EP0802391B1 - Method of identifying a corrected disintegration time of a programmable and frangible projectile - Google Patents

Method of identifying a corrected disintegration time of a programmable and frangible projectile Download PDF

Info

Publication number
EP0802391B1
EP0802391B1 EP96118044A EP96118044A EP0802391B1 EP 0802391 B1 EP0802391 B1 EP 0802391B1 EP 96118044 A EP96118044 A EP 96118044A EP 96118044 A EP96118044 A EP 96118044A EP 0802391 B1 EP0802391 B1 EP 0802391B1
Authority
EP
European Patent Office
Prior art keywords
projectile
velocity
time
target
fragmentation
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96118044A
Other languages
German (de)
French (fr)
Other versions
EP0802391A1 (en
Inventor
André Boss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Oerlikon Contraves AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves AG filed Critical Oerlikon Contraves AG
Publication of EP0802391A1 publication Critical patent/EP0802391A1/en
Application granted granted Critical
Publication of EP0802391B1 publication Critical patent/EP0802391B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes

Definitions

  • the invention relates to a method for determining a corrected disassembly time one of a programmable disassembled from a gun barrel Projectile according to the preamble of the only claim.
  • a device which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel.
  • the measuring device consists of two ring coils arranged at a certain distance from one another.
  • a pulse is generated in short succession in each ring coil due to the change in magnetic flux that occurs.
  • the pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils.
  • a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile.
  • the receiving coil is connected to a counter via a high-pass filter, which is connected on the output side to a timer.
  • a disassembly time is formed from the calculated bullet speed and a target distance to a target object, which is transmitted inductively to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.
  • an attacking target can be destroyed by multiple hits, as is known, for example, from a publication OC 2052 d 94 from the company Oerlikon-Contraves, Zurich, if, after the sub-projectiles have been ejected, Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles.
  • the part carrying the subprojectiles is separated and torn open at predetermined breaking points.
  • the ejected sub-projectiles describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.
  • the invention has for its object to propose a method according to the preamble, by means of which an optimal while avoiding the disadvantages mentioned above Hit or shot probability is achievable.
  • the advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability is achieved can.
  • the proposed correction factor for correcting the disassembly time is based only on the relative velocity of the bullet-target and a derivation of the ballistics at the meeting point.
  • 1 denotes a fire control and 2 a gun.
  • the fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search sensor 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 .
  • the fire control computer 6 has at least one main filter 7 , a lead computing unit 9 and a correction computing unit 12 .
  • the main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow sensor 5 in the form of estimated target data 2 such as position, speed, acceleration, etc. forward the lead computing unit 9 , which is connected on the output side to the correction computing unit.
  • Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.
  • a computer of the gun 2 has an evaluation circuit 10 and an update computing unit 11 .
  • the evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile speed, which is arranged at the mouth of a gun barrel 13 and is described in greater detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 .
  • the update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 .
  • the correction arithmetic unit 12 is connected on the input side to the lead arithmetic unit 9 and on the output side to the update arithmetic unit 11 .
  • a gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 .
  • the connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 .
  • the meaning of the designations on the individual connections between the computing units 10, 11, 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description.
  • 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ).
  • the projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .
  • a support tube 20 attached to the muzzle of the gun barrel 13 consists of three parts 21, 22, 23 . Between the first part 21 and the second or third part 22, 23 , ring coils 24, 25 are arranged for measuring the projectile speed. On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21, 22, 23 to each other is not shown and described. Lines 28, 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement.
  • the projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 .
  • a pulse is generated in short succession in each ring coil.
  • These pulses of the evaluation circuit 10 (Fig.1) are supplied, in which from the time interval of the pulses and a distance a between the toroid coils, the projectile velocity is calculated 24.25.
  • a disassembly time is calculated, as described in more detail below, which is transmitted inductively in digital form to the receiving coil 31 when the projectile 18 passes through the transmitting coil 27 for the purpose of setting the counter 32 .
  • Pz denotes a point of disassembly of the projectile 18 .
  • the ejected subprojectiles are, depending on the distance from the point of decomposition Pz, evenly distributed on approximately semicircular curves of (perspectively represented) circular areas F1, F2, F3, F4 of a cone C.
  • F1, F2, F3, F4 of a cone C.
  • On a first abscissa the distance from the point of decomposition Pz is plotted in meters m, while on a second abscissa II the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m.
  • 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.
  • the lead computation unit 9 calculates a target distance RT, a disassembly time Tz and a sub-projectile flight time ts from a predetermined disassembly distance Dz, a retention speed VOv and the target data Z, taking meteorological data into account for projectiles with primary and secondary ballistics.
  • Tz is the flight time of the projectile to the point of disassembly Pz
  • ts is the flight time of a subprojectile flying in the projectile direction from the point of disassembly Pz to the meeting point Pf ( Fig . 3,4 ).
  • the lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm.
  • the lead computing unit 9 also determines a gun angle a of the azimuth and a gun angle ⁇ of the elevation.
  • the quantities ⁇ , ⁇ , Tz and VOv are fed to the correction computing unit 12 , which calculates a correction factor K as described in more detail below.
  • the current (running) time (t) is interpolated or extrapolated.
  • the ballistics of a projectile is determined by a system of differential equations of the form described, along with the initial conditions a clear ballistic solution is determined.
  • ⁇ o ( t o ) With becomes a component of ⁇ o ( t o ) in the pipe direction and with ⁇ (2) / o defines a perpendicular component, so that is where means the speed of the pipe mouth and is a reserve size which is actually maintained by the projectile.
  • the corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t.
  • the disassembly time Tz (Vm, t) now calculated is supplied to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.
  • the disassembly distance Dz ( FIG. 3, 4 ) can be kept constant regardless of the variations in the projectile speed , and / or caused by the use of non-updated values, so that an optimal meeting or Probability of shooting can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Electrotherapy Devices (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Testing Of Balance (AREA)
  • Fishing Rods (AREA)

Abstract

The disaggregation time determination involves calculating using an impact distance to a target determined by sensor data. A given disaggregation distance is maintained constant by correcting a disaggregation time. The correction is performed using the equation: Tz(Vm) = Tz + K*(Vm-Vov) Tz(Vm) is a corrected disaggregation time. Tz is the disaggregation time. K is a correction factor. Vm is a measured projectile velocity. Vov is a lead velocity of a projectile. The correction factor is determined starting from a flying time (t*) over a shortest distance between a projectile and a target.

Description

Die Erfindung betrifft ein Verfahren zur Bestimmung einer korrigierten Zerlegungszeit eines eines aus einem Geschützrohr abgeschossenen programmierbar zerlegbaren Geschosses nach dem Oberbegriff des einzigen Anspruchs.The invention relates to a method for determining a corrected disassembly time one of a programmable disassembled from a gun barrel Projectile according to the preamble of the only claim.

Mit der europäischen Patentanmeldung 0 300 255 ist eine Vorrichtung bekannt geworden, die eine an der Mündung eines Geschützrohres angeordnete Messvorrichtung für die Geschossgeschwindigkeit aufweist. Die Messvorrichtung besteht aus zwei in einem bestimmten Abstand voneinander angeordneten Ringspulen. Beim Durchgang eines Geschosses durch die beiden Ringspulen wird aufgrund der dabei auftretenden Aenderung des magnetischen Flusses kurz hintereinander in jeder Ringspule ein Impuls erzeugt. Die Impulse werden einer Auswerteelektronik zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und dem Abstand zwischen den Ringspulen die Geschossgeschwindigkeit errechnet wird. In Bewegungsrichtung des Geschosses ist hinter der Messvorrichtung für die Geschwindigkeit eine Sendespule angeordnet, die mit einer im Geschoss vorgesehenen Empfangsspule zusammenwirkt. Die Empfangsspule ist über ein Hochpassfilter mit einem Zähler verbunden, der ausgangsseitig mit einem Zeitzünder in Verbindung steht. Aus der errechneten Geschossgeschwindigkeit und einer aus Sensordaten ermittelten Treffdistanz zu einem Zielobjekt wird eine Zerlegungszeit gebildet, die unmittelbar nach dem Durchfliegen der Messvorrichtung induktiv auf das Geschoss übertragen wird. Mit dieser Zerlegungszeit wird der Zeitzünder eingestellt, so dass das Geschoss im Bereiche des Zielobjektes zerlegt werden kann.With the European patent application 0 300 255 a device has become known which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel. The measuring device consists of two ring coils arranged at a certain distance from one another. When a bullet passes through the two ring coils, a pulse is generated in short succession in each ring coil due to the change in magnetic flux that occurs. The pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils. In the direction of movement of the projectile, a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile. The receiving coil is connected to a counter via a high-pass filter, which is connected on the output side to a timer. A disassembly time is formed from the calculated bullet speed and a target distance to a target object, which is transmitted inductively to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.

Werden Geschosse mit Subprojektilen verwendet (Munition mit Primär- und Sekundärballistik), so kann wie beispielsweise aus einer Druckschrift OC 2052 d 94 der Firma Oerlikon-Contraves, Zürich, bekannt, ein angreifendes Ziel durch mehrfache Treffer zerstört werden, wenn nach Ausstossen der Subprojektile im Zerlegungszeitpunkt das Erwartungsgebiet des Zieles von einer durch die Subprojektile gebildeten Wolke belegt ist. Bei der Zerlegung eines solchen Geschosses wird der die Subprojektile tragende Teil abgetrennt und an Sollbruchstellen aufgerissen. Die ausgestossenen Subprojektile beschreiben eine durch die Rotation des Geschosses hervorgerufene drallstabilisierte Flugbahn und liegen gleichmässig verteilt auf annähernd halbkreisförmigen Kurven von Kreisflächen eines Kegels, so dass eine gute Treffwahrscheinlichkeit erreicht werden kann.If projectiles with sub-projectiles are used (ammunition with primary and secondary ballistics), an attacking target can be destroyed by multiple hits, as is known, for example, from a publication OC 2052 d 94 from the company Oerlikon-Contraves, Zurich, if, after the sub-projectiles have been ejected, Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles. When dismantling such a projectile, the part carrying the subprojectiles is separated and torn open at predetermined breaking points. The ejected sub-projectiles describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.

Bei vorstehend beschriebener Vorrichtung kann durch Streuungen in der Zerlegungsdistanz, die beispielsweise durch Streuungen der Geschossgeschwindigkeit und/oder Verwendung nicht aktualisierter Werte verursacht werden, nicht in jedem Fall eine gute Treff-bzw. Abschusswahrscheinlichkeit erreicht werden. Bei grösseren Zerlegungsdistanzen würde wohl die Kreisfläche grösser, die Dichte der Subprojektile jedoch kleiner werden. Bei kleineren Zerlegungsdistanzen tritt der umgekehrte Fall ein: Die Dichte der Subprojektile wäre grösser, die Kreisfläche jedoch kleiner.In the device described above, scattering in the disassembly distance, which, for example, by scattering the bullet speed and / or use not updated values are caused, not always a good meeting or Probability of being shot down. With larger disassembly distances the circular area would probably be larger, but the density of the subprojectiles would be smaller. The reverse occurs with smaller disassembly distances: the density of the subprojectiles would be larger, but the circular area would be smaller.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren gemäss Oberbegriff vorzuschlagen, mittels welchen unter Vermeidung vorstehend erwähnter Nachteile eine optimale Treff- bzw. Abschusswahrscheinlichkeit erreichbar ist.The invention has for its object to propose a method according to the preamble, by means of which an optimal while avoiding the disadvantages mentioned above Hit or shot probability is achievable.

Diese Aufgabe wird durch die im einzigen Patentanspruch angegebene Erfindung gelöst. Hierbei wird eine gegebene optimale Zerlegungsdistanz zwischen einem Zerlegungspunkt des Geschosses und einem Treffpunkt des Zieles durch Korrektur der Zerlegungszeit des Geschosses gleichbleibend gehalten. Die Korrek-tur erfolgt indem zur Zerlegungszeit ein mit einer Geschwindigkeitsdifferenz multiplizierter Korrekturfaktor addiert wird. Die Geschwindigkeitsdifferenz wird aus der Differenz der aktuellen gemessenen Geschossgeschwindigkeit und einer Vorhaltgeschwindigkeit des Geschosses gebildet, wobei die Vorhaltgeschwindigkeit aus dem Mittelwert einer Anzahl vorhergehender, aufeinanderfolgender Geschossgeschwindigkeiten errechnet wird.This object is achieved by the invention specified in the single patent claim. Here a given optimal decomposition distance between a decomposition point of the Floor and a meeting point of the target by correcting the disassembly time of the Projectile kept constant. The correction takes place at the disassembly time correction factor multiplied by a speed difference is added. The speed difference is the difference between the current measured bullet speed and a lead rate of the projectile, the Lead speed from the mean of a number of previous, successive ones Floor speeds is calculated.

Die mit der Erfindung erzielten Vorteile sind darin zu sehen, dass eine gegebene Zerlegungsdistanz von der aktuellen gemessenen Geschossgeschwindigkeit unabhängig ist, so dass eine dauernde optimale Treff- bzw. Abschusswahrscheinlichkeit erzielt werden kann. Der vorgeschlagene Korrekturfaktor für die Korrektur der Zerlegungszeit basiert lediglich auf der relativen Geschwindigkeit Geschoss-Ziel und einer Ableitung der Ballistik im Treffpunkt.The advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability is achieved can. The proposed correction factor for correcting the disassembly time is based only on the relative velocity of the bullet-target and a derivation of the ballistics at the meeting point.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Zeichnung näher erläutert. Es zeigen.

Fig.1
eine schematische Darstellung eines Waffensteuerungs-Systems mit der er findungsgemässen Vorrichtung,
Fig.2
einen Längsschnitt durch eine Mess- und Programmiervorrichtung,
Fig.3
ein Diagramm der Verteilung von Subprojektilen in Abhängigkeit von der Zer legungsdistanz, und
Fig.4
eine andere Darstellung des Waffensteuerungs-Systems gemäss Fig.1.
The invention is explained in more detail below using an exemplary embodiment in conjunction with the drawing. Show it.
Fig. 1
1 shows a schematic illustration of a weapon control system with the device according to the invention,
Fig. 2
a longitudinal section through a measuring and programming device,
Fig. 3
a diagram of the distribution of subprojectiles depending on the decomposition distance, and
Fig. 4
another representation of the weapon control system according to Fig.1 .

In der Fig.1 ist mit 1 eine Feuerleitung und mit 2 ein Geschütz bezeichnet. Die Feuerleitung 1 besteht aus einem Suchsensor 3 für die Entdeckung eines Zieles 4, einem mit dem Suchsensor 3 verbundenen Folgesensor 5 für die Zielerfassung, die 3-D-Zielverfolgung und die 3-D-Zielvermessung, sowie einem Feuerleitungsrechner 6. Der Feuerleitungsrechner 6 weist mindestens ein Hauptfilter 7, eine Vorhalt-Recheneinheit 9 und eine Korrektur-Recheneinheit 12 auf. Das Hauptfilter 7 ist eingangsseitig mit dem Folgesensor 5 und ausgangsseitig mit der Vorhalt-Recheneinheit 9 verbunden, wobei das Haupt-filter 7 die vom Folgesensor 5 empfangenen 3-D-Zieldaten in Form von geschätzten Zieldaten 2 wie Position, Geschwindigkeit, Beschleunigung usw. an die Vorhalt-Recheneinheit 9 weiterleitet, die ausgangsseitig mit der Korrektur-Recheneinheit in Verbindung steht. Ueber einen weiteren Eingang Me können der Vorhalt-Recheneinheit 9 meteorologische Daten zugeführt werden. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen bzw. Anschlüssen wird nachstehend anhand der Funktionsbeschreibung näher erläutert. In Figure 1, 1 denotes a fire control and 2 a gun. The fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search sensor 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 . The fire control computer 6 has at least one main filter 7 , a lead computing unit 9 and a correction computing unit 12 . The main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow sensor 5 in the form of estimated target data 2 such as position, speed, acceleration, etc. forward the lead computing unit 9 , which is connected on the output side to the correction computing unit. Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.

Ein Rechner des Geschützes 2 weist eine Auswerteschaltung 10 und eine Aufdatierungs-Recheneinheit 11 auf. Die Auswerteschaltung 10 ist eingangsseitig an einer an der Mündung eines Geschützrohres 13 angeordneten, nachstehend anhand der Fig.2 näher beschriebenen Messvorrichtung 14 für die Geschossgeschwindigkeit angeschlossen und ausgangsseitig mit der Vorhalt-Recheneinheit 9 und der Aufdatierungs-Recheneinheit 11 verbunden. Die Aufdatierungs-Recheneinheit 11 ist eingangsseitig an der Vorhalt- und an der Korrektur-Recheneinheit 9,12 angeschlossen und steht ausgangsseitig mit einem in der Messvorrichtung 14 integrierten Programmierteil in Verbindung. Die Korrektur-Recheneinheit 12 ist eingangsseitig mit der Vorhalt-Rechen-einheit 9 und ausgangsseitig mit der Aufdatier-Recheneinheit 11 verbunden. Ein Geschützservo 15 und eine auf einen Feuerbefehl ansprechende Auslöse-einrichtung 16 sind ebenfalls an der Vorhalt-Rechen-einheit 9 angeschlossen. Die Verbindungen zwischen der Feuerleitung 1 und dem Geschütz 2 sind zu einer Data-Transmission zusammengefasst, die mit 17 bezeichnet ist. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen zwischen den Recheneinheiten 10,11,12 sowie zwischen der Feuerleitung 1 und dem Geschütz 2 wird nachstehend anhand der Funktionsbeschreibung näher erläutert. Mit 18 und 18' ist ein Geschoss bezeichnet, das während einer Programmierphase (18) und im Zerlegungszeitpunkt (18') dargestellt ist. Beim Geschoss 18 handelt es sich um ein programmierbares Geschoss mit Primär-und Sekundärballistik, das mit einer Ausstossladung und einem Zeitzünder ausgestattet und mit Subprojektilen 19 gefüllt ist.A computer of the gun 2 has an evaluation circuit 10 and an update computing unit 11 . The evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile speed, which is arranged at the mouth of a gun barrel 13 and is described in greater detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 . The update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 . The correction arithmetic unit 12 is connected on the input side to the lead arithmetic unit 9 and on the output side to the update arithmetic unit 11 . A gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 . The connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 . The meaning of the designations on the individual connections between the computing units 10, 11, 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description. 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ). The projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .

Gemäss Fig.2 besteht ein an der Mündung des Geschützrohres 13 befestigtes Tragrohr 20 aus drei Teilen 21, 22, 23. Zwischen dem ersten Teil 21 und dem zweiten bzw. dritten Teil 22, 23 sind Ringspulen 24, 25 für die Messung der Geschossgeschwindigkeit angeordnet. Am dritten Teil 23 -auch Programmier-teil genannt- ist eine in einem Spulenkörper 26 gehaltene Sendespule 27 be-festigt. Die Art der Befestigung des Tragrohres 20 und der drei Teile 21, 22, 23 miteinander ist nicht weiter dargestellt und beschrieben. Für die Speisung der Ringspulen sind Leitungen 28, 29 vorgesehen. Am Umfang des Tragrohres 20 sind zwecks Abschirmung von die Messung störenden Magnetfeldern Weicheisenstäbe 30 angeordnet. Das Geschoss 18 weist eine Empfangsspule 31 auf, die über ein Filter 32 und einen Zähler 33 mit einem Zeitzünder 34 verbunden ist. Beim Durchgang des Geschosses 18 durch die beiden Ringspulen 24,25 wird kurz hintereinander in jeder Ringspule ein Impuls erzeugt. Diese Impulse werden der Auswerteschaltung 10 (Fig.1) zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und einem Abstand a zwischen den Ringspulen 24,25 die Geschossgeschwindigkeit errechnet wird. Unter Berücksichtigung der Geschossgeschwindigkeit wird, wie nachstehend näher beschrieben, eine Zerlegungszeit errechnet, die in digitaler Form beim Durchgang des Geschosses 18 durch die Sendespule 27 zum Zwecke der Einstellung des Zählers 32 induktiv auf die Empfangsspule 31 übertragen wird.According to FIG. 2 , a support tube 20 attached to the muzzle of the gun barrel 13 consists of three parts 21, 22, 23 . Between the first part 21 and the second or third part 22, 23 , ring coils 24, 25 are arranged for measuring the projectile speed. On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21, 22, 23 to each other is not shown and described. Lines 28, 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement. The projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 . When the projectile 18 passes through the two ring coils 24 , 25, a pulse is generated in short succession in each ring coil. These pulses of the evaluation circuit 10 (Fig.1) are supplied, in which from the time interval of the pulses and a distance a between the toroid coils, the projectile velocity is calculated 24.25. Taking the projectile speed into account, a disassembly time is calculated, as described in more detail below, which is transmitted inductively in digital form to the receiving coil 31 when the projectile 18 passes through the transmitting coil 27 for the purpose of setting the counter 32 .

In der Fig.3 ist mit Pz ein Zerlegungspunkt des Geschosses 18 bezeichnet. Die ausgestossenen Subprojektile liegen je nach Abstand von Zerlegungspunkt Pz gleichmässig verteilt auf annähern halbkreisförmigen Kurven von (perspek-tivisch dargestellten) Kreisflächen F1, F2, F3, F4 eines Kegels C. Auf einer ersten Abzisse list der Abstand vom Zerlegungspunkt Pz in Metern m aufgetragen, während auf einer zweiten Abzisse II die Flächengrössen der Flächen F1, F2, F3, F4 in Quadratmetern m2 und deren Durchmesser in Metern m aufgetragen sind. Bei einem charakteristischem Geschoss mit beispielsweise 152 Subprojektilen und einem Scheitelwinkel des Kegels C von anfänglich 10° ergeben sich in Abhängigkeit vom Abstand die auf der Abzisse II aufgetragenen Werte. Die Dichte der auf den Kreisflächen F1, F2, F3, F4 befindlichen Subprojektile nimmt mit zunehmendem Abstand ab und beträgt bei den gewählten Verhältnissen 64, 16, 7 und 4 Subprojektile pro Quadratmeter. Bei einer vorgegebenen, der nachfolgend beschriebenen Berechnung der Zerlegungszeit zugrunde gelegten Zerlegungsdistanz Dz von beispielsweise 20 m, würde beim angenommenen Beispiel ein Zielgebiet von 3,5 m Durchmesser mit 16 Subprojektilen pro Quadratmeter belegt sein.In Figure 3 , Pz denotes a point of disassembly of the projectile 18 . The ejected subprojectiles are, depending on the distance from the point of decomposition Pz, evenly distributed on approximately semicircular curves of (perspectively represented) circular areas F1, F2, F3, F4 of a cone C. On a first abscissa the distance from the point of decomposition Pz is plotted in meters m, while on a second abscissa II the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m. In the case of a characteristic projectile with, for example, 152 subprojectiles and an apex angle of the cone C of initially 10 °, the values plotted on the abscissa II are obtained as a function of the distance. The density of the subprojectiles on the circular areas F1, F2, F3, F4 decreases with increasing distance and is 64, 16, 7 and 4 subprojectiles per square meter with the selected ratios. Given a predetermined disassembly distance Dz on which the disassembly time is based, as described below, for example 20 m, in the assumed example a target area of 3.5 m in diameter would be occupied with 16 subprojectiles per square meter.

In der Fig. 4 ist mit 4 und 4' das abzuwehrende Ziel bezeichnet, das in einer Treff- bzw. Abschussposition (4) und in einer der Treff- bzw. Abschussposition vorhergehenden Position (4') dargestellt.In FIG. 4 , 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.

Die vorstehend beschriebene Vorrichtung arbeitet wie folgt:The device described above works as follows:

Die Vorhalt-Recheneinheit 9 errechnet aus einer vorgegebenen Zerlegungsdistanz Dz, einer Vorhaltgeschwindigkeit VOv und den Zieldaten Z unter Berücksichtigung von meteorologischen Daten bei Geschossen mit Primär-und Sekundärballistik eine Treffdistanz RT, eine Zerlegungszeit Tz und eine Subprojektilflugzeit ts. Hierbei ist Tz die Flugzeit des Geschosses bis zum Zerlegungspunkt Pz und ts die Flugzeit eines in der Geschossrichtung fliegenden Subprojektiles vom Zerlegungspunkt Pz bis zum Treffpunkt Pf (Fig.3,4).The lead computation unit 9 calculates a target distance RT, a disassembly time Tz and a sub-projectile flight time ts from a predetermined disassembly distance Dz, a retention speed VOv and the target data Z, taking meteorological data into account for projectiles with primary and secondary ballistics. Here, Tz is the flight time of the projectile to the point of disassembly Pz and ts is the flight time of a subprojectile flying in the projectile direction from the point of disassembly Pz to the meeting point Pf ( Fig . 3,4 ).

Die Vorhaltgeschwindigkeit VOv wird beispielsweise aus dem Mittelwert einer Anzahl über die Data-Transmission 17 zugeführter gemessener Geschossgeschwindigkeiten Vm gebildet, die der aktuellen gemessenen Geschossgeschwindigkeit Vm unmittelbar vorhergehen. The lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm.

Die Vorhalt-Recheneinheit 9 ermittelt ferner einen Geschützwinkel a des Azimutes und einen Geschützwinkel λ der Elevation. Die Grössen α, λ, Tz und VOv werden der Korrektur-Recheneinheit 12 zugeführt, die wie nachstehend näher beschrieben einen Korrekturfaktor K errechnet. Die Grössen α, λ, Tz, VOv und K werden als Schiesselemente des Treffpunktes bezeichnet und über die Data-Transmission 17 dem Geschützrechner zugeführt, wobei die Schiesselemente α und λ dem Geschützservo 15 und die Schiesselemente VOv, Tz und K der Aufdatier-Recheneinheit 11 zugeführt werden. Wenn nur Primärballistik zur Anwendung kommt, so wird anstelle der Zerlegungszeit Tz die Treffzeit Tf = Tz+ts übermittelt (Fig.1, Fig.4).The lead computing unit 9 also determines a gun angle a of the azimuth and a gun angle λ of the elevation. The quantities α, λ, Tz and VOv are fed to the correction computing unit 12 , which calculates a correction factor K as described in more detail below. The quantities α, λ, Tz, VOv and K are referred to as shooting elements of the meeting point and are fed to the gun computer via the data transmission 17 , the shooting elements α and λ being fed to the gun servo 15 and the shooting elements VOv, Tz and K of the update computing unit 11 be fed. If only Primärballistik is used, so instead of the disaggregation time Tz, the impact time Tf = Tz + ts transmitted (Fig.1, Fig.4) is.

Die vorstehend beschriebenen Berechnungen werden taktweise wiederholt durchgeführt, so dass jeweils im aktuellen Takt i die neuesten Daten α, λ, Tz oderTf, VOv und K für eine bestimmte Gültigkeitsdauer zur Verfügung stehen.The calculations described above are repeated in cycles, so that in the current clock i the newest data α, λ, Tz orTf, VOv and K for a certain period of validity is available.

Zwischen den Taktwerten wird für die aktuellen (laufende) Zeit (t) jeweils interpoliert bzw. extrapoliert.Between the cycle values, the current (running) time (t) is interpolated or extrapolated.

Die Ballistik eines Geschosses wird durch ein System von Differentialgleichungen der Form

Figure 00070001
Figure 00070002
beschrieben, wobei zusammen mit den Anfangsbedingungen
Figure 00070003
eine eindeutige ballistische Lösung
Figure 00070004
Figure 00070005
bestimmt wird. Im durch die Gleichungen Gl.1 und Gl.2 bestimmten System ist als Randbedingung die Treffbedingung
Figure 00070006
enthalten, wobei TG = TG(to ,ν o (to )) ist, und wobei die Vorhalt-Grösse ν o(to ) vom Geschoss nicht als Anfangsgeschwindigkeit angenommen wird. Mit
Figure 00080001
wird eine Komponente von ν o (to ) in Rohrrichtung und mit ν (2) / o eine senkrecht dazu gerichtete Komponente definiert, so dass
Figure 00080002
ist, wobei
Figure 00080003
die Geschwindigkeit der Rohrmündung bedeutet und eine Vorhalt-Grösse ist, welche vom Geschoss tatsächlich eingehalten wird. Dagegen kann à priori keine Aussage über den Betrag der Komponente der Anfangsgeschwindigkeit des Geschosses in Rohrrichtung gemacht werden. Die Grösse ν o = ν o (t o ) : = ∥ν (1) o wird vom Geschoss in der Tat nicht genau angenommen. Der tatsächliche Betrag der Komponente der Anfangsgeschwindigkeit des Geschosses in Rohrrichtung wird mit Vm bezeichnet. Diese Grösse wird für jedes Geschoss an der Rohrmündung gemessen (Fig.1 und 2). Die effektive Anfangsgeschwindigkeit des Geschosses beträgt jetzt
Figure 00080004
Der Einfachheit halber kann die Abhängigkeit von der Anfangsgeschwindigkeit durch die Abhängigkeit vom Betrag der Komponente der Anfangsgeschwindigkeit in Rohrrichtung ersetzt werden, so dass
Figure 00080005
ist und sich die ballistische Lösung zu
Figure 00080006
Figure 00080007
ergibt. Mit der effektiven Anfangsgeschwindigkeit gemäss Gleichung Gl.5 ist die Lösung der Gleichungen Gl.1, Gl.2 von der Form
Figure 00090001
Figure 00090002
Ein Geschoss mit der durch
Figure 00090003
gegebenen Bahn wird das Ziel im allgemeinen nicht mehr treffen. Bei der Berechnung des Korrekturfaktors K wird daher von der durch die Definition
Figure 00090004
gegebenen Flugzeit t* des kleinsten Abstandes zwischen einem Geschoss und einem Ziel und der partiellen Ableitung nach der Flugzeit
Figure 00090005
ausgegangen und durch Einsetzen der Definition
Figure 00090006
Figure 00090007
Figure 00090008
die Gleichung Gl.6 vereinfacht. Durch differenzieren der Gleichung Gl.6 wird
Figure 00090009
gewonnen. Danach wird die als Randbedingung im System der Differentialgleichungen der Ballistik enthaltene Treffbedingung gemäss Gleichung Gl.3 unter Berücksichtigung der Definition für t* t*(ν o ) = TG
Figure 00090010
eingesetzt, wobei aus Gleichung Gl.7 für Vm=vo
Figure 00090011
folgt. Durch Einsetzen der Definition
Figure 00100001
wird Gleichung Gl.7.1 vereinfacht, wobei sich der Korrekturfaktor K zu K := D 1 t*(ν o ) = -ν rel o ), P G νo ν rel o ), ν rel o )〉 ergibt.The ballistics of a projectile is determined by a system of differential equations of the form
Figure 00070001
Figure 00070002
described, along with the initial conditions
Figure 00070003
a clear ballistic solution
Figure 00070004
Figure 00070005
is determined. In the system determined by equations Eq.1 and Eq.2, the meeting condition is the boundary condition
Figure 00070006
included, where TG = TG ( t o , ν o ( t o )), and where the lead size ν o ( t o ) is not assumed to be the initial velocity by the projectile. With
Figure 00080001
becomes a component of ν o ( t o ) in the pipe direction and with ν (2) / o defines a perpendicular component, so that
Figure 00080002
is where
Figure 00080003
means the speed of the pipe mouth and is a reserve size which is actually maintained by the projectile. On the other hand, no statement can be made a priori about the amount of the component of the initial velocity of the projectile in the pipe direction. The size ν O = ν O ( t O ): = ∥ ν (1) O is in fact not exactly accepted by the projectile. The actual amount of the component of the initial velocity of the projectile in the pipe direction is referred to as Vm. This size is measured for each floor at the pipe mouth (Fig. 1 and 2). The effective initial velocity of the bullet is now
Figure 00080004
For the sake of simplicity, the dependency on the initial speed can be replaced by the dependence on the amount of the component of the initial speed in the pipe direction, so that
Figure 00080005
is and the ballistic solution too
Figure 00080006
Figure 00080007
results. With the effective starting speed according to equation Eq.5, the solution of equations Eq.1, Eq.2 is of the form
Figure 00090001
Figure 00090002
A bullet with the through
Figure 00090003
given the path, the target will generally no longer hit. When calculating the correction factor K is therefore by the definition
Figure 00090004
given flight time t * of the smallest distance between a floor and a target and the partial derivative after the flight time
Figure 00090005
assumed and by inserting the definition
Figure 00090006
Figure 00090007
Figure 00090008
simplified the equation Eq.6. By differentiating the equation Eq.6
Figure 00090009
won. Then the hit condition contained as a boundary condition in the system of the differential equations of ballistics according to equation Eq. 3 taking into account the definition for t * t * (ν O ) = TG
Figure 00090010
used, from equation Eq.7 for Vm = vo
Figure 00090011
follows. By inserting the definition
Figure 00100001
Equation Eq.7.1 is simplified, with the correction factor K increasing K : = D 1 t * (ν O ) = - ν rel O ), P G νo ν rel O ), ν rel O )〉 results.

Die vorstehend angewendete mathematische bzw. physikalische Notation bedeutet:

ν
ein Vektor
ν
Norm des Vektors
u , ν
Skalarprodukt
.
skalare oder Matrixmultiplikation
g := A
die Grösse g wird definiert als Ausdruck A
g = g(x 1,...,xn )
die Grösse g hängt ab von x1,....,xn
tg(t)
Zuordnung (t wird die Auswertung von g an der Stelle t zugeordnet)
g ˙
Ableitung von g nach der Zeit
Dig(x 1,...,xn )
partielle Ableitung von g nach der i-ten Variablen
∂ / ∂t g(t,x 1,...,xn )
partielle Ableitung von g nach der Zeit t
inf tM
Infimum der Menge M über alle t
p G, ν G, a G
Position,Geschwindigkeit,Beschleunigung des Geschosses
p Z, ν Z, a Z
Position,Geschwindigkeit,Beschleunigung des Zieles
p rel ,ν rel , a rel
relative Position,Geschwindigkeit,Beschleunigung Geschoss-Ziel
Figure 00100002
Position der Rohrmündung
ν o
Vorhalt-Anfangsgeschwindigkeit des Geschosses
ν o
Betrag der Komponente der Vorhalt-Anfangsgeschwindigkeit des Geschosses in Rohrrichtung
ν m
Betrag der Komponente der effektiven Anfangsgeschwindigkeit des Geschosses in Rohrrichtung
TG.
Vorhalt-Flugzeit des Geschosses
t*
Flugzeit des Geschosses
to
Zeitpunkt zu dem das Geschoss die Rohrmündung passiert.
The mathematical or physical notation used above means:
ν
a vector
ν
Norm of the vector
u , ν
Dot product
.
scalar or matrix multiplication
g : = A
size g is defined as expression A
g = g ( x 1 , ..., x n )
the size g depends on x 1 , ...., x n
tg ( t )
Assignment (t is assigned the evaluation of g at point t)
g ˙
Derivation of g after time
D i g ( x 1 , ..., x n )
partial derivative of g after the i-th variable
∂ / ∂ t g ( t , x 1 , ..., x n )
partial derivative of g after time t
inf t M
Infimum of the set M over all t
p G , ν G, a G
Position, speed, acceleration of the projectile
p Z , ν Z , a Z.
Position, speed, acceleration of the target
p rel , ν rel , a rel
relative position, speed, acceleration floor-target
Figure 00100002
Position of the pipe mouth
ν O
Lead initial speed of the projectile
ν o
Amount of the component of the initial initial velocity of the projectile in the pipe direction
ν m
Amount of the component of the effective initial velocity of the projectile in the pipe direction
TG .
Lead flight time of the projectile
t *
Flight time of the projectile
t o
Time at which the bullet passes the muzzle.

Die Aufdatierungs-Recheneinheit 11 errechnet aus dem von der Korrektur-Recheneinheit 12 zugeführten Korrekturfaktor K, der von der Auswerteschaltung 10 zugeführten aktuellen gemessenen Geschossgeschwindigkeit Vm und der von der Vorhalt-Recheneinheit 9 zugeführten Vorhaltgeschwindigkeit Vov und Zerlegungszeit Tz eine korrigierte Zerlegungszeit Tz (Vm) nach der Beziehung Tz (Vm) = Tz ÷ K * (Vm-VOv). The update arithmetic unit 11 calculates a corrected disassembly time Tz (Vm) from the correction factor K supplied by the correction arithmetic unit 12, the current measured projectile speed Vm supplied by the evaluation circuit 10 and the lead speed Vov supplied by the lead computing unit 9 the relationship Tz (Vm) = Tz ÷ K * (Vm-VOv).

Die korrigierte Zerlegungszeit Tz (Vm) wird je nach Zeitgültigkeit für die aktuelle laufende Zeit t interpoliert bzw. extrapoliert. Die nun errechnete Zerlegungszeit Tz (Vm,t) wird der Sendespule 27 des Programmierteils 23 der Messvorrichtung 14 zugeführt und wie bereits vorstehend anhand der Fig.2 beschrieben induktiv auf ein vorbeifliegendes Geschoss 18 übertragen.The corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t. The disassembly time Tz (Vm, t) now calculated is supplied to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.

Mit der Korrektur der Zerlegungszeit Tz kann die Zerlegungsdistanz Dz (Fig.3,4) unabhängig von den Streuungen der Geschossgeschwindigkeit, und/oder verursacht durch Verwendung nicht aktualisierter Werte gleichbleibend gehalten werden, so dass eine optimale Treff-bzw. Abschusswahrscheinlichkeit erzielt werden kann.With the correction of the disassembly time Tz, the disassembly distance Dz ( FIG. 3, 4 ) can be kept constant regardless of the variations in the projectile speed , and / or caused by the use of non-updated values, so that an optimal meeting or Probability of shooting can be achieved.

Claims (1)

  1. Method for determining a corrected fragmentation time (Tz(Vm)) for a programmably fragmentable projectile (12) fired from a gun-barrel (13) with a view to maintaining constant a given fragmentation distance (Dz) between a point of fragmentation (Pz) of the projectile (12) and a point of collision (Pf) of the projectile (12) with a target travelling at speed, in which
    sensor data are measured from which a strike distance (RT) from the gun-barrel (13) to the target is computed,
    the velocity (Vm) of the fired projectile is measured at the muzzle of the gun-barrel (13), and
    determination of the corrected fragmentation time (Tz(Vm)) is based upon at least
    the said strike distance (RT),
    the said velocity (Vm) of the projectile (12), and
    the fragmentation distance (Dz),
    characterized in that
    a predicted velocity (VOv) of the projectile is also determined from the measured sensor data, and
    the corrected fragmentation time (Tz(Vm)) is determined from the originally defined fragmentation time (Tz) by the relation Tz(Vm) = Tz + K x (Vm - VOv) in which
    Tz(Vm)
    stands for the corrected fragmentation time,
    Tz
    is the originally defined fragmentation time,
    K
    is a correction factor,
    Vm
    is the presently measured muzzle velocity of the projectile and
    VOv
    is a predicted velocity of the projectile,
    where the correction factor (K), proceeding from the flight time (t*) of the shortest distance between a projectile and a target - given by the definition
    Figure 00170001
    and the partial derivative with respect to flight time
    Figure 00170002
    is found by the following calculation steps:
    simplifying Equation 6 by inserting the definitions
    Figure 00170003
    Figure 00170004
    Figure 00170005
    differentiating Equation 6 with respect to the presently measured muzzle velocity, to give
    Figure 00170006
    inserting a strike condition (Equation 3) included as a boundary condition in the system of differential equations of the ballistics, taking account of the definition for t* t*(ν o ) = TG
    Figure 00170007
    so that Equation 7 yields, for vm = vo
    Figure 00180001
    simplifying Equation 7.1 by insertion of the definition
    Figure 00180002
    yielding the correction factor K := D 1 t*(ν o ) = - ν rel o ), P G ν o ν rel o ), ν rel o )〉 where
    p G, ν G, a G
    stand for the position, velocity, acceleration of the projectile
    p Z, ν Z, a Z
    the position, velocity, acceleration of the target
    p rel, ν rel, a rel
    the relative position, velocity, acceleration of the projectile/target
    Figure 00180003
    the position of the muzzle
    ν o
    predicted initial velocity of the projectile
    ν o
    the value of the predicted initial velocity component of the projectile in the direction of the barrel
    ν m
    the value of the actual initial velocity component of the projectile in the direction of the barrel
    TG
    the predicted flight time of the projectile
    t*
    the flight time of the projectile
    to
    the instant at which the projectile passes through the muzzle of the barrel.
EP96118044A 1996-04-19 1996-11-11 Method of identifying a corrected disintegration time of a programmable and frangible projectile Expired - Lifetime EP0802391B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH1001/96 1996-04-19
CH100196 1996-04-19
CH100196 1996-04-19

Publications (2)

Publication Number Publication Date
EP0802391A1 EP0802391A1 (en) 1997-10-22
EP0802391B1 true EP0802391B1 (en) 2000-12-13

Family

ID=4200143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96118044A Expired - Lifetime EP0802391B1 (en) 1996-04-19 1996-11-11 Method of identifying a corrected disintegration time of a programmable and frangible projectile

Country Status (12)

Country Link
US (1) US5834675A (en)
EP (1) EP0802391B1 (en)
JP (1) JP3891619B2 (en)
KR (1) KR100410718B1 (en)
AT (1) ATE198103T1 (en)
AU (1) AU716346B2 (en)
CA (1) CA2190384C (en)
DE (1) DE59606214D1 (en)
NO (1) NO311954B1 (en)
SG (1) SG83658A1 (en)
TR (1) TR199600952A1 (en)
ZA (1) ZA969536B (en)

Families Citing this family (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761767B1 (en) * 1997-04-03 1999-05-14 Giat Ind Sa METHOD FOR PROGRAMMING IN FLIGHT A TRIGGERING MOMENT OF A PROJECTILE ELEMENT, FIRE CONTROL AND ROCKET IMPLEMENTING SUCH A METHOD
DK0992758T3 (en) 1998-10-08 2007-06-18 Contraves Ag Method and apparatus for correcting the disintegration time or disintegration speed of a spin-stabilized projectile
EP0992762B1 (en) 1998-10-08 2002-03-06 Oerlikon Contraves Ag Method and device for transmitting information to a programmable projectile
ATE227839T1 (en) * 1998-10-08 2002-11-15 Contraves Pyrotec Ag METHOD FOR CORRECTING A PRE-PROGRAMMED TRIGGER OF A PROCESS IN A SPIN-STABILIZED MISSILE, DEVICE FOR IMPLEMENTING THE METHOD AND USE OF THE DEVICE
US20040237762A1 (en) * 1999-11-03 2004-12-02 Metal Storm Limited Set defence means
US6497170B1 (en) * 2001-07-05 2002-12-24 The United States Of America As Represented By The Secretary Of The Army Muzzle brake vibration absorber
ATE391893T1 (en) * 2003-02-26 2008-04-15 Rwm Schweiz Ag METHOD FOR PROGRAMMING THE DISASSEMBLY OF PROJECTILES AND TUBE WEAPONS USING A PROGRAMMING SYSTEM
US7533612B1 (en) * 2004-09-23 2009-05-19 The United States Of America As Represented By The Secretary Of The Army Projectile height of burst determination method and system
DE102009011447B9 (en) * 2009-03-03 2012-08-16 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle
US11047663B1 (en) * 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
DE102011018248B3 (en) 2011-04-19 2012-03-29 Rheinmetall Air Defence Ag Device and method for programming a projectile
DE102011106198B3 (en) 2011-06-07 2012-03-15 Rheinmetall Air Defence Ag Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
US10514234B2 (en) 2013-03-27 2019-12-24 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
US11933585B2 (en) 2013-03-27 2024-03-19 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
EP2894429B1 (en) * 2014-01-08 2018-08-15 Nostromo Holdings, LLC Mortar safety device
US9740326B2 (en) * 2015-03-31 2017-08-22 Synaptics Incorporated Sensor array with split-drive differential sensing
FR3071596B1 (en) * 2017-09-27 2019-10-18 Thales METHOD AND DEVICE FOR LAUNCHING PROJECTILES ON A TARGET TO BE REACHED
US10883809B1 (en) * 2019-05-07 2021-01-05 U.S. Government As Represented By The Secretary Of The Army Muzzle velocity correction

Family Cites Families (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142442A (en) * 1971-12-08 1979-03-06 Avco Corporation Digital fuze
US4267776A (en) * 1979-06-29 1981-05-19 Motorola, Inc. Muzzle velocity compensating apparatus and method for a remote set fuze
US4449041A (en) * 1980-10-03 1984-05-15 Raytheon Company Method of controlling antiaircraft fire
US4625646A (en) * 1980-10-06 1986-12-02 The Boeing Aerospace Company Aerial missile having multiple submissiles with individual control of submissible ejection
FR2514884B1 (en) * 1981-10-20 1985-07-12 Sfim METHOD AND DEVICE FOR GLOBALLY CORRECTING, FROM ONE SHOOTING TO THE NEXT, THE SHOOTING OF A TENSIONED WEAPON
DE3309147A1 (en) * 1983-03-15 1984-09-20 Rainer Dipl.-Phys. 6901 Gaiberg Berthold Method and arrangement for correcting an ignition time
US4799429A (en) * 1984-03-30 1989-01-24 Isc Technologies, Inc. Programming circuit for individual bomblets in a cluster bomb
US4750423A (en) * 1986-01-31 1988-06-14 Loral Corporation Method and system for dispensing sub-units to achieve a selected target impact pattern
FR2609165A1 (en) * 1986-12-31 1988-07-01 Thomson Brandt Armements PROJECTILE COMPRISING SUB-PROJECTILES WITH A PREFINED EFFICIENCY ZONE
US4837718A (en) * 1987-02-05 1989-06-06 Lear Siegler, Inc. Doppler radar method and apparatus for measuring a projectile's muzzle velocity
DE3862536D1 (en) * 1987-07-20 1991-05-29 Oerlikon Buehrle Ag DEVICE FOR DIGITALLY ADJUSTING A COUNTER TO RELEASE A TIMER ON A FLOOR.
GB2226624B (en) * 1987-12-12 1991-07-03 Thorn Emi Electronics Ltd Projectile
DE3830518A1 (en) * 1988-09-08 1990-03-22 Rheinmetall Gmbh DEVICE FOR SETTING A FLOOR TIME
DE59100529D1 (en) * 1990-07-19 1993-12-02 Contraves Ag Receiving coil for a programmable projectile detonator.
EP0512856B1 (en) * 1991-05-08 1998-11-04 Electronic Data Systems Corporation Weapon system
CA2082448C (en) * 1991-05-08 2002-04-30 Christopher Robert Gent Weapons systems
US5497704A (en) * 1993-12-30 1996-03-12 Alliant Techsystems Inc. Multifunctional magnetic fuze

Also Published As

Publication number Publication date
KR970070943A (en) 1997-11-07
CA2190384C (en) 2003-09-30
DE59606214D1 (en) 2001-01-18
NO964757L (en) 1997-10-20
TR199600952A1 (en) 1997-11-21
ATE198103T1 (en) 2000-12-15
US5834675A (en) 1998-11-10
SG83658A1 (en) 2001-10-16
AU7172796A (en) 1997-10-23
CA2190384A1 (en) 1997-10-20
ZA969536B (en) 1997-06-17
AU716346B2 (en) 2000-02-24
JP3891619B2 (en) 2007-03-14
KR100410718B1 (en) 2004-04-03
NO311954B1 (en) 2002-02-18
NO964757D0 (en) 1996-11-08
EP0802391A1 (en) 1997-10-22
JPH09287899A (en) 1997-11-04

Similar Documents

Publication Publication Date Title
EP0802391B1 (en) Method of identifying a corrected disintegration time of a programmable and frangible projectile
EP0802392B1 (en) Method and device for identifying a corrected desintegration time of a programmable and frangible projectile
DE69708343T2 (en) Passive speed data system
EP0802390B1 (en) Method for identifying a corrected desintegration time of a programmable and frangible projectile
EP1726911A1 (en) Method and device for time setting and for correcting the ignition time in a projectile
EP0118122A1 (en) Method and apparatus for setting the delay of a projectile time-fuse
DE2605374B2 (en) Device for digital setting of a counter for triggering a time fuse in a floor
EP0769673B1 (en) Method and device to program time fuses for projectiles
DE2347374C2 (en) Distance fuse for a warhead
DE2423704A1 (en) DELAY IGNITER FOR STORIES
EP1482311B1 (en) Device and method for the determination of the muzzle velocity of a projectile
DE2452586C3 (en) Method and device for determining the duration of the flight path of a projectile
EP2699871B1 (en) Device and method for programming a projectile
DE1623362B2 (en) Device for igniting an explosive charge or for triggering a function
EP0992758B1 (en) Method and device for correcting the disintegration time or the disintegration turn count of a spin-stabilized programmable projectile
EP0992761B1 (en) Method for correcting the preprogrammed triggering of a process in a spin-stabilized projectile, device for carrying out said method and use of this device
EP0992762B1 (en) Method and device for transmitting information to a programmable projectile
DE102011106198B3 (en) Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
DE60219564T2 (en) A method of adjusting a projectile fuse, programmer and timing fuse used in such a method
CH656453A5 (en) Device for firing simulation using light pulses
DE3716450C1 (en) Setting electronic timer for munition detonator - entering type, temp. of drive charge weather and target data in fuse ignition computer
DE3925000C1 (en) Flight time measuring method for shell
EP2226607A2 (en) Method for igniting a warhead of a grenade and vehicle
EP1162428B1 (en) Method and device for igniting a warhead in a target tracking missile
DE3903802C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971211

17Q First examination report despatched

Effective date: 19990526

RTI1 Title (correction)

Free format text: METHOD OF IDENTIFYING A CORRECTED DISINTEGRATION TIME OF A PROGRAMMABLE AND FRANGIBLE PROJECTILE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON CONTRAVES AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 198103

Country of ref document: AT

Date of ref document: 20001215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG

REF Corresponds to:

Ref document number: 59606214

Country of ref document: DE

Date of ref document: 20010118

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010112

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101112

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59606214

Country of ref document: DE

Effective date: 20111019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111110

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20111229

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20120523

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606214

Country of ref document: DE

Owner name: RHEINMETALL AIR DEFENCE AG, CH

Free format text: FORMER OWNER: OERLIKON CONTRAVES AG, ZUERICH, CH

Effective date: 20120523

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606214

Country of ref document: DE

Owner name: RHEINMETALL AIR DEFENCE AG, CH

Free format text: FORMER OWNER: OERLIKON-CONTRAVES AG, ZUERICH, CH

Effective date: 20111229

BERE Be: lapsed

Owner name: *OERLIKON CONTRAVES A.G.

Effective date: 20121130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 198103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141119

Year of fee payment: 19

Ref country code: CH

Payment date: 20141119

Year of fee payment: 19

Ref country code: FR

Payment date: 20141119

Year of fee payment: 19

Ref country code: SE

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141125

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606214

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151111

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130