EP1159578B1 - Shooting simulation method - Google Patents

Shooting simulation method Download PDF

Info

Publication number
EP1159578B1
EP1159578B1 EP00912514A EP00912514A EP1159578B1 EP 1159578 B1 EP1159578 B1 EP 1159578B1 EP 00912514 A EP00912514 A EP 00912514A EP 00912514 A EP00912514 A EP 00912514A EP 1159578 B1 EP1159578 B1 EP 1159578B1
Authority
EP
European Patent Office
Prior art keywords
target
weapon
information
tube
transmission
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP00912514A
Other languages
German (de)
French (fr)
Other versions
EP1159578A1 (en
Inventor
Hermann JÜTTNER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Atlas Elektronik GmbH
Original Assignee
STN Atlas Elektronik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by STN Atlas Elektronik GmbH filed Critical STN Atlas Elektronik GmbH
Publication of EP1159578A1 publication Critical patent/EP1159578A1/en
Application granted granted Critical
Publication of EP1159578B1 publication Critical patent/EP1159578B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/2655Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile in which the light beam is sent from the weapon to the target
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F41WEAPONS
    • F41GWEAPON SIGHTS; AIMING
    • F41G3/00Aiming or laying means
    • F41G3/26Teaching or practice apparatus for gun-aiming or gun-laying
    • F41G3/2616Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device
    • F41G3/2622Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile
    • F41G3/265Teaching or practice apparatus for gun-aiming or gun-laying using a light emitting device for simulating the firing of a gun or the trajectory of a projectile with means for selecting or varying the shape or the direction of the emitted beam

Definitions

  • the invention relates to a method for simulating a shot guns firing ballistic projectiles in the Preamble of claim 1 defined genus.
  • a known method for shooting or shooting simulation (DE 37 20 595 Al) is based on a so-called two-way simulation, first with a sight aimed at a target Distance to the target is measured, then that with a Retroreflector illuminated and lasered target the light reflected by the retroreflector on one position-resolving, electro-optical device on the Gun barrel is pictured.
  • the one determined from the illustration The location of the retroreflector is matched with the location of the hit simulated shot compared based on the measured Distance, the type of weapon and ammunition used and the Essay that the hypothetical projectile path with the Line of sight forms, is calculated. Is the location of the Retroreflector matches the target location, one Hit message triggered by the barrel weapon, both agree does not match, an error message is generated.
  • Matches the laser beam generating the scan pattern correct alignment of the barrel weapon on the retroreflector of a target located in the solid angle sector, so the laser beam reflects in itself, and the returning laser beam reaches a weapon side arranged optical receiver.
  • An assigned to the recipient Calculator uses stored data to calculate how the type of ammunition, from the target distance and the vertical Angular offset, the resulting at this target distance Projectile trajectory and the target attachment angle of the barrel weapon. This target gauging is repeated over and over again determined data target dimension, target distance and the data derived from this, the flight flight time and the target attachment angle are stored in a memory.
  • a Shot release button is connected to the computer. Your Pressing causes the target to stop measuring and the most recently saved data from memory read out and a laser beam emitted to the target be modulated.
  • the transferred and demodulated data calculated a virtual projectile impact and the target's own motion by measuring the Direction of reception of the laser beam and driving speed measured during the floor flight time and based on the position of the target at the end of the floor flight time and hit detection on the virtual floor impact met.
  • the invention has for its object a method for Shooting simulation of the type mentioned to indicate that significantly lower manufacturing costs for this Method realizing shot simulator enables and thereby a sufficient one for use in combat training areas Accuracy guaranteed.
  • the process according to the invention has the advantage that only one only optical transmission path from the shooter to the target is required and thus the simulator at high Sensitivity gets by with low laser power.
  • the Checking whether the shooter has set up his gun in this way has a goal that is reflected in an estimated Distance, has been hit or not, will be in the Target based on the data of the set gun carried out what is easily possible, since weapon and target continuously measure their position and target the position of the Gun is fired with firing.
  • the procedure allows a realistic handling of the weapon, the Canting of the weapon, the type of ammunition, the type of weapon, the Set azimuth and elevation angles (lead and Essay) in the hypothetical or virtual Meeting point determination are taken into account.
  • the method according to the invention can be used both in barrel weapons, such as Armored cannons, in which the setting of the attachment of the Gun should be practiced, as well as with barrel weapons, like Bazookas, which are based on the estimate of the advance arrives, be applied. To do this, only the Panning direction of the transmitted light from the vertical to one horizontal plane and the maximum swivel angle be adjusted.
  • the Transmitted light generated as a result of laser pulses, and the Weapon information is modulated on every laser pulse.
  • Laser pulses have the advantage, despite the high pulse level only to have a low energy density and thus with the required eye safety of the laser one for the shooting simulation to transfer sufficient power to the target.
  • the laser pulses can be relatively immune to interference modulate, so that the weapon information reliably to Target to be transferred.
  • FIG. 1 and 2 is an exercise scenario in one Combat training area in side view and top view shown, in which a with a barrel weapon (tank cannon) 11th equipped main battle tank 10 one of several in the terrain 12 targets 13, 14, 15.
  • the battle parfzer 10 selected target 13 is shown schematically and can For example, be an enemy battle tank whose Direction of movement in Fig. 2 is indicated by arrow 16.
  • the Goals 14 and 15 are fixed and for example buildings or natural obstacles.
  • a shooting simulator is used for the target practice, one of the gun 17 associated component 17 and one component 18 assigned to target 13.
  • 3 Gun-side component 17 shown in the block diagram is packaged in a housing 19 which is attached to the barrel weapon 11 is fixed and thus the pivoting movement of the tank cannon Azimuth and elevation, as well as any tilting of the Armored tank and thus the barrel weapon 11 when driving off-road participates.
  • An optical transmitter 20 is in the housing 19 arranged in the vertical direction, which is a narrow it bundles laser light as a result of at constant Timed pulse emits laser pulses.
  • a The optical transmitter 20 is pivoted by means of a Stepper motor 21 causes the same as the optical transmitter 20 is controlled by a central control unit 22.
  • the Central control unit 22 is on the input side with a Tilting sensor 22, the tilting of the tub of the Main battle tank 10 and thus the tube weapon 11 measures with one Inclination sensor 24, the elevation angle ⁇ of the gun 11, so the attachment of the barrel weapon 11 compared to the Horizontal, measures and connected to an interface 25, about which the central control unit 22 information about the Ammunition type, the type of weapon, the current position of the Main battle tank 10 in the field and the triggering of the simulated Shot are fed.
  • the interface 25 is over an entrance 27 with an arranged on the main battle tank 10, satellite-based positioning system 26, e.g.
  • the optical transmitter 22 is still one of the central Control unit 22 containing controlled optical modulator, of the information coming in via the interface 25 Weapon and ammunition type and the measured values of the Tilt sensor 23 and the inclination sensor 24 on each of the optical transmitter 20 emitted laser pulse modulated.
  • the target-side shown in Fig. 4 in the block diagram Component 18 of the shot simulator has an optical one Receiving device 31 with a variety of optical Sensors 32, e.g. B. laser diodes, on the incoming Convert laser pulses into electrical signals. If the goal is 13, as assumed, also a main battle tank, so they form Light detectors or optical sensors 32 - as this for the shooting main battle tank 10 is shown in Fig. 1 - in their multitude one horizontally revolving on the tank pan Belt. All optical sensors 32 are with one Signal processing 33 connected, which contains a demodulator and from the received laser pulses with them transferred weapon information (weapon position, weapon type, Bullet type, barrel weapon attachment) and eliminated Microprocessor 34 supplies.
  • optical Sensors 32 e.g. B. laser diodes
  • the microprocessor 34 receives from one attached to target 13, satellite-based Positioning system 35 (GPS or GDPS) additionally the current position of the target 13. Using the The weapon information and the target position determines the Microprocessor 34 a virtual impact of the projectile after putting one back through the gun alignment itself resulting hypothetical projectile trajectory as well as the distance between barrel weapon 11 and target 13. The microprocessor 34 leads a comparison of projectile impact and target range and if matched, drives a hit display 36 which an optical, acoustic or electromagnetic Sends hit signal. To determine the virtual Bullet hits are in the microprocessor 34 e.g.
  • the gunner usually uses a Gun 11 connected visor the gun 11 on the target 13 and poses based on the distance he estimates to target 13 a specific essay (elevation angle ⁇ ) for the gun 11 a. If goal 13 is a moving target is, as indicated in Fig. 2 - Consider a reserve for the barrel weapon 11 and the gun 11 by an azimuth angle ⁇ with respect to Set direct line of sight to goal 13.
  • the Input 30 given a trigger pulse to the interface 25 what the control unit 22 causes the optical transmitter 20 to activate.
  • the optical transmitter 20 transmits a sequence of Laser pulses out, going down in the vertical plane is successively pivoted.
  • the first laser pulses are emitted in a direction parallel to Pipe axis runs. Every laser pulse becomes information regarding the current position and orientation of the Pipe weapon, in the present case with respect to the Inclination sensor 24 supplied elevation angle ⁇ and the Canting sensor 23 supplied tilting angle, as well as the used weapon and projectile type modulated.
  • To any time of the vertical pivoting movement of the Laser transmitter 20 hits at least one laser pulse the light detectors or optical sensors 32 at the target 13.
  • This laser pulse is from the optical receiving device 31 received and in the units described processed in terms of signaling.
  • goal 13 is now the virtual bullet impact from the with the laser pulse transmitted weapon information (elevation angle ⁇ , Cant angle, weapon type, weapon ammunition) determined as well from the position of the weapon 11 and transmitted by the laser pulse the known target position the distance between target 13 and Gun 11 determined. Bullet impact and If the target distance is the same, a hit is displayed.
  • goal 14 is also included the target-side component 18 of the shot simulator according to FIG. 3 equipped.
  • goal 14 the same calculation as in Goal 13 accomplished. In this case, however, is the distance the target 14 to the gun 11 much smaller than that Removal of the virtual projectile impact from the barrel weapon 11, so that no hits are displayed.
  • To reduce sensors 32 could be the laser light of the optical Transmitter 20 are spread in the horizontal direction, so that the optical sensors 32 at the target 13 at greater distances can be arranged from each other. To be the same Ensure sensitivity of the optical sensors 32 however, the laser power would have to be increased by the now larger area at destination 13 with the same Illuminate energy density.
  • the optical Transmitter 20 emitted laser pulses additionally one Information about the time of transmission of each individual Laser pulse modulated.
  • the time specified for the transmission Information is the time between the triggering of the simulated shot and sending the respective one Laser pulse.
  • This information is provided in a central control unit 22 integrated counter removed, the started when the shot was fired and at a constant frequency is clocked.
  • the target 13 can now from the received laser pulse transmitted information about its Send time and the weapon information the distance between target and barrel weapon. With that, too If GPS reception is disturbed, hit positions are determined and the Target practice continues. In the case of intact GPS reception can the due to the known positions of Gun 11 and Target 13 controlled certain target range become.
  • FIG. 5 shows an exercise scenario in which the Firing a Panzerfaust 37 at a moving target tank 38 should be practiced.
  • the Panzerfaust 37 represents the barrel weapon 11 and the target tank 38 represents the target 13, which is in the direction Arrow 16 in Fig. 5 moves.
  • This exercise is about correct setting of a reserve of the gun 11, so a suitable azimuth angle ⁇ so that the moving Target 13 (target tank 38) after firing Panzerfaust 37 at the right time is hit; because the other Panzerfaust 37 missile armor-piercing ammunition required a certain flight time to the distance to destination 13 bridge in which the target 13 is one of his Speed corresponding distance from his at Shot trigger position taken has moved on.
  • the method for firing simulation described above is now modified in such a way that the optically closely bundled transmission light, i.e. the pulse train of laser pulses, is now pivoted in a horizontal plane (azimuth) at a constant speed and each laser pulse also has information regarding the barrel weapon axis in each pivoting position related, current swivel angle ⁇ i is modulated.
  • the laser pulses are sent at a constant clock rate (transmission frequency).
  • information regarding the instantaneous azimuthal pivot angle ⁇ i relating to the barrel weapon axis 39 is additionally modulated onto each laser pulse in each pivot position of the optical transmitter 20.
  • the pivot angles ⁇ 1 to ⁇ 4 are shown schematically in FIG. 5 for explanation.
  • the transmitter 20 is in turn integrated in the weapon-side component 17 of the shooting simulator, which is firmly connected to the barrel weapon 11, here combined with the sight of the apelooka 37 to form a structural unit. Since the optical axis of the transmitter 20 is somewhat offset vertically with respect to the barrel weapon axis 39 due to the attachment of the weapon-side component 17 to the barrel weapon 11, the reference line 39 'for the pivoting angle is offset by the same amount above the barrel weapon axis 39. The reference line 39' for however, the swivel angle information always runs in the center of the barrel weapon parallel to the barrel weapon axis 39. The range of the pivot angle of the optical transmitter 20 is limited to the same azimuth range on the right and left of the center of the barrel weapon, i.e.
  • the barrel weapon axis 39 which is at least as large as that for combating a cross-gun Gun barrel axis 39 moving target 13 required, taking into account the flight duration of the projectile fired at the moving target 13 projectile of the gun 11.
  • the swiveling movement of the optical transmitter 20 always takes place from one of the boundary edges of the swivel angle region, in the example of FIG. 5 from the left, outer boundary edge of the swivel angle region.
  • movable target 13 is the same equipped target component 18 of the shot simulator, as shown in Fig. 4 in the block diagram, wherein the number of optical sensors 32 of the optical Receiving device 31 on two to three per long side of the Target 13 is limited, and the optical sensors 32 in Turret area of the target tank 38 are arranged.
  • the laser pulses in be spread vertically so that with everyone Laser pulse of the target armor 38 in its maximum height up to Top of the tower is illuminated.
  • the target component 18 of the shot simulator is now the same evaluation of the information transmitted in the laser pulses, as already described above, with the only difference that the hit detection previously used target distance using the Swivel angle information and the known own movement of the Target 13 is corrected.
  • This correction takes place in the Way that calculates the target distance for a target position the target 13 moving at the target speed after going through one from the swivel angle information and the current distance resulting from the target distance would occupy within the storey flight time, which in turn is calculated from the weapon information.
  • This Swivel angle information corresponds to that with the barrel weapon 11 set lead ⁇ in azimuth, and if correct The setting of the lead ⁇ is correct from the Weapon information calculated bullet impact with the corrected target range and a hit is made displayed.
  • additional information about its transmission time is modulated onto the laser pulses emitted by the optical transmitter 20, as described above, the transmission of additional angle information ⁇ i about the transmission direction to the target 13 can be dispensed with in the shot simulator described in FIG This information about the respective transmission time of the laser pulses can be used to derive the angle information about the transmission direction.

Description

Die Erfindung betrifft ein Verfahren zur Schußsimulation mit ballistische Geschosse verschießenden Rohrwaffen der im Oberbegriff des Anspruchs 1 definierten Gattung.The invention relates to a method for simulating a shot guns firing ballistic projectiles in the Preamble of claim 1 defined genus.

Ein bekanntes Verfahren zur Schuß- oder Schießsimulation (DE 37 20 595 Al) basiert auf einer sog. Zwei-Wege-Simulation, wobei zunächst mit auf ein Ziel ausgerichtetem Visier die Entfernung zum Ziel gemessen wird, anschließend das mit einem Retroreflektor versehene Ziel mit einem Laser beleuchtet und das vom Retroreflektor zurückgeworfene Licht auf einer positionsauflösenden, elektrooptischen Einrichtung an der Rohrwaffe abgebildet wird. Der aus der Abbildung ermittelte Ort des Retroreflektors wird mit dem Trefferort des simulierten Schusses verglichen, der aufgrund der gemessenen Entfernung, der verwendeten Waffen- und Munitionsart und des Aufsatzes, den die hypothetische Geschoßbahn mit der Visierlinie bildet, berechnet wird. Stimmt der Ort des Retroreflektors mit dem Trefferort überein, wird eine Treffermeldung von der Rohrwaffe ausgelöst, stimmen beide nicht überein, wird eine Fehlermeldung generiert.A known method for shooting or shooting simulation (DE 37 20 595 Al) is based on a so-called two-way simulation, first with a sight aimed at a target Distance to the target is measured, then that with a Retroreflector illuminated and lasered target the light reflected by the retroreflector on one position-resolving, electro-optical device on the Gun barrel is pictured. The one determined from the illustration The location of the retroreflector is matched with the location of the hit simulated shot compared based on the measured Distance, the type of weapon and ammunition used and the Essay that the hypothetical projectile path with the Line of sight forms, is calculated. Is the location of the Retroreflector matches the target location, one Hit message triggered by the barrel weapon, both agree does not match, an error message is generated.

Bei einem ebenfalls bekannten, auf einer Zwei-Wege-Simulation beruhenden Verfahren zur Schießsimulation für ballistische Munition und bewegliche Ziele (DE 31 14 000 A1) wird vor Auslösung des simulierten Schusses das Ziel durch waffenseitig ausgesendete Lasermeßimpulse ständig angemessen. Hierzu wird innerhalb eines auf die Rohrseelenachse der Rohrwaffe bezogenen Raumwinkelsektors, der in Höhe und Seite eine bestimmte Divergenz besitzt, ein impulskodierter, gebündelter Laserstrahl derart ausgesendet und horizontal und vertikal sukzessive geschwenkt, daß er den Raumwinkelsektor in Form eines Abtastmusters in vertikal übereinanderliegenden Zeilen Zeile für Zeile überstreicht. Die Bezugslinie für das Abtastmuster ist dabei die Rohrseelenachse der Rohrwaffe. Trifft der das Abtastmuster erzeugende Laserstrahl bei richtiger Ausrichtung der Rohrwaffe auf den Retroreflektor eines im Raumwinkelsektor sich befindlichen Ziels, so wird der Laserstrahl in sich selbst reflektiert, und der rücklaufende Laserstrahl erreicht einen waffenseitig angeordneten optischen Empfänger. Dieser mißt die Laufzeit des reflektierten Laserlichts und bestimmt die Zielentfernung sowie aus seiner Beziehung zum Abtastmuster die Winkelablage in Seiten- und Höhenrichtung. Ein dem Empfänger zugeordneter Rechner berechnet mit Hilfe von abgespeicherten Daten, wie die Munitionsart, aus der Zielentfernung und der vertikalen Winkelablage, die bei dieser Zielentfernung sich ergebende Geschoßflugbahn und den Soll-Aufsatzwinkel der Rohrwaffe. Dieses Anmessen des Ziels wird laufend wiederholt, und die ermittelten Daten Zielabmessung, Zielentfernung und die daraus abgeleiteten Daten Geschoßflugzeit und Soll-Aufsatzwinkel werden in einem Speicher abgespeichert. Eine Schußauslösetaste ist an den Rechner angeschlossen. Ihre Betätigung bewirkt, daß die Anmessung des Ziels beendet wird und die zuletzt gespeicherten Daten aus dem Speicher ausgelesen und einem zum Ziel ausgesendeten Laserstrahl aufmoduliert werden. Im Ziel wird aus den übertragenen und demodulierten Daten ein virtueller Geschoßeinschlag berechnet und die Eigenbewegung des Ziels durch Messung der Empfangsrichtung des Laserstrahls und der Fahrgeschwindigkeit während der Geschoßflugzeit gemessen und auf Basis der sich am Ende der Geschoßflugzeit ergebenden Position des Ziels und dem virtuellen Geschoßeinschlag eine Trefferfeststellung getroffen.In a well-known, on a two-way simulation based method for shooting simulation for ballistic Ammunition and moving targets (DE 31 14 000 A1) is before Triggering the simulated shot through the target weapon measuring pulses emitted on the weapon side are always appropriate. For this purpose, the inside of the pipe core axis Gun weapon related solid angle, in height and side has a certain divergence, a pulse-encoded, bundled laser beam so emitted and horizontal and vertically successively pivoted that he the solid angle sector in the form of a scanning pattern in vertically superimposed Lines covered line by line. The reference line for that The scanning pattern is the barrel core axis of the barrel weapon. Matches the laser beam generating the scan pattern correct alignment of the barrel weapon on the retroreflector of a target located in the solid angle sector, so the laser beam reflects in itself, and the returning laser beam reaches a weapon side arranged optical receiver. This measures the runtime of the reflected laser light and determines the target distance and the angular offset from its relationship to the scanning pattern in the side and height direction. An assigned to the recipient Calculator uses stored data to calculate how the type of ammunition, from the target distance and the vertical Angular offset, the resulting at this target distance Projectile trajectory and the target attachment angle of the barrel weapon. This target gauging is repeated over and over again determined data target dimension, target distance and the data derived from this, the flight flight time and the target attachment angle are stored in a memory. A Shot release button is connected to the computer. Your Pressing causes the target to stop measuring and the most recently saved data from memory read out and a laser beam emitted to the target be modulated. In the finish the transferred and demodulated data calculated a virtual projectile impact and the target's own motion by measuring the Direction of reception of the laser beam and driving speed measured during the floor flight time and based on the position of the target at the end of the floor flight time and hit detection on the virtual floor impact met.

Bei solchen Zwei-Wege-Simulationenverfahren ist der technische Aufwand sehr hoch, der noch mit der Forderung nach einer wachsenden Zielentfernung überproportional zunimmt. Für die Zielvermessung muß eine hochempfindliche Meßelektronik verwendet werden, die den Schießsimulator zusätzlich verteuert. Der-optische Pegel des Laserlichts nimmt dabei mit zunehmender Entfernung r mit l/r4 ab, so daß die Meßergebnisse zunehmend unsicherer werden. Eine Erhöhung der Laserleistung ist dabei kaum möglich, da zum Schütze der Teilnehmer einer Schießübung die Leistungsklasse des Lasers vorgeschrieben und auf die Augenverträglichkeit beschränkt ist.With such two-way simulation methods, the technical effort is very high, which increases disproportionately with the demand for a growing target distance. A highly sensitive measuring electronics must be used for the target measurement, which additionally increases the cost of the shooting simulator. The optical level of the laser light decreases with increasing distance r with l / r 4 , so that the measurement results become increasingly uncertain. An increase in laser power is hardly possible, since the power class of the laser is prescribed to protect the participants in a shooting exercise and is limited to eye tolerance.

Der Erfindung liegt die Aufgabe zugrunde, ein Verfahren zur Schußsimulation der eingangs genannten Art anzugeben, das deutlich geringere Herstellungskosten für den dieses Verfahren realisierenden Schußsimulator ermöglicht und dabei eine für den Einsatz in Gefechtsübungsgelände ausreichende Genauigkeit gewährleistet. The invention has for its object a method for Shooting simulation of the type mentioned to indicate that significantly lower manufacturing costs for this Method realizing shot simulator enables and thereby a sufficient one for use in combat training areas Accuracy guaranteed.

Die Aufgabe ist durch die Merkmale des Anspruchs 1 gelöst.The object is solved by the features of claim 1.

Das erfindungsgemäße Verfahren hat den Vorteil, daß nur ein einziger optischer Übertragungsweg vom Schießenden zum Ziel erforderlich ist und damit der Simulator bei hoher Empfindlichkeit mit geringer Laserleistung auskommt. Die Überprüfung, ob der Schießende seine Rohrwaffe so eingerichtet hat, daß ein Ziel, welches sich in einer geschätzten Entfernung befindet, getroffen worden ist oder nicht, wird im Ziel anhand der Daten der eingerichteten Rohrwaffe durchgeführt, was ohne weiteres möglich ist, da Waffe und Ziel laufend ihre Position vermessen und dem Ziel die Position der Waffe mit Schußauslösung übertragen wird. Das Verfahren erlaubt eine realistische Handhabung der Waffe, wobei die Verkantung der Waffe, die Munitionsart, die Waffenart, der eingestellte Azimut- und Elevationswinkel (Vorhalt und Aufsatz) bei der hypothetischen oder virtuellen Treffpunktbestimmung berücksichtigt werden.The process according to the invention has the advantage that only one only optical transmission path from the shooter to the target is required and thus the simulator at high Sensitivity gets by with low laser power. The Checking whether the shooter has set up his gun in this way has a goal that is reflected in an estimated Distance, has been hit or not, will be in the Target based on the data of the set gun carried out what is easily possible, since weapon and target continuously measure their position and target the position of the Gun is fired with firing. The procedure allows a realistic handling of the weapon, the Canting of the weapon, the type of ammunition, the type of weapon, the Set azimuth and elevation angles (lead and Essay) in the hypothetical or virtual Meeting point determination are taken into account.

Mit dem erfindungsgemäßen Verfahren werden auch Höhendifferenzen zwischen Ziel und Waffe korrigiert. Eine Trefferanzeige von mehreren Zielen, die alle auf der gleichen Schußlinie liegen, wird vermieden, da jedes Ziel aufgrund seiner Entfernung zur schießenden Waffe selbst feststellt, ob der hypothetische oder virtuelle Treffpunkt mit seiner Position übereinstimmt oder nicht.With the method according to the invention, too Corrected height differences between target and weapon. A Hit display from multiple targets, all on the same Line of fire is avoided because each target is due its distance to the firing weapon itself determines whether the hypothetical or virtual meeting point with his Position matches or not.

Das erfindungsgemäße Verfahren kann sowohl bei Rohrwaffen, wie Panzerkanonen, bei denen die Einstellung des Aufsatzes der Waffe geübt werden soll, als auch bei Rohrwaffen, wie Panzerfäuste, bei denen es auf die Schätzung des Vorhalts ankommt, angewendet werden. Hierzu muß lediglich die Schwenkrichtung des Sendelichts aus der vertikalen in eine horizontale Ebene verlegt und der maximale Schwenkwinkel angepaßt werden. The method according to the invention can be used both in barrel weapons, such as Armored cannons, in which the setting of the attachment of the Gun should be practiced, as well as with barrel weapons, like Bazookas, which are based on the estimate of the advance arrives, be applied. To do this, only the Panning direction of the transmitted light from the vertical to one horizontal plane and the maximum swivel angle be adjusted.

Zweckmäßige Ausführungsformen des erfindungsgemäßen Verfahrens mit vorteilhaften Weiterbildungen und Ausgestaltungen der Erfindung ergeben sich aus den weiteren Ansprüchen.Appropriate embodiments of the method according to the invention with advantageous developments and refinements of Invention result from the further claims.

Gemäß einer bevorzugten Ausführungsform der Erfindung wird das Sendelicht als eine Folge von Laserimpulsen erzeugt, und die Waffeninformationen werden jedem Laserimpuls aufmoduliert. Laserimpulse haben den Vorteil, trotz hohem Impulspegel nur eine geringe Energiedichte zu besitzen und damit bei der geforderten Augensicherheit des Lasers eine für die gchießsimulation ausreichende Leistung zum Ziel zu übertragen. Außerdem lassen sich die Laserimpulse relativ störsicher modulieren, so daß die Waffeninformationen zuverlässig zum Ziel übertragen werden.According to a preferred embodiment of the invention, the Transmitted light generated as a result of laser pulses, and the Weapon information is modulated on every laser pulse. Laser pulses have the advantage, despite the high pulse level only to have a low energy density and thus with the required eye safety of the laser one for the shooting simulation to transfer sufficient power to the target. In addition, the laser pulses can be relatively immune to interference modulate, so that the weapon information reliably to Target to be transferred.

Die Erfindung ist anhand von in der Zeichnung dargestellten Ausführungsbeispielen im folgenden näher beschrieben. Es zeigen jeweils in schematischer Darstellung:

Fig. 1 und 2
jeweils einen eine Rohrwaffe tragenden Kampfpanzer in einem Übungsgelände bei Schußabgabe auf ein Ziel in Seitenansicht (Fig.1) bzw. Draufsicht (Fig. 2),
Fig. 3
ein Blockschaltbild der waffenseitigen Komponente eines Schußsimulators,
Fig. 4
ein Blockschaltbild der zielseitigen Komponente des Schußsimulators,
Fig. 5
eine perspektivische Darstellung einer Panzerfaust in Schußstellung auf einen im Übungsgelände fahrenden Zielpanzer.
The invention is described in more detail below with reference to exemplary embodiments shown in the drawing. Each shows in a schematic representation:
1 and 2
a main battle tank carrying a barrel weapon in a training area when firing at a target in side view (FIG. 1) or top view (FIG. 2),
Fig. 3
2 shows a block diagram of the weapon-side component of a shot simulator,
Fig. 4
a block diagram of the target component of the shot simulator,
Fig. 5
a perspective view of a bazooka in firing position on a target tank driving in the training area.

In Fig. 1 und 2 ist ein Übungsszenario in einem Gefechtsübungsgelände in Seitenansicht und Draufsicht dargestellt, bei dem ein mit einer Rohrwaffe (Panzerkanone) 11 ausgerüsteter Kampfpanzer 10 eines von mehreren im Gelände 12 vorhandenen Zielen 13, 14, 15 bekämpft. Das vom Kampfparfzer 10 dabei ausgewählte Ziel 13 ist schematisch dargestellt und kann beispielsweise ein gegnerischer Kampfpanzer sein, dessen Bewegungsrichtung in Fig. 2 mit Pfeil 16 angedeutet ist. Die Ziele 14 und 15 sind feststehend und beispielsweise Gebäude oder natürliche Hindernisse.1 and 2 is an exercise scenario in one Combat training area in side view and top view shown, in which a with a barrel weapon (tank cannon) 11th equipped main battle tank 10 one of several in the terrain 12 targets 13, 14, 15. The battle parfzer 10 selected target 13 is shown schematically and can For example, be an enemy battle tank whose Direction of movement in Fig. 2 is indicated by arrow 16. The Goals 14 and 15 are fixed and for example buildings or natural obstacles.

Zur Schießübung wird ein sogenannter Schußsimulator verwendet, der eine der Rohrwaffe 11 zugeordnete Komponente 17 und eine dem Ziel 13 zugeordnete Komponente 18 aufweist. Die in Fig. 3 im Blockschaltbild dargestellte waffenseitige Komponente 17 ist in einem Gehäuse 19 verpackt, das an der Rohrwaffe 11 fixiert ist und somit die Schwenkbewegung der Panzerkanone in Azimut und Elevation, sowie jegliche Verkantung der Panzerwanne und damit der Rohrwaffe 11 bei Fahrt im Gelände mitmacht. In dem Gehäuse 19 ist ein optischer Sender 20 in vertikaler Richtung schwenkbar angeordnet, der ein eng gebündelt es Laserlicht als eine Folge von im konstanten Zeittakt gesendeten Laserimpulsen abstrahlt. Eine Schwenkbewegung des optischen Senders 20 wird mittels eines Schrittmotors 21 bewirkt, der ebenso wie der optische Sender 20 von einer zentralen Steuereinheit 22 gesteuert wird. Die zentrale Steuereinheit 22 ist eingangsseitig mit einem Verkantungssensor 22, der die Verkantung der Wanne des Kampfpanzers 10 und damit die der Rohrwaffe 11 mißt, mit einem Neigungssensor 24, der den Elevationswinkel ε der Rohrwaffe 11, also den Aufsatz der Rohrwaffe 11 gegenüber der Horizontalen, mißt sowie mit einem Interface 25 verbunden, über das der zentralen Steuereinheit 22 Informationen über die Munitionsart, die Waffenart, die momentane Position des Kampfpanzers 10 im Gelände und die Auslösung des simulierten Schusses zugeführt werden. Hierzu ist das Interface 25 über einen Eingang 27 mit einem am Kampfpanzer 10 angeordneten, satellitengestützten Positionsbestimmungssystem 26, z.B. einem GPS (Global Position System) oder mit einem DGPS (Differential Global Position System) verbunden und erhält über weitere Eingänge 28, 29 und 30 entsprechende Informationen über Waffen- und Munitionsart sowie einen Triggerimpuls bei Auslösung des simulierten Schusses durch den Richtschützen. Im optischen Sender 22 ist noch ein von der zentralen Steuereinheit 22 gesteuerter optischer Modulator enthalten, der die über das Interface 25 eingehenden Informationen über Waffen- und Munitionsart sowie die Meßwerte des Verkantungssensors 23 und des Neigungssensors 24 auf jeden vom optischen Sender 20 ausgesendeten Laserimpuls aufmoduliert.A shooting simulator is used for the target practice, one of the gun 17 associated component 17 and one component 18 assigned to target 13. 3 Gun-side component 17 shown in the block diagram is packaged in a housing 19 which is attached to the barrel weapon 11 is fixed and thus the pivoting movement of the tank cannon Azimuth and elevation, as well as any tilting of the Armored tank and thus the barrel weapon 11 when driving off-road participates. An optical transmitter 20 is in the housing 19 arranged in the vertical direction, which is a narrow it bundles laser light as a result of at constant Timed pulse emits laser pulses. A The optical transmitter 20 is pivoted by means of a Stepper motor 21 causes the same as the optical transmitter 20 is controlled by a central control unit 22. The Central control unit 22 is on the input side with a Tilting sensor 22, the tilting of the tub of the Main battle tank 10 and thus the tube weapon 11 measures with one Inclination sensor 24, the elevation angle ε of the gun 11, so the attachment of the barrel weapon 11 compared to the Horizontal, measures and connected to an interface 25, about which the central control unit 22 information about the Ammunition type, the type of weapon, the current position of the Main battle tank 10 in the field and the triggering of the simulated Shot are fed. For this purpose, the interface 25 is over an entrance 27 with an arranged on the main battle tank 10, satellite-based positioning system 26, e.g. one GPS (Global Position System) or with a DGPS (differential Global Position System) and receives more Inputs 28, 29 and 30 corresponding information about Weapon and ammunition type as well as a trigger impulse Triggering of the simulated shot by the gunner. in the optical transmitter 22 is still one of the central Control unit 22 containing controlled optical modulator, of the information coming in via the interface 25 Weapon and ammunition type and the measured values of the Tilt sensor 23 and the inclination sensor 24 on each of the optical transmitter 20 emitted laser pulse modulated.

Die in Fig. 4 im Blockschaltbild dargestellte zielseitige Komponente 18 des Schußsimulators weist eine optische Empfangseinrichtung 31 mit einer Vielzahl von optischen Sensoren 32, z. B. Laserdioden, auf, die eintreffende Laserimpulse in elektrische Signale umsetzen. Ist das Ziel 13, wie angenommen, ebenfalls ein Kampfpanzer, so bilden die Lichtdetektoren oder optischen Sensoren 32 - wie dies für den schießenden Kampfpanzer 10 in Fig. 1 dargestellt ist - in ihrer Vielzahl einen an der Panzerwanne horizontal umlaufenden Gürtel. Alle optischen Sensoren 32 sind mit einer Signalverarbeitung 33 verbunden, die einen Demodulator enthält und aus den empfangenen Laserimpulsen die mit diesen übertragenen Waffeninformationen (Waffenposition, Waffenart, Geschoßart, Aufsatz der Rohrwaffe) eliminiert und einem Mikroprozessor 34 zuführt. Der Mikroprozessor 34 empfängt von einem am Ziel 13 befestigten, satellitengestützten Positionsbestimmungssystem 35 (GPS oder GDPS) zusätzlich die momentane Position des Ziels 13. Anhand der Waffeninformationen und der Zielposition bestimmt der Mikroprozessor 34 einen virtuellen Einschlag des Geschosses nach Zurücklegen einer durch die Waffenausrichtung sich ergebenden hypothetischen Geschoßflugbahn sowie die Entfernung zwischen Rohrwaffe 11 und Ziel 13. Der Mikroprozessor 34 führt einen Vergleich von Geschoßeinschlag und Zielentfernung durch und steuert bei Übereinstimmung eine Trefferanzeige 36 an, die ein optisches, akustisches oder elektromagnetisches Treffersignal aussendet. Zur Bestimmung des virtuellen Geschoßeinschlags sind im Mikroprozessor 34 z.B. eine Vielzahl von Flugbahnen von Geschossen mit einer Parametrisierung von Aufsatz der Rohrwaffe (Elevationswinkel ε) sowie Waffen- und Geschoßart abgelegt. Mit den empfangenen und demodulierten Waffeninformationen wird die zutreffende Flugbahn aufgesucht und der virtuelle Geschoßeinschlag ausgelesen.The target-side shown in Fig. 4 in the block diagram Component 18 of the shot simulator has an optical one Receiving device 31 with a variety of optical Sensors 32, e.g. B. laser diodes, on the incoming Convert laser pulses into electrical signals. If the goal is 13, as assumed, also a main battle tank, so they form Light detectors or optical sensors 32 - as this for the shooting main battle tank 10 is shown in Fig. 1 - in their multitude one horizontally revolving on the tank pan Belt. All optical sensors 32 are with one Signal processing 33 connected, which contains a demodulator and from the received laser pulses with them transferred weapon information (weapon position, weapon type, Bullet type, barrel weapon attachment) and eliminated Microprocessor 34 supplies. The microprocessor 34 receives from one attached to target 13, satellite-based Positioning system 35 (GPS or GDPS) additionally the current position of the target 13. Using the The weapon information and the target position determines the Microprocessor 34 a virtual impact of the projectile after putting one back through the gun alignment itself resulting hypothetical projectile trajectory as well as the distance between barrel weapon 11 and target 13. The microprocessor 34 leads a comparison of projectile impact and target range and if matched, drives a hit display 36 which an optical, acoustic or electromagnetic Sends hit signal. To determine the virtual Bullet hits are in the microprocessor 34 e.g. a variety of trajectories of projectiles with a parameterization of Attachment of the barrel weapon (elevation angle ε) as well as weapon and Storey type stored. With the received and demodulated The appropriate trajectory is sought for weapon information and the virtual bullet impact is read out.

Mit einem solchen Schußsimulator wird eine Schußsimulation mit Rohrwaffen, die ballistische Geschosse verschießen, wie folgt durchgeführt:With such a shot simulator, a shot simulation is used Guns that fire ballistic projectiles as follows carried out:

Der Richtschütze richtet mittels eines üblicherweise mit der Rohrwaffe 11 verbundenen Visiers die Rohrwaffe 11 auf das Ziel 13 aus und stellt aufgrund der von ihm geschätzten Entfernung zum Ziel 13 einen bestimmten Aufsatz (Elevationswinkel ε) für die Rohrwaffe 11 ein. Wenn es sich beim Ziel 13 um ein bewegtes Ziel handelt, wird er- wie in Fig. 2 angedeutet ist - bei der Rohrwaffe 11 noch einen Vorhalt berücksichtigen und die Rohrwaffe 11 um einen Azimutwinkel ϕ gegenüber der direkten Sichtlinie zum Ziel 13 einstellen.The gunner usually uses a Gun 11 connected visor the gun 11 on the target 13 and poses based on the distance he estimates to target 13 a specific essay (elevation angle ε) for the gun 11 a. If goal 13 is a moving target is, as indicated in Fig. 2 - Consider a reserve for the barrel weapon 11 and the gun 11 by an azimuth angle ϕ with respect to Set direct line of sight to goal 13.

Mit Schußauslösung durch den Richtschützen wird über den Eingang 30 ein Triggerimpuls an das Interface 25 gegeben, was die Steuereinheit 22 veranlaßt, den optischen Sender 20 zu aktivieren. Der optische Sender 20 sendet eine Folge von Laserimpulsen aus, wobei er in der Vertikalebene nach unten sukzessive geschwenkt wird. Die ersten Laserimpulse werden dabei in einer Richtung ausgesendet, die parallel zur Rohrachse verläuft. Jedem Laserimpuls werden Informationen bezüglich der momentanen Position und Ausrichtung der Rohrwaffe, im vorliegenden Fall bezüglich des vom Neigungssensor 24 gelieferten Elevationswinkels ε und des vom Verkantungssensor 23 gelieferten Verkantungswinkels, sowie der verwendeten Waffen- und Geschoßart aufmoduliert. Zu irgendeinem Zeitpunkt der vertikalen Schwenkbewegung des Lasersenders 20 trifft mindestens ein Laserimpuls auf einen der Lichtdetektoren oder optischen Sensoren 32 am Ziel 13. Dieser Laserimpuls wird von der optischen Empfangseinrichtung 31 empfangen und in den beschriebenen Baueinheiten signaltechnisch verarbeitet. Im Ziel 13 wird nunmehr der virtuelle Geschoßeinschlag aus den mit dem Laserimpuls übertragenen Waffeninformationen (Elevationswinkel ε, Verkantungswinkel, Waffenart, Waffenmunition) bestimmt sowie aus der vom Laserimpuls übertragenen Position der Waffe 11 und der bekannten Zielposicion die Entfernung zwischen Ziel 13 und Rohrwaffe 11 bestimmt. Stimmen Geschoßeinschlag und Zielentfernung überein, so wird ein Treffer angezeigt.With firing by the gunner, the Input 30 given a trigger pulse to the interface 25 what the control unit 22 causes the optical transmitter 20 to activate. The optical transmitter 20 transmits a sequence of Laser pulses out, going down in the vertical plane is successively pivoted. The first laser pulses are emitted in a direction parallel to Pipe axis runs. Every laser pulse becomes information regarding the current position and orientation of the Pipe weapon, in the present case with respect to the Inclination sensor 24 supplied elevation angle ε and the Canting sensor 23 supplied tilting angle, as well as the used weapon and projectile type modulated. To any time of the vertical pivoting movement of the Laser transmitter 20 hits at least one laser pulse the light detectors or optical sensors 32 at the target 13. This laser pulse is from the optical receiving device 31 received and in the units described processed in terms of signaling. In goal 13 is now the virtual bullet impact from the with the laser pulse transmitted weapon information (elevation angle ε, Cant angle, weapon type, weapon ammunition) determined as well from the position of the weapon 11 and transmitted by the laser pulse the known target position the distance between target 13 and Gun 11 determined. Bullet impact and If the target distance is the same, a hit is displayed.

Bei dem in Fig. 1 und 2 dargestellten Szenario würde bei Auslösung des simulierten Schusses auch das Ziel 14 zu irgendeinem Zeitpunkt von Laserimpulsen getroffen werden. Das Ziel 14 ist, soweit es ein Übungsziel darstellt, ebenfalls mit der zielseitigen Komponente 18 des Schußsimulators gemäß Fig. 3 ausgerüstet. Im Ziel 14 wird die gleiche Berechnung wie im Ziel 13 durchgeführt. In diesem Fall ist aber die Entfernung des Ziels 14 zur Rohrwaffe 11 wesentlich kleiner als die Entfernung des virtuellen Geschoßeinschlags von der Rohrwaffe 11, sodaß keine Trefferanzeige erfolgt.In the scenario shown in FIGS. 1 and 2, would Triggering the simulated shot also target 14 be hit by laser pulses at any time. The As far as it is an exercise goal, goal 14 is also included the target-side component 18 of the shot simulator according to FIG. 3 equipped. In goal 14, the same calculation as in Goal 13 accomplished. In this case, however, is the distance the target 14 to the gun 11 much smaller than that Removal of the virtual projectile impact from the barrel weapon 11, so that no hits are displayed.

Um die Vielzahl der empfangsseitig vorzusehenden optischen Sensoren 32 zu reduzieren, könnte das Laserlicht des optischen Senders 20 in Horizontalrichtung aufgespreizt werden, so daß die optischen Sensoren 32 am Ziel 13 in größeren Abständen voneinander angeordnet werden können. Um eine gleiche Empfindlichkeit der optischen Sensoren 32 sicherzustellen, müßte allerdings die Laserleistung erhöht werden, um die nunmehr größere Fläche am Ziel 13 mit der gleichen Energiedichte zu beleuchten.In order to accommodate the multitude of optical devices to be provided at the receiving end To reduce sensors 32 could be the laser light of the optical Transmitter 20 are spread in the horizontal direction, so that the optical sensors 32 at the target 13 at greater distances can be arranged from each other. To be the same Ensure sensitivity of the optical sensors 32 however, the laser power would have to be increased by the now larger area at destination 13 with the same Illuminate energy density.

In einem größeren Übungsgelände kann in bestimmten Geländeabschnitten aufgrund der Geländestruktur oder der Bebauung und Bepflanzung der Satellitenempfang gestört oder unterbunden sein, so daß die Position von Waffe und/oder Ziel nicht als auswertbare Information bei der Trefferbestimmung zur Verfügung steht. Für solche Fälle werden den vom optischen Sender 20 ausgesendeten Laserimpulsen zusätzlich eine Information über den Sendezeitpunkt eines jeden einzelnen Laserimpulses aufmoduliert. Die den Sendezeitpunkt angebende Information ist dabei die Zeit zwischen der Auslösung des simulierten Schusses und dem Aussenden des jeweiligen Laserimpulses. Diese Information wird an einem in der zentralen Steuereinheit 22 integrierten Zähler abgenommen, der bei Schußauslösung gestartet und mit konstanter Frequenz getaktet wird. Im Ziel 13 kann nunmehr aus der mit dem empfangenen Laserimpuls übertragenen Information über dessen Sendezeitpunkt und den Waffeninformationen die Entfernung zwischen Ziel und Rohrwaffe bestimmt werden. Damit können auch bei gestörtem GPS-Empfang Trefferpositionen ermittelt und die Schießübungen fortgesetzt werden. Im Falle eines intakten GPS-Empfangs kann die aufgrund der bekannten Positionen von Rohrwaffe 11 und Ziel 13 bestimmte Zielentfernung kontrolliert werden.In a larger practice area, certain Terrain sections due to the terrain structure or the Construction and planting of satellite reception disrupted or be prevented, so that the position of the weapon and / or target not as evaluable information when determining hits is available. In such cases, the optical Transmitter 20 emitted laser pulses additionally one Information about the time of transmission of each individual Laser pulse modulated. The time specified for the transmission Information is the time between the triggering of the simulated shot and sending the respective one Laser pulse. This information is provided in a central control unit 22 integrated counter removed, the started when the shot was fired and at a constant frequency is clocked. In the target 13 can now from the received laser pulse transmitted information about its Send time and the weapon information the distance between target and barrel weapon. With that, too If GPS reception is disturbed, hit positions are determined and the Target practice continues. In the case of intact GPS reception can the due to the known positions of Gun 11 and Target 13 controlled certain target range become.

In Fig. 5 ist ein Übungsszenario dargestellt, in dem das Abfeuern einer Panzerfaust 37 auf einen fahrenden Zielpanzer 38 geübt werden soll. Die Panzerfaust 37 stellt die Rohrwaffe 11 und der Zielpanzer 38 das Ziel 13 dar, das sich in Richtung Pfeil 16 in Fig. 5 bewegt. Bei dieser Übung kommt es auf die richtige Einstellung eines Vorhaltes der Rohrwaffe 11 an, also eines geeigneten Azimutwinkels ϕ, damit das sich bewegende Ziel 13 (Zielpanzer 38) nach Abfeuern der Panzerfaust 37 zum richtigen Zeitpunkt getroffen wird; denn die mit- der Panzerfaust 37 verschossene panzerbrechende Munition benötigt eine gewisse Flugzeit um die Entfernung zum Ziel 13 zu überbrücken, in der sich das Ziel 13 um eine seiner Geschwindigkeit entsprechende Wegstrecke von seiner bei Schußauslösung eingenommen Position aus weiterbewegt hat.5 shows an exercise scenario in which the Firing a Panzerfaust 37 at a moving target tank 38 should be practiced. The Panzerfaust 37 represents the barrel weapon 11 and the target tank 38 represents the target 13, which is in the direction Arrow 16 in Fig. 5 moves. This exercise is about correct setting of a reserve of the gun 11, so a suitable azimuth angle ϕ so that the moving Target 13 (target tank 38) after firing Panzerfaust 37 at the right time is hit; because the other Panzerfaust 37 missile armor-piercing ammunition required a certain flight time to the distance to destination 13 bridge in which the target 13 is one of his Speed corresponding distance from his at Shot trigger position taken has moved on.

Das vorstehend beschriebene Verfahren zur Schußsimulation ist nun dahingehend abgewandelt, daß das optisch eng gebündelte Sendelicht, also die Impulsfolge von Laserimpulsen, jetzt in einer horizontalen Ebene (Azimut) mit konstanter Geschwindigkeit geschwenkt und jedem Laserimpuls zusätzlich in jeder Schwenkposition eine Information bezüglich des auf die Rohrwaffenachse bezogenen, momentanen Schwenkwinkels αi aufmoduliert wird. Die Laserimpulse werden dabei mit konstanter Taktrate (Sendefrequenz) gesendet. Neben den wie vorstehend beschriebenen Informationen über die Waffe 11, wird zusätzlich jedem Laserimpuls in jeder Schwenkposition des optischen Senders 20 eine Information bezüglich des auf die Rohrwaffenachse 39 bezogenen, momentanen azimutalen Schwenkwinkels αi aufmoduliert. Die Schwenkwinkel α1 bis α4 sind in Fig. 5 zur Erläuterung schematisch eingezeichnet. Der Sender 20 ist wiederum in der waffenseitigen Komponente 17 des Schießsimulators integriert, die fest mit der Rohrwaffe 11 verbunden, hier mit dem Visier der Panzerfaust 37 zu einer Baueinheit zusammengefaßt ist. Da die optische Achse des Senders 20 durch die Befestigung der waffenseitigen Komponente 17 an der Rohrwaffe 11 gegenüber der Rohrwaffenachse 39 vertikal etwas versetzt ist, liegt die Bezugslinie 39' für die Schwenkwinkelangabe um den gleichen Betrag versetzt oberhalb der Rohrwaffenachse 39. Die Bezugslinie 39' für die Schwenkwinkelangabe verläuft damit aber immer in Rohrwaffenmitte parallel zur Rohrwaffenachse 39. Der Schwenkwinkelbereich des optischen Senders 20 ist auf einen gleichen Azimutbereich rechts und links der Rohrwaffenmitte, also der Rohrwaffenachse 39, begrenzt, der mindestens so groß ist wie der zur Bekämpfung eines sich quer zur Rohrwaffenachse 39 bewegenden Ziels 13 erforderliche, die Flugdauer des auf das sich bewegende Ziel 13 abgefeuerten Geschosses der Rohrwaffe 11 berücksichtigende Vorhaltewinkel ϕ. Die Schwenkbewegung des optischen Senders 20 erfolgt mit Auslösen des simulierten Schusses immer von einer der Begrenzungskanten des Schwenkwinkelbereichs aus, in dem Beispiel der Fig. 5 von der linken, äußeren Begrenzungskante des Schwenkwinkelbereichs aus.The method for firing simulation described above is now modified in such a way that the optically closely bundled transmission light, i.e. the pulse train of laser pulses, is now pivoted in a horizontal plane (azimuth) at a constant speed and each laser pulse also has information regarding the barrel weapon axis in each pivoting position related, current swivel angle α i is modulated. The laser pulses are sent at a constant clock rate (transmission frequency). In addition to the information about the weapon 11 as described above, information regarding the instantaneous azimuthal pivot angle α i relating to the barrel weapon axis 39 is additionally modulated onto each laser pulse in each pivot position of the optical transmitter 20. The pivot angles α 1 to α 4 are shown schematically in FIG. 5 for explanation. The transmitter 20 is in turn integrated in the weapon-side component 17 of the shooting simulator, which is firmly connected to the barrel weapon 11, here combined with the sight of the bazooka 37 to form a structural unit. Since the optical axis of the transmitter 20 is somewhat offset vertically with respect to the barrel weapon axis 39 due to the attachment of the weapon-side component 17 to the barrel weapon 11, the reference line 39 'for the pivoting angle is offset by the same amount above the barrel weapon axis 39. The reference line 39' for however, the swivel angle information always runs in the center of the barrel weapon parallel to the barrel weapon axis 39. The range of the pivot angle of the optical transmitter 20 is limited to the same azimuth range on the right and left of the center of the barrel weapon, i.e. the barrel weapon axis 39, which is at least as large as that for combating a cross-gun Gun barrel axis 39 moving target 13 required, taking into account the flight duration of the projectile fired at the moving target 13 projectile of the gun 11. When the simulated shot is triggered, the swiveling movement of the optical transmitter 20 always takes place from one of the boundary edges of the swivel angle region, in the example of FIG. 5 from the left, outer boundary edge of the swivel angle region.

Das in Fig. 5 von dem in Pfeilrichtung 16 fahrenden Zielpanzer 38 gebildete, bewegliche Ziel 13 ist mit der gleichen zielseitigen Komponente 18 des Schußsimulators ausgerüstet, wie sie in Fig. 4 im Blockschaltbild dargestellt ist, wobei die Zahl der optischen Sensoren 32 der optischen Empfangseinrichtung 31 auf zwei bis drei pro Längsseite des Ziels 13 begrenzt ist, und die optischen Sensoren 32 im Turmbereich des Zielpanzers 38 angeordnet sind. Zur Sicherstellung eines zuverlässigen Empfangs der Lichtimpulse durch die optischen Sensoren 32 können die Laserimpulse in vertikaler Richtung aufgespreizt sein, sodaß mit jedem Laserimpuls der Zielpanzer 38 in seiner maximalen Höhe bis zur Turmoberkante beleuchtet wird. In der zielseitigen Komponente 18 des Schußsimulators wird nunmehr die gleiche Auswertung der in den Laserimpulsen übertragenen Informationen vorgenommen, wie bereits vorstehend beschrieben worden ist, mit dem einzigen Unterschied, daß die zur Trefferfeststellung herangezogene Zielentfernung zuvor mittels der Schwenkwinkelinformationen und der bekannten Eigenbewegung des Ziels 13 korrigiert wird. Diese Korrektur erfolgt dabei in der Weise, daß die Zielentfernung für eine Zielposition berechnet wird, die das mit Zielgeschwindigkeit sich bewegende Ziel 13 nach Durchlaufen einer sich aus der Schwenkwinkelinformation und der momentanen Zielentfernung ergebenden Wegstrecke innerhalb der Geschoßflugzeit einnehmen würde, die ihrerseits aus den Waffeninformationen errechnet wird. Diese Schwenkwinkelinformation entspricht dem mit der Rohrwaffe 11 eingestellten Vorhalt ϕ im Azimut, und bei richtiger Einstellung des Vorhalts ϕ stimmt der aus den Waffeninformationen berechnete Geschoßeinschlag mit der korrigierten Zielentfernung überein und ein Treffer wird angezeigt.5 of the target tank traveling in the direction of arrow 16 38 formed, movable target 13 is the same equipped target component 18 of the shot simulator, as shown in Fig. 4 in the block diagram, wherein the number of optical sensors 32 of the optical Receiving device 31 on two to three per long side of the Target 13 is limited, and the optical sensors 32 in Turret area of the target tank 38 are arranged. to Ensuring reliable reception of the light pulses through the optical sensors 32, the laser pulses in be spread vertically so that with everyone Laser pulse of the target armor 38 in its maximum height up to Top of the tower is illuminated. In the target component 18 of the shot simulator is now the same evaluation of the information transmitted in the laser pulses, as already described above, with the only difference that the hit detection previously used target distance using the Swivel angle information and the known own movement of the Target 13 is corrected. This correction takes place in the Way that calculates the target distance for a target position the target 13 moving at the target speed after going through one from the swivel angle information and the current distance resulting from the target distance would occupy within the storey flight time, which in turn is calculated from the weapon information. This Swivel angle information corresponds to that with the barrel weapon 11 set lead ϕ in azimuth, and if correct The setting of the lead ϕ is correct from the Weapon information calculated bullet impact with the corrected target range and a hit is made displayed.

Sind auf den vom optischen Sender 20 ausgesendeten Laserimpulse - wie vorstehend beschrieben - zusätzlich Informationen über ihren Sendezeitpunkt aufmoduliert, so kann bei dem zu Fig. 5 beschriebenen Schußsimulator auf die Übertragung einer zusätzlichen Winkelinformation αi über die Senderichtung zum Ziel 13 verzichtet werden, da aus diesen Informationen über die jeweilige Sendezeit der Laserimpulse die Winkelinformation über die Senderichtung abgeleitet werden kann.If additional information about its transmission time is modulated onto the laser pulses emitted by the optical transmitter 20, as described above, the transmission of additional angle information α i about the transmission direction to the target 13 can be dispensed with in the shot simulator described in FIG This information about the respective transmission time of the laser pulses can be used to derive the angle information about the transmission direction.

Claims (15)

  1. Method for shot simulation with tube weapons which fire ballistic projectiles, having the following method steps which take place after firing of the shot;
    a) a target (13) is illuminated on only one plane by successive swivelling of an optically tightly focussed transmission light which is emitted from an optical transmitter (20) associated with the tube weapon,
    b) the transmission light is used to transmit to the target (13) modulated, exclusively weapon-specific information, namely information relating to the current position and vertical alignment for so-called tangent elevation, of the tube weapon (11), and relating to the type of weapon and projectile,
    c) in the target (13), which is equipped with an optical receiving device (31) for the transmission light and with a satellite-assisted position-finding system (35) for detection of the target position,
    c1) a virtual projectile impact is determined from the received and demodulated weapon-specific information,
    c2) the position of the tube weapon (11) is determined from the received and demodulated weapon-specific information, and the distance between the target (13) and the tube weapon (11) is determined from the target position obtained from the position-finding system (35), and
    c3) a hit confirmation is made from the comparison of the distances between the target (13) and the tube weapon (11) on the one hand, and the virtual projectile impact and the tube weapon (11) on the other hand.
  2. Method according to Claim 1, characterized in that any tilting of the tube weapon (11) with respect to a vertical and/or horizontal reference line is measured and the measurement values are modulated as further weapon-specific information onto the transmission light, and in that the information relating to the weapon tilting is used in the target (13) when determining the virtual projectile impact.
  3. Method according to Claim 1 or 2, characterized in that trajectories of projectiles are stored with parameterization of the tangent elevation (ε) as well as the type of weapon and projectile in the target (13), and in that the associated trajectory is looked for, and the virtual projectile impact is read, using the received and the demodulated weapon-specific information.
  4. Method according to one of Claims 1 to 3, characterized in that the transmission light is swivelled downwards in a vertical plane from an alignment parallel to the tube weapon (11).
  5. Method according to Claim 4, characterized in that the optical receiving device (31) of the preferably moving target (13) is provided with a belt which is mounted on the target (13), runs horizontally around it, and is composed of a large number of light detectors (32) which are separated from one another.
  6. Method according to Claim 4 or 5, characterized in that the transmission light is spread optically in the horizontal direction.
  7. Method according to one of Claims 1 to 3, characterized in that the transmission light is swivelled at a constant rate in a horizontal plane, and information relating to the current swivel angle, with respect to the tube weapon (11), is modulated onto the transmission light in each swivel position, and in that the target distance which is used to confirm a hit on the target is corrected in advance by means of the swivel angle information and the known movement of the target (13) itself.
  8. Method according to Claim 7, characterized in that the correction is carried out in such a way that the target distance is calculated for a target position which the target (13) (which is moving at the target velocity) assumes after passing through a distance (which results from the swivel angle information and the current target distance) during the projectile time of flight, which is obtained from the weapon information.
  9. Method according to Claim 7 or 8, characterized in that the pivoting range of the transmission light is limited to the same azimuth angle to the right and left of the tube weapon centre which corresponds at least to a maximum lead angle (which takes account of the maximum time of flight of the fired projectile) of the tube weapon (11) in azimuth when attacking a target which is moving at maximum speed transversely with respect to the firing direction, and in that, when the simulated shot is fired, the transmission direction is swivelled from one of the boundary edges of the swivelling range.
  10. Method according to one of Claims 1 to 9, characterized in that the transmission light is produced as a sequence of laser pulses, and the weapon-specific information is modulated onto each laser pulse.
  11. Method according to Claim 10, characterized in that the laser pulses are transmitted at a constant pulse repetition frequency.
  12. Method according to one of Claims 7 to 11, characterized in that information relating to its transmission time is additionally modulated onto each laser pulse, and in that, without the swivel angle information being transmitted, the swivel angle information is derived in the target (13) from the information relating to the transmission times.
  13. Method according to Claim 12, characterized in that the time between the firing of the simulated shot and the transmission of the respective laser pulse is indicated as information relating to the transmission time.
  14. Method according to Claim 13, characterized in that the information relating to the transmission time is tapped off at the output of a counter which is clocked at a constant frequency.
  15. Method according to one of Claims 1 to 14, characterized in that the positions of the tube weapon (11) and of the target (13) are detected by means of in each case one satellite-assisted position-finding system, for example GPS or DGPS, which is arranged on them.
EP00912514A 1999-03-18 2000-02-26 Shooting simulation method Expired - Lifetime EP1159578B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE19912093 1999-03-18
DE19912093A DE19912093A1 (en) 1999-03-18 1999-03-18 Method of simulating a shot
PCT/EP2000/001620 WO2000057123A1 (en) 1999-03-18 2000-02-26 Shooting simulation method

Publications (2)

Publication Number Publication Date
EP1159578A1 EP1159578A1 (en) 2001-12-05
EP1159578B1 true EP1159578B1 (en) 2003-04-16

Family

ID=7901427

Family Applications (1)

Application Number Title Priority Date Filing Date
EP00912514A Expired - Lifetime EP1159578B1 (en) 1999-03-18 2000-02-26 Shooting simulation method

Country Status (5)

Country Link
EP (1) EP1159578B1 (en)
AU (1) AU754674B2 (en)
CA (1) CA2366526C (en)
DE (2) DE19912093A1 (en)
WO (1) WO2000057123A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972881A1 (en) 2007-03-22 2008-09-24 JENOPTIK Laser, Optik, Systeme GmbH Optical system and method for constructing projectile path by means of a laser ray

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10050691A1 (en) 2000-10-13 2002-05-02 Stn Atlas Elektronik Gmbh Method and device for firing simulation
EP1580517B1 (en) * 2004-03-26 2007-12-26 Saab Ab System and method for weapon effect simulation
DK1737146T3 (en) * 2005-06-22 2016-01-18 Saab Ab System and method for transmitting information
FR2931228B1 (en) * 2008-05-16 2013-02-15 Gdi Simulation DISCRIMINATION METHOD IN SIMULATION OF TIRS

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3114000C2 (en) * 1981-04-07 1983-04-28 Precitronic Gesellschaft für Feinmechanik und Electronic mbH, 2000 Hamburg Methods of shooting simulation and training for ballistic ammunition and moving targets
US4682953A (en) * 1985-07-09 1987-07-28 L B & M Associates, Inc. Combined arms effectiveness simulation system
DE3631421A1 (en) * 1986-09-16 1988-03-17 Philips Patentverwaltung Method for hit determination during simulation, as well as an arrangement for carrying out the method
DE3720595A1 (en) * 1987-04-27 1988-11-10 Precitronic Method and device for firing simulation
DE4026207A1 (en) * 1990-08-18 1992-02-20 Telefunken Systemtechnik Exchange of battlefield data between armoured fighting vehicles - involves central processing computer linked by duplex radio to each vehicle carrying GPS and combat simulator
US5382958A (en) * 1992-12-17 1995-01-17 Motorola, Inc. Time transfer position location method and apparatus

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1972881A1 (en) 2007-03-22 2008-09-24 JENOPTIK Laser, Optik, Systeme GmbH Optical system and method for constructing projectile path by means of a laser ray
DE102007014290A1 (en) 2007-03-22 2008-09-25 Jenoptik Laser, Optik, Systeme Gmbh Optical system and method for trajectory simulation by means of laser beam

Also Published As

Publication number Publication date
WO2000057123A1 (en) 2000-09-28
DE19912093A1 (en) 2000-09-28
EP1159578A1 (en) 2001-12-05
CA2366526A1 (en) 2000-09-28
AU754674B2 (en) 2002-11-21
AU3425200A (en) 2000-10-09
CA2366526C (en) 2004-10-05
DE50001795D1 (en) 2003-05-22

Similar Documents

Publication Publication Date Title
DE2907590C2 (en) Method and device for evaluating simulated target practice with laser beams reflected at the target
DE60106010T2 (en) ACCURACY SCHOOL SIMULATOR SYSTEM AND METHOD
EP1325281B1 (en) Method and device for simulating firing
DE2454453B2 (en) Device for performing and evaluating target exercises with anti-aircraft guns with simulated fire
DE602004010880T2 (en) System and method for weapon effect simulation
DE1703109A1 (en) Arrangement for practicing aiming with firearms
EP0890818B1 (en) Shooting simulation method and apparatus for carrying out the method
DE3238848A1 (en) METHOD AND DEVICE FOR ENTIRELY CORRECTING THE SHOOTING PROCESS FROM ONE SHOT TO THE FOLLOWING ON A GUN WITH THE STRAIGHT WAY
DE3507007C2 (en)
DE102005055099A1 (en) Weapon e.g. mortar, simulation system for use in e.g. shoot training, has transceiver to determine horizontal orientation of weapon of participant through measures of another participant and transmit its current position per radio to system
DE2936643A1 (en) METHOD AND ARRANGEMENT FOR ESTIMATING THE ACCURACY OF A WEAPON
EP1159578B1 (en) Shooting simulation method
DE3028545C2 (en) Method for simulating a shot at moving targets by means of light signals
EP0281675B1 (en) Sensor for attacking helicopters
DE1951622C3 (en) Arrangement for the simulated display of firing trajectories
DE19617061C2 (en) Method and device for combat simulation on a training area with light shot simulators
EP1166029B2 (en) Method for simulating a battlefield
EP0154809A1 (en) Method for simulating combat
DE4111935C2 (en)
DE3545831C2 (en)
DE2339164C3 (en) Method and device for simulating a shooting or throwing process
DE1728533C3 (en) Arrangement for practicing aiming with firearms
DE3004317A1 (en) Firing system for anti-helicopter projectiles - takes target movement into account whilst missile is in flight, using flight path computer
DE3132173A1 (en) Device for determining the hit position when firing at airborne targets
DE2262605C3 (en) Practice shooting procedure

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20010804

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH CY DE DK ES FI FR GB GR IE IT LI LU MC NL PT SE

17Q First examination report despatched

Effective date: 20020408

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Designated state(s): DE ES GB IT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20030416

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20030416

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REF Corresponds to:

Ref document number: 50001795

Country of ref document: DE

Date of ref document: 20030522

Kind code of ref document: P

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: GERMAN

GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20030416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20031030

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

Ref document number: 1159578E

Country of ref document: IE

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040119

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20100219

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 50001795

Country of ref document: DE

Effective date: 20110901

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110901