaltgeschwindigkeit VOv wird beispielsweise aus dem Mittelwert einer Anzahl über die Data-Transmission 17 zugeführter gemessener Geschossgeschwindigkeiten Vm gebildet, die der aktuellen gemessenen Geschossgeschwindigkeit Vm unmittelbar vorhergehen. Aufgrund einer vorgegebenen Zerlegungsdistanz Dz und unter Berücksichtigung der von einer Treffzeit Tf abhängigen Geschossgeschwindigkeit Vg (Tf) kann eine Zerlegungszeit Tz des Geschosses nach folgenden Beziehungen ermittelt werden: Dz = Vg (Tf) * ts und Tz = Tf - ts worin Vg(Tf) durch ballistische Approximation bestimmt ist und Tz die Flugzeit des Geschosses bis zum Zerlegungszeitpunkt Pz, sowie ts die Flugzeit eines in der Geschossrichtung fliegenden Subprojektiles vom Zerlegungspunkt Pz bis zum Treffpunkt Pf bedeuten (Fig. 3, 4)The lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm. On the basis of a predetermined disassembly distance Dz and taking into account the projectile velocity Vg (Tf) which is dependent on a hit time Tf, a disassembly time Tz of the projectile can be determined according to the following relationships: Dz = Vg (Tf) * ts and Tz = Tf - ts where Vg (Tf) is determined by ballistic approximation and Tz is the flight time of the projectile to the disassembly time Pz, and ts is the flight time of a subprojectile flying in the projectile direction from the disassembly point Pz to the meeting point Pf ( Fig. 3, 4 )

Die Vorhalt-Recheneinheit 9 ermittelt ferner einen Geschützwinkel α des Azimutes und einen Geschützwinkel λ der Elevation. Die Grössen α, λ, Tz oder Tf und VOv werden als Schiesselemente des Treffpunktes bezeichnet und über die Data-Transmission 17 der Korrektur-Recheneinheit 12 zugeführt. Die Schiesselemente α und λ werden ausserdem noch dem Geschützservo 15 und die Schiesselemente VOv und Tz noch der Aufdatier-Recheneinheit 11 zugeführt. Wenn nur Primärballistik zur Anwendung kommt, so wird anstelle der Zerlegungszeit Tz die Treffzeit Tf = Tz+ts übermittelt (Fig.1, Fig.4).The lead computing unit 9 also determines a gun angle α of the azimuth and a gun angle λ of the elevation. The quantities α, λ, Tz or Tf and VOv are referred to as shooting elements of the meeting point and are fed to the correction computing unit 12 via the data transmission 17 . The shooting elements α and λ are also fed to the gun servo 15 and the shooting elements VOv and Tz to the update computing unit 11 . If only primary ballistics is used, the hit time Tf = Tz + ts is transmitted instead of the disassembly time Tz ( Fig . 1, Fig . 4 ).

Die vorstehend beschriebenen Berechnungen werden taktweise wiederholt durchgeführt, so dass jeweils im aktuellen Takt i die neuesten Daten α, λ, Tz oder Tf und VOv für eine bestimmte Gültigkeitsdauer zur Verfügung stehen. The calculations described above are repeated in cycles, so that in the current cycle i the latest data α, λ, Tz or Tf and VOv for one certain periods of validity are available.

Zwischen den Taktwerten wird für die aktuelle (laufende) Zeit (t) jeweils interpoliert bzw. extrapoliert.Between the cycle values, the current (running) time (t) is interpolated or extrapolated.

Die Korrektur-Recheneinheit 12 errechnet am Anfang eines jeden Taktes i mit dem jeweils neuesten Satz Schiesselemente α, λ, Tz oder Tf und VOv einen Korrekturfaktor K nach der Gleichung K= -(1+δTG/δto)*TG*(1+0,25*q*(VOv*Vn)1/2*TG)(1+(TG*(1+0,5*q*(VOv*Vn)1/2*TG) * ω2 ))*VOv The correction arithmetic unit 12 calculates a correction factor K according to the equation at the beginning of each cycle i with the latest set of shooting elements α, λ, Tz or Tf and VOv K = - (1 + δTG / δto) * TG * (1 + 0.25 * q * (VOv * Vn) 1/2 * TG) (1+ (TG * (1 + 0.5 * q * (VOv * Vn) 1/2 * TG) * ω 2nd )) * VOv

Hierin ist δTG/δto die Ableitung der Flugzeit TG des Geschosses nach der Zeit, die nach der Gleichung δTG/δto = (TGi - TGi-1)/to errechnet wird, wobei i der aktuelle Takt, i-1 der vorhergehende Takt und to die Dauer eines Taktes ist, und wobei die Flugzeit TG eines Geschosses gleich der Treffzeit Tf ist. ω2 ist eine die Stellung des Geschützrohres 13 betreffende Grösse, die sich nach der Beziehung ω2 = (rateα * cos λ)2 + (rateλ)2 berechnet, wobei rateα = (αi - αi-1)/to und rateλ = (λi - λi-1)/to die Geschützrohr-Winkelgeschwindigkeiten in Richtung α bzw. in Richtung λ bedeuten.

Vn
ist eine Normgeschwindigkeit der Ballistik.
q
ist eine den Luftwiderstand des Geschosses berücksichtigende Grösse, die sich nach der Beziehung q = (CWn * γ * Gq) / (2 * Gm),
errechnet, wobei die Bedeutung der einzelnen einzusetzenden Werte im Patentanspruch 9 aufgeführt ist. Herein δTG / δto is the derivative of the flight time TG of the projectile after the time, according to the equation δTG / δto = (TG i - TG i-1 ) / to is calculated, where i is the current measure, i-1 the previous measure and to the duration of a measure, and wherein the flight time TG of a projectile is equal to the time Tf. ω 2 is a quantity relating to the position of the gun barrel 13 , which depends on the relationship ω 2nd = (rate α * cos λ) 2nd + (rate λ ) 2nd calculated where rate α = (α i - α i-1 ) / to and rate λ = (λ i - λ i-1 ) / to the gun barrel angular velocities in the direction α or in the direction λ mean.
Vn
is a standard speed of ballistics.
q
is a quantity taking into account the air resistance of the projectile, which depends on the relationship q = (CWn * γ * Gq) / (2 * Gm),
calculated, the meaning of the individual values to be used is listed in claim 9 .

Anstatt, wie oben durchgeführt, eine numerische (oder, wenn nötig eine filtrierte) Lösung zu wählen kann auch beim Geschütz direkt der Tachowert ω abgelesen und für die Rechnung verwendet werden.Instead of a numerical (or, if necessary, a filtered) solution, as stated above The tachometer value ω can also be read directly from the gun and for the Invoice can be used.

Die Aufdatierungs-Recheneinheit 11 errechnet aus dem von der Korrektur-Recheneinheit 12 zugeführten Korrekturfaktor K, der von der Auswerteschaltung 10 zugeführten aktuellen gemessenen Geschossgeschwindigkeit Vm und der von der Vorhalt-Recheneinheit 9 zugeführten Vorhaltgeschwindigkeit Vov und Zerlegungszeit Tz eine korrigierte Zerlegungszeit Tz (Vm) nach der Beziehung Tz (Vm) = Tz + K * (Vm-VOv). The update arithmetic unit 11 calculates a corrected disassembly time Tz (Vm) from the correction factor K supplied by the correction arithmetic unit 12 , the current measured projectile speed Vm supplied by the evaluation circuit 10 and the lead speed Vov supplied by the lead computing unit 9 the relationship Tz (Vm) = Tz + K * (Vm-VOv).

Die korrigierte Zerlegungszeit Tz (Vm) wird je nach Zeitgültigkeit für die aktuelle laufende Zeit t interpoliert bzw. extrapoliert. Die neu errechnete Zerlegungszeit Tz (Vm, t) wird der Sendespule 27 des Programmierteils 23 der Messvorrichtung 14 zugeführt und wie bereits vorstehend anhand der Fig.2 beschrieben induktiv auf ein vorbeifliegendes Geschoss 18 übertragen.The corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t. The newly calculated disassembly time Tz (Vm, t) is fed to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.

Mit der Korrektur der Zerlegungszeit Tz kann die Zerlegungsdistanz Dz (Fig.3,4) unabhängig von den Streuungen der Geschossgeschwindigkeit gleichbleibend gehalten werden, so dass eine optimale Treff-bzw. Abschusswahrscheinlichkeit erzielt werden kann.With the correction of the disassembly time Tz, the disassembly distance Dz ( Fig. 3,4 ) can be kept constant irrespective of the scatter of the projectile speed , so that an optimal meeting or Probability of shooting can be achieved.

Claims (9)

  1. Method for determining a corrected fragmentation time (Tz(Vm)) for a programmably fragmentable projectile (12) fired from a gun-barrel (13) with a view to maintaining constant a given fragmentation distance (Dz) between a point of fragmentation (Pz) of the projectile (12) and a point of collision (Pf) of the projectile (12) with a target travelling at speed, in which
    sensor data are measured from which a strike distance (RT) from the gun-barrel (13) to the target is computed,
    the velocity (Vm) of the fired projectile is measured at the muzzle of the gun-barrel (13), and
    determination of the corrected fragmentation time (Tz(Vm)) is based upon at least
    the said strike distance (RT),
    the said velocity (Vm) of the projectile (12), and
    the fragmentation distance (Dz),
    characterized in that
    a predicted velocity (VOv) of the projectile is also determined from the measured sensor data, and
    the corrected fragmentation time (Tz(Vm)) is determined from the originally defined fragmentation time (Tz) by the relation Tz(Vm) = Tz + K x (Vm - VOv)
    in which
    Tz(Vm)
    stands for the corrected fragmentation time,
    Tz
    is the originally defined fragmentation time,
    K
    is a correction factor,
    Vm
    is the presently measured muzzle velocity of the projectile and
    VOv
    is a predicted velocity of the projectile,
    where the correction factor (K) is calculated in accordance with the equation K = -(1+δTG/δto) x TG x (1+0.25 x q x (VOv x Vn)1/2 x TG) (1 + (TG x (1 + 0.5 x q x (VOv x Vn)1/2 x TG) x ω2 )) x VOv in which
    TG
    stands for a flight time of the projectile,
    δTG/δto
    is the derivative of the flight time with respect to time,
    q
    is a variable taking account of the projectile's aerodynamic drag,
    VOv
    is the predicted velocity of the projectile,
    Vn
    is a standard velocity of the ballistics and
    ω2
    is a variable relating to the position of the gun-barrel.
  2. Method according to Claim 1, characterized in that the calculations are performed repeatedly in timed cycles.
  3. Method according to Claim 2, characterized in that the derivative of the flight time (TG) with respect to time is calculated by the equation δTG/δto = (Tgi - TGi-1 )/to in which
    i
    is the current cycle,
    i-1
    the preceding cycle and
    to
    the duration of a cycle.
  4. Method according to Claim 2, characterized in that the variable (ω2) relating to the position of the gun-barrel (13) is calculated by the relation ω2 = (rateα x cosλ)2 + (rateλ)2 where
    α
    stands for a gun azimuth angle,
    λ
    a gun elevation angle,
    rateα
    a gun-barrel angular velocity in the α direction and
    rateλ
    a gun-barrel angular velocity in the λ direction.
  5. Method according to Claim 4, characterized in that the gun-barrel angular velocities in the α direction and in the λ direction are respectively calculated by the equations rateα = (αi - αi-1)/to rateλ = (λi - λi-1)/to in which
    i
    is the current cycle,
    i-1
    the preceding cycle and
    to
    the duration of a cycle.
  6. Method according to Claim 2, characterized in that the variable (q) taking the aerodynamic drag of the projectile into account is calculated by the relation q = (CWn x γ x Gq) / (2 x Gm), in which
    CWn
    is an aerodynamic drag coefficient,
    γ
    stands for air density,
    Gq
    a projectile cross-section and
    Gm
    the mass of the projectile.
  7. Method according to Claim 1, characterized in that the predicted velocity (VOv) is obtained from the mean value of a number of measured muzzle velocities immediately preceding the presently measured muzzle velocity (Vm).
  8. Method according to Claim 1, characterized in that the corrected fragmentation time (Tz[Vm]) is interpolated or extrapolated according to time validity for the current time (t).
  9. Apparatus for carrying out the method according to Claim 1, with a fire direction computer (6) connected via a data-transmission (17) to a gun computer, in which the fire direction computer (6) has at least a prediction unit (9) and the gun computer has at least an evaluation circuit (10) for determining the muzzle velocity (Vm) and an updating unit (11) whose input is connected to the evaluation circuit (10) to feed the muzzle velocity (Vm) and whose output is connected to a programming part (23) of a device (14) for measuring the muzzle velocity (Vm), characterized in that
    a correction unit (12) is provided for calculation of the correction factor (K),
    the correction unit (12) has its input connected via the data-transmission (17) to the prediction unit (9) for the purpose of feeding the firing data on which the calculation is based viz. gun angles (α, λ), predicted velocity (VOv), and fragmentation time and/or strike time (Tz, Tf),
    the updating unit (11) has its input connected via the data-transmission (17) to the prediction unit (9) for the purpose of feeding the predicted velocity (VOv) and fragmentation time and/or strike time (Tz, Tf) and has its input connected to the correction unit (11) for the purpose of feeding the correction factor (K),
    wherein the corrected fragmentation time (Tz(Vm)) determined in the updating unit (11) is fed via the output-connection of the updating unit (11) to the programming part (23).
EP96118045A 1996-04-19 1996-11-11 Method and device for identifying a corrected desintegration time of a programmable and frangible projectile Expired - Lifetime EP0802392B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH99996 1996-04-19
CH99996 1996-04-19
CH999/96 1996-04-19

Publications (2)

Publication Number Publication Date
EP0802392A1 EP0802392A1 (en) 1997-10-22
EP0802392B1 true EP0802392B1 (en) 2000-10-18

Family

ID=4200096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96118045A Expired - Lifetime EP0802392B1 (en) 1996-04-19 1996-11-11 Method and device for identifying a corrected desintegration time of a programmable and frangible projectile

Country Status (12)

Country Link
US (1) US5814756A (en)
EP (1) EP0802392B1 (en)
JP (1) JP3891618B2 (en)
KR (1) KR100436385B1 (en)
AT (1) ATE197091T1 (en)
AU (1) AU716410B2 (en)
CA (1) CA2190385C (en)
DE (1) DE59606026D1 (en)
NO (1) NO311953B1 (en)
SG (1) SG83656A1 (en)
TR (1) TR199600951A1 (en)
ZA (1) ZA969542B (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109658A1 (en) * 2011-08-08 2013-02-14 Rheinmetall Air Defence Ag Device and method for protecting objects

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761767B1 (en) * 1997-04-03 1999-05-14 Giat Ind Sa METHOD FOR PROGRAMMING IN FLIGHT A TRIGGERING MOMENT OF A PROJECTILE ELEMENT, FIRE CONTROL AND ROCKET IMPLEMENTING SUCH A METHOD
EP0992762B1 (en) * 1998-10-08 2002-03-06 Oerlikon Contraves Ag Method and device for transmitting information to a programmable projectile
ATE227839T1 (en) * 1998-10-08 2002-11-15 Contraves Pyrotec Ag METHOD FOR CORRECTING A PRE-PROGRAMMED TRIGGER OF A PROCESS IN A SPIN-STABILIZED MISSILE, DEVICE FOR IMPLEMENTING THE METHOD AND USE OF THE DEVICE
DE59914323D1 (en) 1998-10-08 2007-06-14 Contraves Ag Method and device for correcting the breaking time or the breaking speed of a spin-stabilized programmable projectile
ATE391893T1 (en) 2003-02-26 2008-04-15 Rwm Schweiz Ag METHOD FOR PROGRAMMING THE DISASSEMBLY OF PROJECTILES AND TUBE WEAPONS USING A PROGRAMMING SYSTEM
DE102007007403A1 (en) * 2007-02-12 2008-08-21 Krauss-Maffei Wegmann Gmbh & Co. Kg Method and device for protection against flying attack ammunition
DE102009011447B9 (en) * 2009-03-03 2012-08-16 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle
DE102011018248B3 (en) 2011-04-19 2012-03-29 Rheinmetall Air Defence Ag Device and method for programming a projectile
DE102011106198B3 (en) 2011-06-07 2012-03-15 Rheinmetall Air Defence Ag Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
US11933585B2 (en) 2013-03-27 2024-03-19 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
US10514234B2 (en) 2013-03-27 2019-12-24 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
DE102013007229A1 (en) 2013-04-26 2014-10-30 Rheinmetall Waffe Munition Gmbh Method for operating a weapon system
CN110440827B (en) * 2019-08-01 2022-05-24 北京神导科讯科技发展有限公司 Parameter error calibration method and device and storage medium
SE545273C2 (en) 2019-09-30 2023-06-13 Bae Systems Bofors Ab Method for optimization of burst point and weapon system

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575085A (en) * 1968-08-21 1971-04-13 Hughes Aircraft Co Advanced fire control system
US4142442A (en) * 1971-12-08 1979-03-06 Avco Corporation Digital fuze
US4267776A (en) * 1979-06-29 1981-05-19 Motorola, Inc. Muzzle velocity compensating apparatus and method for a remote set fuze
US4283989A (en) * 1979-07-31 1981-08-18 Ares, Inc. Doppler-type projectile velocity measurement and communication apparatus, and method
US4449041A (en) * 1980-10-03 1984-05-15 Raytheon Company Method of controlling antiaircraft fire
FR2514884B1 (en) * 1981-10-20 1985-07-12 Sfim METHOD AND DEVICE FOR GLOBALLY CORRECTING, FROM ONE SHOOTING TO THE NEXT, THE SHOOTING OF A TENSIONED WEAPON
DE3309147A1 (en) * 1983-03-15 1984-09-20 Rainer Dipl.-Phys. 6901 Gaiberg Berthold Method and arrangement for correcting an ignition time
US4750423A (en) * 1986-01-31 1988-06-14 Loral Corporation Method and system for dispensing sub-units to achieve a selected target impact pattern
FR2609165A1 (en) * 1986-12-31 1988-07-01 Thomson Brandt Armements PROJECTILE COMPRISING SUB-PROJECTILES WITH A PREFINED EFFICIENCY ZONE
ES2022539B3 (en) * 1987-07-20 1991-12-01 Werkzeugmaschinenfabrik Oerlikon-Buhrle Ag DEVICE FOR THE DIGITAL ADJUSTMENT OF A METER FOR THE DISENGAGEMENT OF A GRADUATED SPOTLET IN A PROJECTILE.
GB2226624B (en) * 1987-12-12 1991-07-03 Thorn Emi Electronics Ltd Projectile
DE3830518A1 (en) * 1988-09-08 1990-03-22 Rheinmetall Gmbh DEVICE FOR SETTING A FLOOR TIME
ES2045987T3 (en) * 1990-07-19 1994-01-16 Contraves Ag RECEIVING COIL FOR A PROGRAMMABLE PROJECTILE SPOOL.
US5140329A (en) * 1991-04-24 1992-08-18 Lear Astronics Corporation Trajectory analysis radar system for artillery piece
CA2082448C (en) * 1991-05-08 2002-04-30 Christopher Robert Gent Weapons systems
EP0512856B1 (en) * 1991-05-08 1998-11-04 Electronic Data Systems Corporation Weapon system
US5497704A (en) * 1993-12-30 1996-03-12 Alliant Techsystems Inc. Multifunctional magnetic fuze

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102011109658A1 (en) * 2011-08-08 2013-02-14 Rheinmetall Air Defence Ag Device and method for protecting objects

Also Published As

Publication number Publication date
NO964755L (en) 1997-10-20
AU716410B2 (en) 2000-02-24
AU7172996A (en) 1997-10-23
EP0802392A1 (en) 1997-10-22
ATE197091T1 (en) 2000-11-15
SG83656A1 (en) 2001-10-16
CA2190385A1 (en) 1997-10-20
NO311953B1 (en) 2002-02-18
TR199600951A1 (en) 1997-11-21
JP3891618B2 (en) 2007-03-14
KR970070941A (en) 1997-11-07
KR100436385B1 (en) 2004-08-25
CA2190385C (en) 2003-05-20
NO964755D0 (en) 1996-11-08
US5814756A (en) 1998-09-29
ZA969542B (en) 1997-06-17
DE59606026D1 (en) 2000-11-23
JPH09280799A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
EP0802392B1 (en) Method and device for identifying a corrected desintegration time of a programmable and frangible projectile
EP0802391B1 (en) Method of identifying a corrected disintegration time of a programmable and frangible projectile
EP0802390B1 (en) Method for identifying a corrected desintegration time of a programmable and frangible projectile
DE2210277A1 (en) Electronic ignition system
DE102007059397A1 (en) swash detonator
EP0529489B1 (en) A firing miss-measuring method and installation for firing at a movable airborne target with a gun comprising at leat two barrels
DE2452586C3 (en) Method and device for determining the duration of the flight path of a projectile
EP1482311B1 (en) Device and method for the determination of the muzzle velocity of a projectile
EP2699871B1 (en) Device and method for programming a projectile
EP0411073A1 (en) Process and device for improving the accuracy of aim
EP0547391A1 (en) Method for increasing the success probability for an anti-aircraft defence system using remote-controlled scattering projectiles
DE1623362C3 (en) Device for igniting an explosive charge or for triggering a function
EP0309734A1 (en) Method for firing a projectile in the proximity of a target
CH656453A5 (en) Device for firing simulation using light pulses
EP0992762B1 (en) Method and device for transmitting information to a programmable projectile
EP2226607B1 (en) Method for igniting a warhead of a grenade and vehicle
DE60219564T2 (en) A method of adjusting a projectile fuse, programmer and timing fuse used in such a method
EP0992758A1 (en) Method and device for calculating and correcting the disintegration time of a spin-stabilized programmable projectile
EP1159578B1 (en) Shooting simulation method
DE3716450C1 (en) Setting electronic timer for munition detonator - entering type, temp. of drive charge weather and target data in fuse ignition computer
EP0348985A2 (en) Fuse for explosive projectiles
DE3903802C2 (en)
DE3843601C2 (en)
DE2658167A1 (en) Trajectory electromagnetic control system for projectile - applies correcting force on computing deviation by propellant charge or spoilers
DE3904684A1 (en) Method for the correction of the trajectory (flight path) of an explosive projectile which is fired from a tube weapon or is self-propelled, as well as a projectile on which the method is used

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971211

17Q First examination report despatched

Effective date: 19990526

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR IDENTIFYING A CORRECTED DESINTEGRATION TIME OF A PROGRAMMABLE AND FRANGIBLE PROJECTILE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON CONTRAVES AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR IDENTIFYING A CORRECTED DESINTEGRATION TIME OF A PROGRAMMABLE AND FRANGIBLE PROJECTILE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 197091

Country of ref document: AT

Date of ref document: 20001115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59606026

Country of ref document: DE

Date of ref document: 20001123

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001108

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101112

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59606026

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59606026

Country of ref document: DE

Effective date: 20111021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111110

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20111219

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20120523

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606026

Country of ref document: DE

Owner name: RHEINMETALL AIR DEFENCE AG, CH

Free format text: FORMER OWNER: OERLIKON-CONTRAVES AG, ZUERICH, CH

Effective date: 20120523

BERE Be: lapsed

Owner name: *OERLIKON CONTRAVES A.G.

Effective date: 20121130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 197091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20141119

Year of fee payment: 19

Ref country code: DE

Payment date: 20141119

Year of fee payment: 19

Ref country code: FR

Payment date: 20141119

Year of fee payment: 19

Ref country code: CH

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141125

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606026

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151111

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130