EP0802391A1 - Method for disintegrating time setting of a programmable projectile - Google Patents

Method for disintegrating time setting of a programmable projectile Download PDF

Info

Publication number
EP0802391A1
EP0802391A1 EP96118044A EP96118044A EP0802391A1 EP 0802391 A1 EP0802391 A1 EP 0802391A1 EP 96118044 A EP96118044 A EP 96118044A EP 96118044 A EP96118044 A EP 96118044A EP 0802391 A1 EP0802391 A1 EP 0802391A1
Authority
EP
European Patent Office
Prior art keywords
projectile
speed
disassembly
time
target
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96118044A
Other languages
German (de)
French (fr)
Other versions
EP0802391B1 (en
Inventor
André Boss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Oerlikon Contraves AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves AG filed Critical Oerlikon Contraves AG
Publication of EP0802391A1 publication Critical patent/EP0802391A1/en
Application granted granted Critical
Publication of EP0802391B1 publication Critical patent/EP0802391B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42BEXPLOSIVE CHARGES, e.g. FOR BLASTING, FIREWORKS, AMMUNITION
    • F42B15/00Self-propelled projectiles or missiles, e.g. rockets; Guided missiles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes

Definitions

  • the invention relates to a method for calculating the disassembly time of a programmable projectile, the calculation being based on at least one target distance to a target object determined from sensor data, a projectile speed measured at the muzzle of a gun barrel and a predetermined optimal disassembly distance between a meeting point and a disassembly point of the projectile .
  • a device which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel.
  • the measuring device consists of two ring coils arranged at a certain distance from one another.
  • a pulse is generated in short succession in each ring coil due to the change in magnetic flux that occurs.
  • the pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils.
  • a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile.
  • the receiving coil is over a High-pass filter connected to a counter that is connected to a timer on the output side.
  • a disassembly time is formed from the calculated bullet speed and a target distance to a target object, which is transmitted inductively to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.
  • an attacking target can be destroyed by multiple hits, as is known, for example, from a printing step OC 2052 d 94 from Oerlikon-Contraves, Zurich, if, after the subprojectiles have been ejected in the Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles.
  • the part carrying the subprojectiles is separated and torn open at predetermined breaking points.
  • the ejected sub-projectiles describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.
  • the invention has for its object to propose a method according to the preamble, by means of which an optimal hit or shot probability can be achieved while avoiding the disadvantages mentioned above.
  • a given optimal disassembly distance between a disassembly point of the projectile and a meeting point of the target is kept constant by correcting the disassembly time of the projectile.
  • the correction is made by adding a correction factor multiplied by a speed difference to the disassembly time.
  • the speed difference is formed from the difference between the current measured projectile speed and a lead speed of the projectile, the Lead speed is calculated from the mean of a number of previous, successive floor speeds.
  • the advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability can be achieved.
  • the proposed correction factor for the correction of the disassembly time is based only on the relative speed of the projectile-target and a derivation of the ballistics at the meeting point.
  • 1 denotes a fire control and 2 a gun.
  • the fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search sensor 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 .
  • the fire control computer 6 has at least one main filter 7 , a lead computing unit 9 and a correction computing unit 12 .
  • the main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow sensor 5 in the form of estimated target data 2 such as position, speed, acceleration, etc. forward the lead computing unit 9 , which is connected on the output side to the correction computing unit.
  • Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.
  • a computer of the gun 2 has an evaluation circuit 10 and an update computing unit 11 .
  • the evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile speed, which is arranged at the mouth of a gun barrel 13 and is described in greater detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 .
  • the update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 .
  • the correction arithmetic unit 12 is connected on the input side to the lead arithmetic unit 9 and on the output side to the update arithmetic unit 11 .
  • a gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 .
  • the connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 .
  • the meaning of the designations on the individual connections between the computing units 10, 11, 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description.
  • 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ).
  • the projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .
  • a support tube 20 attached to the muzzle of the gun barrel 13 consists of three parts 21, 22, 23 . Between the first part 21 and the second or third part 22, 23 , ring coils 24, 25 are arranged for measuring the projectile speed. On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21, 22, 23 to each other is not shown and described. Lines 28, 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement.
  • the projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 .
  • a pulse is generated in short succession in each ring coil.
  • These pulses of the evaluation circuit 10 (Fig.1) are supplied, in which from the time interval of the pulses and a distance a between the toroid coils, the projectile velocity is calculated 24.25.
  • the bullet speed will be as below described in more detail, calculates a disassembly time which is transmitted inductively to the receiving coil 31 in digital form when the projectile 18 passes through the transmitting coil 27 for the purpose of setting the counter 32 .
  • Pz denotes a point of disassembly of the projectile 18 .
  • the ejected subprojectiles are, depending on the distance from the breakdown point Pz, evenly distributed on approximately semicircular curves of (perspectively represented) circular areas F1, F2, F3, F4 of a cone C.
  • F1, F2, F3, F4 the distance from the breakdown point Pz is plotted in meters m
  • second abscissa II the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m.
  • 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.
  • the lead computation unit 9 calculates a target distance RT, a disassembly time Tz and a sub-projectile flight time ts from a predetermined disassembly distance Dz, a retention speed VOv and the target data Z, taking meteorological data into account for projectiles with primary and secondary ballistics.
  • Tz is the flight time of the projectile to the point of disassembly Pz
  • ts is the flight time of a subprojectile flying in the projectile direction from the point of disassembly Pz to the meeting point Pf ( Fig . 3,4 ).
  • the lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm.
  • the lead computing unit 9 also determines a gun angle ⁇ of the azimuth and a gun angle ⁇ of the elevation.
  • the quantities ⁇ , ⁇ , Tz and VOv are fed to the correction computing unit 12 , which calculates a correction factor K as described in more detail below.
  • the current (running) time (t) is interpolated or extrapolated.
  • the ballistics of a projectile is determined by a system of differential equations of the form described, along with the initial conditions a clear ballistic solution is determined.
  • v ⁇ o ( t o ) With becomes a component of v ⁇ o ( t o ) in the pipe direction and with v ⁇ o (2) defines a perpendicular component, so that is where means the speed of the pipe mouth and is a reserve size which is actually maintained by the projectile.
  • the corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t.
  • the disassembly time Tz (Vm, t) now calculated is supplied to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.
  • the disassembly distance Dz ( FIG. 3, 4 ) can be kept constant regardless of the variations in the projectile speed , and / or caused by the use of non-updated values, so that an optimal meeting or Probability of shooting can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Aviation & Aerospace Engineering (AREA)
  • Combustion & Propulsion (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Electrotherapy Devices (AREA)
  • Control Of Electric Motors In General (AREA)
  • Control Of Ac Motors In General (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Generation Of Surge Voltage And Current (AREA)
  • Testing Of Balance (AREA)
  • Fishing Rods (AREA)

Abstract

The disaggregation time determination involves calculating using an impact distance to a target determined by sensor data. A given disaggregation distance is maintained constant by correcting a disaggregation time. The correction is performed using the equation: Tz(Vm) = Tz + K*(Vm-Vov) Tz(Vm) is a corrected disaggregation time. Tz is the disaggregation time. K is a correction factor. Vm is a measured projectile velocity. Vov is a lead velocity of a projectile. The correction factor is determined starting from a flying time (t*) over a shortest distance between a projectile and a target.

Description

Die Erfindung betrifft ein Verfahren zur Berechnung der Zerlegungszeit eines programmierbaren Geschosses, wobei der Berechnung mindestens eine aus Sensordaten ermittelte Treffdistanz zu einem Zielobjekt, eine an der Mündung eines Geschützrohres gemessene Geschossgeschwindigkeit und eine vorgegebene optimale Zerlegungsdistanz zwischen einem Treffpunkt und einem Zerlegungspunkt des Geschosses zugrunde gelegt ist.The invention relates to a method for calculating the disassembly time of a programmable projectile, the calculation being based on at least one target distance to a target object determined from sensor data, a projectile speed measured at the muzzle of a gun barrel and a predetermined optimal disassembly distance between a meeting point and a disassembly point of the projectile .

Mit der europäischen Patentanmeldung 0 300 255 ist eine Vorrichtung bekannt geworden, die eine an der Mündung eines Geschützrohres angeordnete Messvorrichtung für die Geschossgeschwindigkeit aufweist. Die Messvorrichtung besteht aus zwei in einem bestimmten Abstand voneinander angeordneten Ringspulen. Beim Durchgang eines Geschosses durch die beiden Ringspulen wird aufgrund der dabei auftretenden Aenderung des magnetischen Flusses kurz hintereinander in jeder Ringspule ein Impuls erzeugt. Die Impulse werden einer Auswerteelektronik zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und dem Abstand zwischen den Ringspulen die Geschossgeschwindigkeit errechnet wird. In Bewegungsrichtung des Geschosses ist hinter der Messvorrichtung für die Geschwindigkeit eine Sendespule angeordnet, die mit einer im Geschoss vorgesehenen Empfangsspule zusammenwirkt. Die Empfangsspule ist über ein Hochpassfilter mit einem Zähler verbunden, der ausgangsseitig mit einem Zeitzünder in Verbindung steht. Aus der errechneten Geschossgeschwindigkeit und einer aus Sensordaten ermittelten Treffdistanz zu einem Zielobjekt wird eine Zerlegungszeit gebildet, die unmittelbar nach dem Durchfliegen der Messvorrichtung induktiv auf das Geschoss übertragen wird. Mit dieser Zerlegungszeit wird der Zeitzünder eingestellt, so dass das Geschoss im Bereiche des Zielobjektes zerlegt werden kann.With the European patent application 0 300 255 a device has become known which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel. The measuring device consists of two ring coils arranged at a certain distance from one another. When a bullet passes through the two ring coils, a pulse is generated in short succession in each ring coil due to the change in magnetic flux that occurs. The pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils. In the direction of movement of the projectile, a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile. The receiving coil is over a High-pass filter connected to a counter that is connected to a timer on the output side. A disassembly time is formed from the calculated bullet speed and a target distance to a target object, which is transmitted inductively to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.

Werden Geschosse mit Subprojektilen verwendet (Munition mit Primär- und Sekundärballistik), so kann wie beispielsweise aus einer Druckschritt OC 2052 d 94 der Firma Oerlikon-Contraves, Zürich, bekannt, ein angreifendes Ziel durch mehrfache Treffer zerstört werden, wenn nach Ausstossen der Subprojektile im Zerlegungszeitpunkt das Erwartungsgebiet des Zieles von einer durch die Subprojektile gebildeten Wolke belegt ist. Bei der Zerlegung eines solchen Geschosses wird der die Subprojektile tragende Teil abgetrennt und an Sollbruchstellen aufgerissen. Die ausgestossenen Subprojektile beschreiben eine durch die Rotation des Geschosses hervorgerufene drallstabilisierte Flugbahn und liegen gleichmässig verteilt auf annähernd halbkreisförmigen Kurven von Kreisflächen eines Kegels, so dass eine gute Treffwahrscheinlichkeit erreicht werden kann.If projectiles with subprojectiles are used (ammunition with primary and secondary ballistics), an attacking target can be destroyed by multiple hits, as is known, for example, from a printing step OC 2052 d 94 from Oerlikon-Contraves, Zurich, if, after the subprojectiles have been ejected in the Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles. When dismantling such a projectile, the part carrying the subprojectiles is separated and torn open at predetermined breaking points. The ejected sub-projectiles describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.

Bei vorstehend beschriebener Vorrichtung kann durch Streuungen in der Zerlegungsdistanz, die beispielsweise durch Streuungen der Geschossgeschwindigkeit und/oder Verwendung nicht aktualisierter Werte verursacht werden, nicht in jedem Fall eine gute Treff- bzw. Abschusswahrscheinlichkeit erreicht werden. Bei grösseren Zerlegungsdistanzen würde wohl die Kreisfläche grösser, die Dichte der Subprojektile jedoch kleiner werden. Bei kleineren Zerlegungsdistanzen tritt der umgekehrte Fall ein: Die Dichte der Subprojektile wäre grösser, die Kreisfläche jedoch kleiner.In the device described above, scattering in the disassembly distance, which is caused, for example, by scattering in the bullet speed and / or the use of non-updated values, cannot always achieve a good probability of being hit or fired. With larger disassembly distances, the circular area would probably be larger, but the density of the subprojectiles would be smaller. The reverse occurs with smaller disassembly distances: the density of the subprojectiles would be greater, but the circular area would be smaller.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren gemäss Oberbegriff vorzuschlagen, mittels welchen unter Vermeidung vorstehend erwähnter Nachteile eine optimale Treff- bzw. Abschusswahrscheinlichkeit erreichbar ist.The invention has for its object to propose a method according to the preamble, by means of which an optimal hit or shot probability can be achieved while avoiding the disadvantages mentioned above.

Diese Aufgabe wird durch die im Patentanspruch 1 angegebene Erfindung gelöst. Hierbei wird eine gegebene optimale Zerlegungsdistanz zwischen einem Zerlegungspunkt des Geschosses und einem Treffpunkt des Zieles durch Korrektur der Zerlegungszeit des Geschosses gleichbleibend gehalten. Die Korrek-tur erfolgt indem zur Zerlegungszeit ein mit einer Geschwindigkeitsdifferenz multiplizierter Korrekturfaktor addiert wird. Die Geschwindigkeitsdifferenz wird aus der Differenz der aktuellen gemessenen Geschossgeschwindigkeit und einer Vorhaltgeschwindigkeit des Geschosses gebildet, wobei die Vorhaltgeschwindigkeit aus dem Mittelwert einer Anzahl vorhergehender, aufeinanderfolgender Geschossgeschwindigkeiten errechnet wird.This object is achieved by the invention specified in claim 1. Here, a given optimal disassembly distance between a disassembly point of the projectile and a meeting point of the target is kept constant by correcting the disassembly time of the projectile. The correction is made by adding a correction factor multiplied by a speed difference to the disassembly time. The speed difference is formed from the difference between the current measured projectile speed and a lead speed of the projectile, the Lead speed is calculated from the mean of a number of previous, successive floor speeds.

Die mit der Erfindung erzielten Vorteile sind darin zu sehen, dass eine gegebene Zerlegungsdistanz von der aktuellen gemessenen Geschossgeschwindigkeit unabhängig ist, so dass eine dauernde optimale Treff- bzw. Abschusswahrscheinlichkeit erzielt werden kann. Der vorgeschlagene Korrekturfaktor für die Korrektur der Zerlegungszeit basiert lediglich auf der relativen Geschwindigkeit Geschoss-Ziel und einer Ableitung der Ballistik im Treffpunkt.The advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability can be achieved. The proposed correction factor for the correction of the disassembly time is based only on the relative speed of the projectile-target and a derivation of the ballistics at the meeting point.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Zeichnung näher erläutert. Es zeigen.

Fig.1
eine schematische Darstellung eines Waffensteuerungs-Systems mit der er findungsgemässen Vorrichtung,
Fig.2
einen Längsschnitt durch eine Mess- und Programmiervorrichtung,
Fig.3
ein Diagramm der Verteilung von Subprojektilen in Abhängigkeit von der Zer legungsdistanz, und
Fig.4
eine andere Darstellung des Waffensteuerungs-Systems gemäss Fig.1.
The invention is explained in more detail below using an exemplary embodiment in conjunction with the drawing. Show it.
Fig. 1
1 shows a schematic illustration of a weapon control system with the device according to the invention,
Fig. 2
a longitudinal section through a measuring and programming device,
Fig. 3
a diagram of the distribution of subprojectiles depending on the decomposition distance, and
Fig. 4
another representation of the weapon control system according to Fig.1 .

In der Fig.1 ist mit 1 eine Feuerleitung und mit 2 ein Geschütz bezeichnet. Die Feuerleitung 1 besteht aus einem Suchsensor 3 für die Entdeckung eines Zieles 4, einem mit dem Suchsensor 3 verbundenen Folgesensor 5 für die Zielerfassung, die 3-D-Zielverfolgung und die 3-D-Zielvermessung, sowie einem Feuerleitungsrechner 6. Der Feuerleitungsrechner 6 weist mindestens ein Hauptfilter 7, eine Vorhalt-Recheneinheit 9 und eine Korrektur-Recheneinheit 12 auf. Das Hauptfilter 7 ist eingangsseitig mit dem Folgesensor 5 und ausgangsseitig mit der Vorhalt-Recheneinheit 9 verbunden, wobei das Haupt-filter 7 die vom Folgesensor 5 empfangenen 3-D-Zieldaten in Form von geschätzten Zieldaten 2 wie Position, Geschwindigkeit, Beschleunigung usw. an die Vorhalt-Recheneinheit 9 weiterleitet, die ausgangsseitig mit der Korrektur-Recheneinheit in Verbindung steht. Ueber einen weiteren Eingang Me können der Vorhalt-Recheneinheit 9 meteorologische Daten zugeführt werden. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen bzw. Anschlüssen wird nachstehend anhand der Funktionsbeschreibung näher erläutert.In Figure 1, 1 denotes a fire control and 2 a gun. The fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search sensor 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 . The fire control computer 6 has at least one main filter 7 , a lead computing unit 9 and a correction computing unit 12 . The main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow sensor 5 in the form of estimated target data 2 such as position, speed, acceleration, etc. forward the lead computing unit 9 , which is connected on the output side to the correction computing unit. Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.

Ein Rechner des Geschützes 2 weist eine Auswerteschaltung 10 und eine Aufdatierungs-Recheneinheit 11 auf. Die Auswerteschaltung 10 ist eingangsseitig an einer an der Mündung eines Geschützrohres 13 angeordneten, nachstehend anhand der Fig.2 näher beschriebenen Messvorrichtung 14 für die Geschossgeschwindigkeit angeschlossen und ausgangsseitig mit der Vorhalt-Recheneinheit 9 und der Aufdatierungs-Recheneinheit 11 verbunden. Die Aufdatierungs-Recheneinheit 11 ist eingangsseitig an der Vorhalt- und an der Korrektur-Recheneinheit 9,12 angeschlossen und steht ausgangsseitig mit einem in der Messvorrichtung 14 integrierten Programmierteil in Verbindung. Die Korrektur-Recheneinheit 12 ist eingangsseitig mit der Vorhalt-Rechen-einheit 9 und ausgangsseitig mit der Aufdatier-Recheneinheit 11 verbunden. Ein Geschützservo 15 und eine auf einen Feuerbefehl ansprechende Auslöse-einrichtung 16 sind ebenfalls an der Vorhalt-Recheneinheit 9 angeschlossen. Die Verbindungen zwischen der Feuerleitung 1 und dem Geschütz 2 sind zu einer Data-Transmission zusammengefasst, die mit 17 bezeichnet ist. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen zwischen den Recheneinheiten 10,11,12 sowie zwischen der Feuerleitung 1 und dem Geschütz 2 wird nachstehend anhand der Funktionsbeschreibung näher erläutert. Mit 18 und 18' ist ein Geschoss bezeichnet, das während einer Programmierphase (18) und im Zerlegungszeitpunkt (18') dargestellt ist. Beim Geschoss 18 handelt es sich um ein programmierbares Geschoss mit Primär-und Sekundärballistik, das mit einer Ausstossladung und einem Zeitzünder ausgestattet und mit Subprojektilen 19 gefüllt ist.A computer of the gun 2 has an evaluation circuit 10 and an update computing unit 11 . The evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile speed, which is arranged at the mouth of a gun barrel 13 and is described in greater detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 . The update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 . The correction arithmetic unit 12 is connected on the input side to the lead arithmetic unit 9 and on the output side to the update arithmetic unit 11 . A gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 . The connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 . The meaning of the designations on the individual connections between the computing units 10, 11, 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description. 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ). The projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .

Gemäss Fig.2 besteht ein an der Mündung des Geschützrohres 13 befestigtes Tragrohr 20 aus drei Teilen 21, 22, 23. Zwischen dem ersten Teil 21 und dem zweiten bzw. dritten Teil 22, 23 sind Ringspulen 24, 25 für die Messung der Geschossgeschwindigkeit angeordnet. Am dritten Teil 23 -auch Programmier-teil genannt- ist eine in einem Spulenkörper 26 gehaltene Sendespule 27 be-festigt. Die Art der Befestigung des Tragrohres 20 und der drei Teile 21, 22, 23 miteinander ist nicht weiter dargestellt und beschrieben. Für die Speisung der Ringspulen sind Leitungen 28, 29 vorgesehen. Am Umfang des Tragrohres 20 sind zwecks Abschirmung von die Messung störenden Magnetfeldern Weicheisenstäbe 30 angeordnet. Das Geschoss 18 weist eine Empfangsspule 31 auf, die über ein Filter 32 und einen Zähler 33 mit einem Zeitzünder 34 verbunden ist. Beim Durchgang des Geschosses 18 durch die beiden Ringspulen 24,25 wird kurz hintereinander in jeder Ringspule ein Impuls erzeugt. Diese Impulse werden der Auswerteschaltung 10 (Fig.1) zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und einem Abstand a zwischen den Ringspulen 24,25 die Geschossgeschwindigkeit errechnet wird. Unter Berücksichtigung der Geschossgeschwindigkeit wird, wie nachstehend näher beschrieben, eine Zerlegungszeit errechnet, die in digitaler Form beim Durchgang des Geschosses 18 durch die Sendespule 27 zum Zwecke der Einstellung des Zählers 32 induktiv auf die Empfangsspule 31 übertragen wird.According to FIG. 2 , a support tube 20 attached to the muzzle of the gun barrel 13 consists of three parts 21, 22, 23 . Between the first part 21 and the second or third part 22, 23 , ring coils 24, 25 are arranged for measuring the projectile speed. On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21, 22, 23 to each other is not shown and described. Lines 28, 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement. The projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 . When the projectile 18 passes through the two ring coils 24 , 25, a pulse is generated in short succession in each ring coil. These pulses of the evaluation circuit 10 (Fig.1) are supplied, in which from the time interval of the pulses and a distance a between the toroid coils, the projectile velocity is calculated 24.25. Taking into account the bullet speed will be as below described in more detail, calculates a disassembly time which is transmitted inductively to the receiving coil 31 in digital form when the projectile 18 passes through the transmitting coil 27 for the purpose of setting the counter 32 .

In der Fig.3 ist mit Pz ein Zerlegungspunkt des Geschosses 18 bezeichnet. Die ausgestossenen Subprojektile liegen je nach Abstand von Zerlegungspunkt Pz gleichmässig verteilt auf annähern halbkreisförmigen Kurven von (perspek-tivisch dargestellten) Kreisflächen F1, F2, F3, F4 eines Kegels C. Auf einer ersten Abzisse I ist der Abstand vom Zerlegungspunkt Pz in Metern m aufgetragen, während auf einer zweiten Abzisse II die Flächengrössen der Flächen F1, F2, F3, F4 in Quadratmetern m2 und deren Durchmesser in Metern m aufgetragen sind. Bei einem charakteristischem Geschoss mit beispielsweise 152 Subprojektilen und einem Scheitelwinkel des Kegels C von anfänglich 10° ergeben sich in Abhängigkeit vom Abstand die auf der Abzisse II aufgetragenen Werte. Die Dichte der auf den Kreisflächen F1, F2, F3, F4 befindlichen Subprojektile nimmt mit zunehmendem Abstand ab und beträgt bei den gewählten Verhältnissen 64, 16, 7 und 4 Subprojektile pro Quadratmeter. Bei einer vorgegebenen, der nachfolgend beschriebenen Berechnung der Zerlegungszeit zugrunde gelegten Zerlegungsdistanz Dz von beispielsweise 20 m, würde beim angenommenen Beispiel ein Zielgebiet von 3,5 m Durchmesser mit 16 Subprojektilen pro Quadratmeter belegt sein.In Figure 3 , Pz denotes a point of disassembly of the projectile 18 . The ejected subprojectiles are, depending on the distance from the breakdown point Pz, evenly distributed on approximately semicircular curves of (perspectively represented) circular areas F1, F2, F3, F4 of a cone C. On a first abscissa I, the distance from the breakdown point Pz is plotted in meters m , while on a second abscissa II the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m. In the case of a characteristic projectile with, for example, 152 subprojectiles and an apex angle of the cone C of initially 10 °, the values plotted on the abscissa II are obtained as a function of the distance. The density of the subprojectiles on the circular areas F1, F2, F3, F4 decreases with increasing distance and is 64, 16, 7 and 4 subprojectiles per square meter with the selected ratios. Given a predetermined disassembly distance Dz on which the disassembly time is based, as described below, for example 20 m, in the assumed example a target area of 3.5 m in diameter would be occupied with 16 subprojectiles per square meter.

In der Fig. 4 ist mit 4 und 4' das abzuwehrende Ziel bezeichnet, das in einer Treff- bzw. Abschussposition (4) und in einer der Treff- bzw. Abschussposition vorhergehenden Position (4') dargestellt.In FIG. 4 , 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.

Die vorstehend beschriebene Vorrichtung arbeitet wie folgt:The device described above works as follows:

Die Vorhalt-Recheneinheit 9 errechnet aus einer vorgegebenen Zerlegungsdistanz Dz, einer Vorhaltgeschwindigkeit VOv und den Zieldaten Z unter Berücksichtigung von meteorologischen Daten bei Geschossen mit Primär-und Sekundärballistik eine Treffdistanz RT, eine Zerlegungszeit Tz und eine Subprojektilflugzeit ts. Hierbei ist Tz die Flugzeit des Geschosses bis zum Zerlegungspunkt Pz und ts die Flugzeit eines in der Geschossrichtung fliegenden Subprojektiles vom Zerlegungspunkt Pz bis zum Treffpunkt Pf (Fig.3,4).The lead computation unit 9 calculates a target distance RT, a disassembly time Tz and a sub-projectile flight time ts from a predetermined disassembly distance Dz, a retention speed VOv and the target data Z, taking meteorological data into account for projectiles with primary and secondary ballistics. Here, Tz is the flight time of the projectile to the point of disassembly Pz and ts is the flight time of a subprojectile flying in the projectile direction from the point of disassembly Pz to the meeting point Pf ( Fig . 3,4 ).

Die Vorhaltgeschwindigkeit VOv wird beispielsweise aus dem Mittelwert einer Anzahl über die Data-Transmission 17 zugeführter gemessener Geschossgeschwindigkeiten Vm gebildet, die der aktuellen gemessenen Geschossgeschwindigkeit Vm unmittelbar vorhergehen.The lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm.

Die Vorhalt-Recheneinheit 9 ermittelt ferner einen Geschützwinkel α des Azimutes und einen Geschütswinkel λ der Elevation. Die Grössen α, λ, Tz und VOv werden der Korrektur-Recheneinheit 12 zugeführt, die wie nachstehend näher beschrieben einen Korrekturfaktor K errechnet. Die Grössen α, λ, Tz, VOv und K werden als Schiesselemente des Treffpunktes bezeichnet und über die Data-Transmission 17 dem Geschütsrechner zugeführt, wobei die Schiesselemente α und λ dem Geschützservo 15 und die Schiesselemente VOv, Tz und K der Aufdatier-Recheneinheit 11 zugeführt werden. Wenn nur Primärballistik zur Anwendung kommt, so wird anstelle der Zerlegungszeit Tz die Treffzeit Tf = Tz+ts

Figure imgb0001
übermittelt (Fig.1, Fig.4).The lead computing unit 9 also determines a gun angle α of the azimuth and a gun angle λ of the elevation. The quantities α, λ, Tz and VOv are fed to the correction computing unit 12 , which calculates a correction factor K as described in more detail below. The quantities α, λ, Tz, VOv and K are referred to as shooting elements of the meeting point and fed to the gun computer via data transmission 17, the shooting elements α and λ being used for the gun servo 15 and the shooting elements VOv, Tz and K of the update computing unit 11 be fed. If only primary ballistics is used, the hit time will be used instead of the decomposition time Tz Tf = Tz + ts
Figure imgb0001
transmitted ( Fig.1, Fig.4 ).

Die vorstehend beschriebenen Berechnungen werden taktweise wiederholt durchgeführt, so dass jeweils im aktuellen Takt i die neuesten Daten α, λ, Tz oderTf, VOv und K für eine bestimmte Gültigkeitsdauer zur Verfügung stehen.The calculations described above are repeated in cycles, so that the latest data α, λ, Tz or TF, VOv and K are available for a specific period of validity in the current cycle i.

Zwischen den Taktwerten wird für die aktuellen (laufende) Zeit (t) jeweils interpoliert bzw. extrapoliert.Between the clock values, the current (running) time (t) is interpolated or extrapolated.

Die Ballistik eines Geschosses wird durch ein System von Differentialgleichungen der Form

Figure imgb0002
beschrieben, wobei zusammen mit den Anfangsbedingungen
Figure imgb0003
eine eindeutige ballistische Lösung
Figure imgb0004
bestimmt wird. Im durch die Gleichungen Gl.1 und Gl.2 bestimmten System ist als Randbedingung die Treffbedingung
Figure imgb0005
enthalten, wobei TG = TG ( t o , v o ( t o ))
Figure imgb0006
ist, und wobei die Vorhalt-Grösse v
Figure imgb0007
o (t o ) vom Geschoss nicht als Anfangsgeschwindigkeit angenommen wird. Mit
Figure imgb0008
wird eine Komponente von v
Figure imgb0009
o (t o ) in Rohrrichtung und mit v
Figure imgb0010
o (2) eine senkrecht dazu gerichtete Komponente definiert, so dass
Figure imgb0011
ist, wobei
Figure imgb0012
die Geschwindigkeit der Rohrmündung bedeutet und eine Vorhalt-Grösse ist, welche vom Geschoss tatsächlich eingehalten wird. Dagegen kann à priori keine Aussage über den Betrag der Komponente der Anfangsgeschwindigkeit des Geschosses in Rohrrichtung gemacht werden. Die Grösse
Figure imgb0013
wird vom Geschoss in der Tat nicht genau angenommen. Der tatsächliche Betrag der Komponente der Anfangsgeschwindigkeit des Geschosses in Rohrrichtung wird mit Vm bezeichnet. Diese Grösse wird für jedes Geschoss an der Rohrmündung gemessen (Fig.1 und 2). Die effektive Anfangsgeschwindigkeit des Geschosses beträgt jetzt
Figure imgb0014
The ballistics of a projectile is determined by a system of differential equations of the form
Figure imgb0002
described, along with the initial conditions
Figure imgb0003
a clear ballistic solution
Figure imgb0004
is determined. In the system determined by equations Eq.1 and Eq.2, the meeting condition is the boundary condition
Figure imgb0005
included, where TG = TG ( t O , v O ( t O ))
Figure imgb0006
and where the lead size is v
Figure imgb0007
o ( t o ) is not assumed to be the initial velocity by the projectile. With
Figure imgb0008
becomes a component of v
Figure imgb0009
o ( t o ) in the pipe direction and with v
Figure imgb0010
o (2) defines a perpendicular component, so that
Figure imgb0011
is where
Figure imgb0012
means the speed of the pipe mouth and is a reserve size which is actually maintained by the projectile. On the other hand, no statement can be made a priori about the amount of the component of the initial velocity of the projectile in the pipe direction. The size
Figure imgb0013
is in fact not exactly accepted by the projectile. The actual amount of the component of the initial velocity of the projectile in the pipe direction is referred to as Vm. This size is measured for each floor at the pipe mouth (Fig. 1 and 2). The effective initial velocity of the bullet is now
Figure imgb0014

Der Einfachheit halber kann die Abhängigkeit von der Anfangsgeschwindigkeit durch die Abhängigkeit vom Betrag der Komponente der Anfangsgeschwindigkeit in Rohrrichtung ersetzt werden, so dass

Figure imgb0015
ist und sich die ballistische Lösung zu
Figure imgb0016
ergibt. Mit der effektiven Anfangsgeschwindigkeit gemäss Gleichung Gl.5 ist die Lösung der Gleichungen Gl.1, Gl.2 von der Form
Figure imgb0017
For the sake of simplicity, the dependency on the initial speed can be replaced by the dependence on the amount of the component of the initial speed in the pipe direction, so that
Figure imgb0015
is and the ballistic solution too
Figure imgb0016
results. With the effective starting speed according to equation Eq.5, the solution of equations Eq.1, Eq.2 is of the form
Figure imgb0017

Ein Geschoss mit der durch t p

Figure imgb0018
G (t, P o
Figure imgb0019
s o ,v m ) gegebenen Bahn wird das Ziel im allgemeinen nicht mehr treffen. Bei der Berechnung des Korrekturfaktors K wird daher von der durch die Definition
Figure imgb0020
gegebenen Flugzeit t* des kleinsten Abstandes zwischen einem Geschoss und einem Ziel und der partiellen Ableitung nach der Flugzeit
Figure imgb0021
ausgegangen und durch Einsetzen der Definition
Figure imgb0022
die Gleichung Gl.6 vereinfacht. Durch differenzieren der Gleichung Gl.6 wird
Figure imgb0023
gewonnen. Danach wird die als Randbedingung im System der Differentialgleichungen der Ballistik enthaltene Treffbedingung gemäss Gleichung Gl.3 unter Berücksichtigung der Definition für t*
Figure imgb0024
eingesetzt, wobei aus Gleichung Gl.7 für v m =v o
Figure imgb0025
Figure imgb0026
folgt. Durch Einsetzen der Definition
Figure imgb0027
wird Gleichung Gl.7.1 vereinfacht, wobei sich der Korrekturfaktor K zu
Figure imgb0028
ergibt.A floor with the through t p
Figure imgb0018
G ( t , P O
Figure imgb0019
s o , v m ) given path will generally no longer hit the target. When calculating the correction factor K is therefore by the definition
Figure imgb0020
given flight time t * of the smallest distance between a floor and a target and the partial derivative after the flight time
Figure imgb0021
assumed and by inserting the definition
Figure imgb0022
simplified the equation Eq.6. By differentiating the equation Eq.6
Figure imgb0023
won. Then the hit condition contained as a boundary condition in the system of the differential equations of ballistics according to equation Eq. 3 taking into account the definition for t *
Figure imgb0024
used, from equation Eq.7 for v m = v O
Figure imgb0025
Figure imgb0026
follows. By inserting the definition
Figure imgb0027
Equation Eq.7.1 is simplified, with the correction factor K increasing
Figure imgb0028
results.

Die vorstehend angewendete mathematische bzw. physikalische Notation bedeutet:
v

Figure imgb0029
  ein Vektor
v
Figure imgb0030
∥  Norm des Vektors
u
Figure imgb0031
, v
Figure imgb0032
〉  Skalarprodukt
·  skalare oder Matrixmultiplikation
g := A  die Grösse g wird definiert als Ausdruck A
g = g(x 1,...,x n )  die Grösse g hängt ab von x1,....,xn
tg(t)  Zuordnung (t wird die Auswertung von g an der Stelle t zugeordnet)
  Ableitung von g nach der Zeit
D i g(x 1,...,x n )  partielle Ableitung von g nach der i-ten Variablen
∂t
Figure imgb0033
g(t,x 1,...,x n )  partielle Ableitung von g nach der Zeit t
inf t M  Infimum der Menge M über alle t
p
Figure imgb0034
G , v
Figure imgb0035
G , a
Figure imgb0036
G   Position,Geschwindigkeit,Beschleunigung des Geschosses
p
Figure imgb0037
Z , v
Figure imgb0038
Z , a
Figure imgb0039
Z   Position,Geschwindigkeit,Beschleunigung des Zieles
p
Figure imgb0040
rel , v
Figure imgb0041
rel , a
Figure imgb0042
rel   relative Position,Geschwindigkeit,Beschleunigung Geschoss-Ziel
P o
Figure imgb0043
s  Position der Rohrmündung
v
Figure imgb0044
o   Vorhalt-Anfangsgeschwindigkeit des Geschosses
v o   Betrag der Komponente der Vorhalt-Anfangsgeschwindigkeit des Geschosses in Rohrrichtung
v m   Betrag der Komponente der effektiven Anfangsgeschwindigkeit des Geschosses in Rohrrichtung
TG  Vorhalt-Flugzeit des Geschosses
t*  Flugzeit des Geschosses
t o   Zeitpunkt zu dem das Geschoss die Rohrmündung passiert.The mathematical or physical notation used above means:
v
Figure imgb0029
a vector
v
Figure imgb0030
∥ norm of the vector
u
Figure imgb0031
, v
Figure imgb0032
〉 Dot product
· Scalar or matrix multiplication
g : = A the size g is defined as expression A
g = g ( x 1 , ..., x n ) the size g depends on x 1 , ...., x n
tg ( t ) assignment (t is assigned the evaluation of g at point t)
ġ derivative of g over time
D i g ( x 1 , ..., x n ) partial derivative of g according to the i-th variable
∂t
Figure imgb0033
g ( t , x 1 , ..., x n ) partial derivative of g after time t
inf t M Infimum of the set M over all t
p
Figure imgb0034
G , v
Figure imgb0035
G , a
Figure imgb0036
G position, speed, acceleration of the projectile
p
Figure imgb0037
Z , v
Figure imgb0038
Z , a
Figure imgb0039
Z position, speed, acceleration of the target
p
Figure imgb0040
rel , v
Figure imgb0041
rel , a
Figure imgb0042
rel relative position, speed, acceleration floor-target
P O
Figure imgb0043
s Position of the pipe mouth
v
Figure imgb0044
o Projectile initial velocity of the projectile
v o Amount of the component of the initial initial velocity of the projectile in the pipe direction
v m Amount of the component of the effective initial velocity of the projectile in the pipe direction
TG lead flight time of the projectile
t * flight time of the projectile
t o time at which the projectile passes the pipe muzzle.

Die Aufdatierungs-Recheneinheit 11 errechnet aus dem von der Korrektur-Recheneinheit 12 zugeführten Korrekturfaktor K, der von der Auswerteschaltung 10 zugeführten aktuellen gemessenen Geschossgeschwindigkeit Vm und der von der Vorhalt-Recheneinheit 9 Zuge-führten Vorhaltgeschwindigkeit Vov und Zerlegungszeit Tz eine korrigierte Zerlegungszeit Tz (Vm) nach der Beziehung Tz (Vm) = Tz + K * (Vm-VOv).

Figure imgb0045
The update computing unit 11 calculates from the correction factor K supplied by the correction computing unit 12, the current measured value supplied by the evaluation circuit 10 Projectile speed Vm and the lead speed Vov and disassembly time Tz, which is carried out by the lead computing unit 9, corrected disassembly time Tz (Vm) according to the relationship Tz (Vm) = Tz + K * (Vm-VOv).
Figure imgb0045

Die korrigierte Zerlegungszeit Tz (Vm) wird je nach Zeitgültigkeit für die aktuelle laufende Zeit t interpoliert bzw. extrapoliert. Die nun errechnete Zerlegungszeit Tz (Vm,t) wird der Sendespule 27 des Programmierteils 23 der Messvorrichtung 14 zugeführt und wie bereits vorstehend anhand der Fig.2 beschrieben induktiv auf ein vorbeifliegendes Geschoss 18 übertragen.The corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t. The disassembly time Tz (Vm, t) now calculated is supplied to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.

Mit der Korrektur der Zerlegungszeit Tz kann die Zerlegungsdistanz Dz (Fig.3,4) unabhängig von den Streuungen der Geschossgeschwindigkeit, und/oder verursacht durch Verwendung nicht aktualisierter Werte gleichbleibend gehalten werden, so dass eine optimale Treff-bzw. Abschusswahrscheinlichkeit erzielt werden kann.With the correction of the disassembly time Tz, the disassembly distance Dz ( FIG. 3, 4 ) can be kept constant regardless of the variations in the projectile speed , and / or caused by the use of non-updated values, so that an optimal meeting or Probability of shooting can be achieved.

BezugszeichenlisteReference list

11
FeuerleitungFire control
22nd
Geschützgun
33rd
SuchsensorSearch sensor
44th
Zieltarget
55
FolgesensorFollow sensor
66
FeuerleitungsrechnerFire control computer
77
HauptfilterMain filter
99
Vorhalt-RecheneinheitLead computing unit
1010th
AuswerteschaltungEvaluation circuit
1111
Aufdatierungs-RecheneinheitUpdate processing unit
1212th
Korrektur-RecheneinheitCorrection computing unit
1313
GeschützrohrGun barrel
1414
MessvorrichtungMeasuring device
1515
GeschützservoGun servo
1616
AuslöseeinrichtungRelease device
1717th
Data-TransmissionData transmission
1818th
Geschossbullet
18'18 '
Geschossbullet
1919th
SubprojektilSubprojectile
2020th
TragrohrSupport tube
2121
Erster TeilFirst part
2222
Zweiter TeilSecond part
2323
Dritter Teilthird part
2424th
RingspuleRing coil
2525th
RingspuleRing coil
2626
SpulenkörperBobbin
2727
SendespuleTransmitter coil
2828
Leitungmanagement
2929
Leitungmanagement
3030th
WeicheisenstäbeSoft iron bars
3131
EmpfangsspuleReceiving coil
3232
Filterfilter
3333
Zählercounter
3434
ZeitzünderTimer
aa
Abstanddistance
PzPz
Position des ZerlegungspunktesPosition of the decomposition point
F1-F4F1-F4
KreisflächenCircular areas
CC.
Kegelcone
II.
Erste AbzisseFirst abscissa
IIII
Zweite AbzisseSecond abscissa
DzDz
ZerlegungsdistanzDisassembly distance
RTRT
TreffdistanzHit distance
VOvVOv
VorhaltgeschwindigkeitLead speed
VmVm
Aktuelle gemessene GeschossgeschwindigkeitCurrent measured bullet speed
TzTz
ZerlegungszeitDisassembly time
tsts
SubprojektilflugzeitSubprojectile flight time
PfPf
Treffpunktmeeting point
αα
GeschützwinkelGun angle
λλ
GeschützwinkelGun angle
TfTf
TreffzeitMeeting time
TGTG
FlugzeitFlight time
Tz(Vm)Tz (Vm)
Korrigierte ZerlegungszeitCorrected disassembly time
MeMe
Eingang (Meteo)Entrance (Meteo)

Claims (2)

Verfahren zur Berechnung der Zerlegungszeit eines programmierbaren Geschosses, wobei der Berechnung mindestens eine aus Sensordaten ermittelte Treffdistanz (RT) zu einem Zielobjekt, eine an der Mündung eines Geschützrohres (13) gemessene Geschossgeschwindigkeit (Vm) und eine gegebene Zerlegungsdistanz (Dz) zwischen einem Treffpunkt (Pf) und einem Zerlegungspunkt (Pz) des Geschosses (18) zugrunde ge legt ist,
dadurch gekennzeichnet,
dass die gegebene Zerlegungsdistanz (Dz) durch Korrektur der Zerlegungszeit (Tz) gleichbleibend gehalten wird, wobei die Korrektur durch die Beziehung Tz (Vm) = Tz + K * (Vm-Vov)
Figure imgb0046
erfolgt, und wobei Tz (Vm)   die korrigierte Zerlegungszeit, Tz   die Zerlegungszeit, K   einen Korrekturfaktor, Vm   die aktuelle gemessene Geschossgeschwindigkeit und VOv   eine Vorhaltgeschwindigkeit des Geschosses bedeuten.
Method for calculating the disassembly time of a programmable projectile, the calculation calculating at least one target distance (RT) to a target object determined from sensor data, a projectile speed (Vm) measured at the muzzle of a gun barrel ( 13 ) and a given disassembly distance (Dz) between a meeting point ( Pf) and a decomposition point (Pz) of the floor ( 18 ) is based,
characterized by
that the given disassembly distance (Dz) is kept constant by correcting the disassembly time (Tz), the correction by the relationship Tz (Vm) = Tz + K * (Vm-Vov)
Figure imgb0046
takes place, and being Tz (Vm) the corrected disassembly time, Tz the disassembly time, K a correction factor, Vm is the current measured bullet speed and VOv mean a lead rate of the projectile.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet,
dass der Korrekturfaktor (K) ausgehend von der durch die Definition
Figure imgb0047
gegebenen Flugzeit (t*) des kleinsten Abstandes zwischen einem Geschoss und einem Ziel und der partiellen Ableitung nach der Flugzeit
Figure imgb0048
durch folgende Berechnungsschritte ermittelt wird - vereinfachen der Gleichung Gl.6 durch Einsetzen der Definitionen
Figure imgb0049
- differenzieren der' Gleichung Gl.6 nach der aktuellen gemessenen Geschossgeschwindigkeit (Vm), wobei sich
Figure imgb0050
ergibt,
- einsetzen einer als Randbedingung im System der Differentialgleichungen der Ballistik enthaltenen Treffbedingung Gl.3 in Gleichung Gl.7 unter Berücksichtigung der Definition für t*
Figure imgb0051
wobei aus Gleichung Gl.7 für vm=vo
Figure imgb0052
folgt,
- vereinfachen der Gleichung Gl.7.1 durch Einsetzen der Definition
Figure imgb0053
wobei sich der Korrekturfaktor (K) zu
Figure imgb0054
ergibt, und wobei p
Figure imgb0055
G , v
Figure imgb0056
G , a
Figure imgb0057
G    Position,Geschwindigkeit,Beschleunigung des Geschosses
p
Figure imgb0058
Z , v
Figure imgb0059
Z , a
Figure imgb0060
Z    Position,Geschwindigkeit,Beschleunigung des Zieles
p
Figure imgb0061
rel , v rel , a rel    relative Position,Geschwindigkeit,Beschleunigung Geschoss-Ziel
P o
Figure imgb0062
s   Position der Rohrmündung
v
Figure imgb0063
o    Vorhalt-Anfangsgeschwindigkeit des Geschosses
v o    Betrag der Komponente der Vorhalt-Anfangsgeschwindigkeit des Geschosses in Rohrrichtung v m    Betrag der Komponente der effektiven Anfangsgeschwindigkeit des Geschosses in Rohrrichtung TG   Vorhalt-Flugzeit des Geschosses t*   Flugzeit des Geschosses t o    Zeitpunkt zu dem das Geschoss die Rohrmündung passiert bedeuten.
Method according to claim 1,
characterized,
that the correction factor (K) based on that defined by the
Figure imgb0047
given flight time (t *) of the smallest distance between a floor and a target and the partial derivative after the flight time
Figure imgb0048
is determined by the following calculation steps - Simplify equation Eq.6 by inserting the definitions
Figure imgb0049
- Differentiate the 'equation Eq.6 according to the current measured bullet speed (Vm), where
Figure imgb0050
results in
- insert a hit condition Eq.3 contained in equation Eq.7 as a boundary condition in the system of the differential equations of ballistics, taking into account the definition for t *
Figure imgb0051
where from equation Eq.7 for v m = v o
Figure imgb0052
follows
- Simplify equation Eq.7.1 by inserting the definition
Figure imgb0053
where the correction factor (K) increases
Figure imgb0054
results, and where p
Figure imgb0055
G , v
Figure imgb0056
G , a
Figure imgb0057
G position, speed, acceleration of the projectile
p
Figure imgb0058
Z , v
Figure imgb0059
Z , a
Figure imgb0060
Z position, speed, acceleration of the target
p
Figure imgb0061
rel , v rel , a rel relative position, speed, acceleration floor-target
P O
Figure imgb0062
s Position of the pipe mouth
v
Figure imgb0063
o Projectile initial velocity of the projectile
v o Amount of the component of the initial initial velocity of the projectile in the pipe direction v m Amount of the component of the effective initial velocity of the projectile in the pipe direction TG lead flight time of the projectile t * flight time of the projectile t o mean when the bullet passes the pipe muzzle.
EP96118044A 1996-04-19 1996-11-11 Method of identifying a corrected disintegration time of a programmable and frangible projectile Expired - Lifetime EP0802391B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH100196 1996-04-19
CH1001/96 1996-04-19
CH100196 1996-04-19

Publications (2)

Publication Number Publication Date
EP0802391A1 true EP0802391A1 (en) 1997-10-22
EP0802391B1 EP0802391B1 (en) 2000-12-13

Family

ID=4200143

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96118044A Expired - Lifetime EP0802391B1 (en) 1996-04-19 1996-11-11 Method of identifying a corrected disintegration time of a programmable and frangible projectile

Country Status (12)

Country Link
US (1) US5834675A (en)
EP (1) EP0802391B1 (en)
JP (1) JP3891619B2 (en)
KR (1) KR100410718B1 (en)
AT (1) ATE198103T1 (en)
AU (1) AU716346B2 (en)
CA (1) CA2190384C (en)
DE (1) DE59606214D1 (en)
NO (1) NO311954B1 (en)
SG (1) SG83658A1 (en)
TR (1) TR199600952A1 (en)
ZA (1) ZA969536B (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992758A1 (en) 1998-10-08 2000-04-12 Oerlikon Contraves Ag Method and device for calculating and correcting the disintegration time of a spin-stabilized programmable projectile
US6422119B1 (en) 1998-10-08 2002-07-23 Oerlikon Contraves Ag Method and device for transferring information to programmable projectiles
DE102011106198B3 (en) * 2011-06-07 2012-03-15 Rheinmetall Air Defence Ag Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
DE102011018248B3 (en) * 2011-04-19 2012-03-29 Rheinmetall Air Defence Ag Device and method for programming a projectile
DE102009011447B9 (en) * 2009-03-03 2012-08-16 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761767B1 (en) * 1997-04-03 1999-05-14 Giat Ind Sa METHOD FOR PROGRAMMING IN FLIGHT A TRIGGERING MOMENT OF A PROJECTILE ELEMENT, FIRE CONTROL AND ROCKET IMPLEMENTING SUCH A METHOD
DE59903384D1 (en) * 1998-10-08 2002-12-19 Contraves Pyrotec Ag Method for correcting a preprogrammed triggering of a process in a spin-stabilized projectile, device for carrying out the method and use of the device
US20040237762A1 (en) * 1999-11-03 2004-12-02 Metal Storm Limited Set defence means
US6497170B1 (en) * 2001-07-05 2002-12-24 The United States Of America As Represented By The Secretary Of The Army Muzzle brake vibration absorber
ES2301750T3 (en) * 2003-02-26 2008-07-01 Rwm Schweiz Ag PROCEDURE FOR PROGRAMMING THE FRAGMENTATION OF PROJECTILE AND CANNON WEAPONS WITH PROGRAMMING SYSTEM.
US7533612B1 (en) * 2004-09-23 2009-05-19 The United States Of America As Represented By The Secretary Of The Army Projectile height of burst determination method and system
US11047663B1 (en) * 2010-11-10 2021-06-29 True Velocity Ip Holdings, Llc Method of coding polymer ammunition cartridges
US11933585B2 (en) 2013-03-27 2024-03-19 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
US10514234B2 (en) 2013-03-27 2019-12-24 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
US9574837B2 (en) * 2014-01-08 2017-02-21 Nostromo Holdings, Llc Mortar safety device
US9740326B2 (en) * 2015-03-31 2017-08-22 Synaptics Incorporated Sensor array with split-drive differential sensing
FR3071596B1 (en) * 2017-09-27 2019-10-18 Thales METHOD AND DEVICE FOR LAUNCHING PROJECTILES ON A TARGET TO BE REACHED
US10883809B1 (en) * 2019-05-07 2021-01-05 U.S. Government As Represented By The Secretary Of The Army Muzzle velocity correction

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142442A (en) * 1971-12-08 1979-03-06 Avco Corporation Digital fuze
GB2107835A (en) * 1981-10-20 1983-05-05 Sfim Correcting, from one shot to the next, the firing of a weapon
US4449041A (en) * 1980-10-03 1984-05-15 Raytheon Company Method of controlling antiaircraft fire
EP0300255A1 (en) 1987-07-20 1989-01-25 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Digital counter setting apparatus for the initiation of a timed-detonator in a projectile
EP0467055A1 (en) * 1990-07-19 1992-01-22 Oerlikon-Contraves AG Receiving coil for the programmable fuse of a projectile

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4267776A (en) * 1979-06-29 1981-05-19 Motorola, Inc. Muzzle velocity compensating apparatus and method for a remote set fuze
US4625646A (en) * 1980-10-06 1986-12-02 The Boeing Aerospace Company Aerial missile having multiple submissiles with individual control of submissible ejection
DE3309147A1 (en) * 1983-03-15 1984-09-20 Rainer Dipl.-Phys. 6901 Gaiberg Berthold Method and arrangement for correcting an ignition time
US4799429A (en) * 1984-03-30 1989-01-24 Isc Technologies, Inc. Programming circuit for individual bomblets in a cluster bomb
US4750423A (en) * 1986-01-31 1988-06-14 Loral Corporation Method and system for dispensing sub-units to achieve a selected target impact pattern
FR2609165A1 (en) * 1986-12-31 1988-07-01 Thomson Brandt Armements PROJECTILE COMPRISING SUB-PROJECTILES WITH A PREFINED EFFICIENCY ZONE
US4837718A (en) * 1987-02-05 1989-06-06 Lear Siegler, Inc. Doppler radar method and apparatus for measuring a projectile's muzzle velocity
GB2226624B (en) * 1987-12-12 1991-07-03 Thorn Emi Electronics Ltd Projectile
DE3830518A1 (en) * 1988-09-08 1990-03-22 Rheinmetall Gmbh DEVICE FOR SETTING A FLOOR TIME
US5267502A (en) * 1991-05-08 1993-12-07 Sd-Scicon Uk Limited Weapons systems future muzzle velocity neural network
CA2082448C (en) * 1991-05-08 2002-04-30 Christopher Robert Gent Weapons systems
US5497704A (en) * 1993-12-30 1996-03-12 Alliant Techsystems Inc. Multifunctional magnetic fuze

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142442A (en) * 1971-12-08 1979-03-06 Avco Corporation Digital fuze
US4449041A (en) * 1980-10-03 1984-05-15 Raytheon Company Method of controlling antiaircraft fire
GB2107835A (en) * 1981-10-20 1983-05-05 Sfim Correcting, from one shot to the next, the firing of a weapon
EP0300255A1 (en) 1987-07-20 1989-01-25 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Digital counter setting apparatus for the initiation of a timed-detonator in a projectile
EP0467055A1 (en) * 1990-07-19 1992-01-22 Oerlikon-Contraves AG Receiving coil for the programmable fuse of a projectile

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992758A1 (en) 1998-10-08 2000-04-12 Oerlikon Contraves Ag Method and device for calculating and correcting the disintegration time of a spin-stabilized programmable projectile
US6422119B1 (en) 1998-10-08 2002-07-23 Oerlikon Contraves Ag Method and device for transferring information to programmable projectiles
US6427598B1 (en) 1998-10-08 2002-08-06 Oerlikon Contraves Ag Method and device for correcting the predetermined disaggregation time of a spin-stabilized programmable projectile
DE102009011447B9 (en) * 2009-03-03 2012-08-16 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle
DE102011018248B3 (en) * 2011-04-19 2012-03-29 Rheinmetall Air Defence Ag Device and method for programming a projectile
WO2012143218A1 (en) 2011-04-19 2012-10-26 Rheinmetall Air Defence Ag Device and method for programming a projectile
DE102011106198B3 (en) * 2011-06-07 2012-03-15 Rheinmetall Air Defence Ag Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
WO2012168190A1 (en) 2011-06-07 2012-12-13 Rheinmetall Air Defence Ag Method for determining the muzzle velocity of a projectile

Also Published As

Publication number Publication date
NO311954B1 (en) 2002-02-18
AU7172796A (en) 1997-10-23
EP0802391B1 (en) 2000-12-13
KR100410718B1 (en) 2004-04-03
KR970070943A (en) 1997-11-07
JP3891619B2 (en) 2007-03-14
ZA969536B (en) 1997-06-17
NO964757D0 (en) 1996-11-08
ATE198103T1 (en) 2000-12-15
TR199600952A1 (en) 1997-11-21
SG83658A1 (en) 2001-10-16
AU716346B2 (en) 2000-02-24
JPH09287899A (en) 1997-11-04
US5834675A (en) 1998-11-10
CA2190384A1 (en) 1997-10-20
DE59606214D1 (en) 2001-01-18
CA2190384C (en) 2003-09-30
NO964757L (en) 1997-10-20

Similar Documents

Publication Publication Date Title
EP0802391B1 (en) Method of identifying a corrected disintegration time of a programmable and frangible projectile
EP0802392B1 (en) Method and device for identifying a corrected desintegration time of a programmable and frangible projectile
DE2605374C3 (en) Device for digitally setting a counter for triggering a timer in a projectile
EP0802390B1 (en) Method for identifying a corrected desintegration time of a programmable and frangible projectile
EP0118122A1 (en) Method and apparatus for setting the delay of a projectile time-fuse
DE2210277A1 (en) Electronic ignition system
EP0769673B1 (en) Method and device to program time fuses for projectiles
EP1482311B1 (en) Device and method for the determination of the muzzle velocity of a projectile
DE2452586C3 (en) Method and device for determining the duration of the flight path of a projectile
EP2699871B1 (en) Device and method for programming a projectile
DE2528402C2 (en) Passive IR distance detonator
DE1623362C3 (en) Device for igniting an explosive charge or for triggering a function
EP0992758B1 (en) Method and device for correcting the disintegration time or the disintegration turn count of a spin-stabilized programmable projectile
EP0992761B1 (en) Method for correcting the preprogrammed triggering of a process in a spin-stabilized projectile, device for carrying out said method and use of this device
EP0992762B1 (en) Method and device for transmitting information to a programmable projectile
DE60219564T2 (en) A method of adjusting a projectile fuse, programmer and timing fuse used in such a method
DE102011106198B3 (en) Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
DE3716450C1 (en) Setting electronic timer for munition detonator - entering type, temp. of drive charge weather and target data in fuse ignition computer
DE3925000C1 (en) Flight time measuring method for shell
DE3903802C2 (en)
EP0348985A2 (en) Fuse for explosive projectiles
DE3127844C2 (en) Method of dropping ammunition from a fighter aircraft
DE102014015832B4 (en) Method for transmitting data to a projectile while passing through a weapon barrel assembly
DE2734787C1 (en) Arrangement for the selective firing of a horizontally acting weapon
DE102014015833A1 (en) A method for data transmission of data to a projectile during the passage of a gun barrel assembly, wherein a programming signal is generated with the data from a programming unit

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971211

17Q First examination report despatched

Effective date: 19990526

RTI1 Title (correction)

Free format text: METHOD OF IDENTIFYING A CORRECTED DISINTEGRATION TIME OF A PROGRAMMABLE AND FRANGIBLE PROJECTILE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON CONTRAVES AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 198103

Country of ref document: AT

Date of ref document: 20001215

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG

REF Corresponds to:

Ref document number: 59606214

Country of ref document: DE

Date of ref document: 20010118

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20010112

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: FUMERO BREVETTI S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101112

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59606214

Country of ref document: DE

Effective date: 20111019

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111110

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20111229

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606214

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20120523

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606214

Country of ref document: DE

Owner name: RHEINMETALL AIR DEFENCE AG, CH

Free format text: FORMER OWNER: OERLIKON CONTRAVES AG, ZUERICH, CH

Effective date: 20120523

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606214

Country of ref document: DE

Owner name: RHEINMETALL AIR DEFENCE AG, CH

Free format text: FORMER OWNER: OERLIKON-CONTRAVES AG, ZUERICH, CH

Effective date: 20111229

BERE Be: lapsed

Owner name: *OERLIKON CONTRAVES A.G.

Effective date: 20121130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 198103

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20141119

Year of fee payment: 19

Ref country code: CH

Payment date: 20141119

Year of fee payment: 19

Ref country code: FR

Payment date: 20141119

Year of fee payment: 19

Ref country code: SE

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141125

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606214

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151111

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130