EP0802392A1 - Method and device for the disintegrating time setting of a programmable projectile - Google Patents

Method and device for the disintegrating time setting of a programmable projectile Download PDF

Info

Publication number
EP0802392A1
EP0802392A1 EP96118045A EP96118045A EP0802392A1 EP 0802392 A1 EP0802392 A1 EP 0802392A1 EP 96118045 A EP96118045 A EP 96118045A EP 96118045 A EP96118045 A EP 96118045A EP 0802392 A1 EP0802392 A1 EP 0802392A1
Authority
EP
European Patent Office
Prior art keywords
projectile
time
vov
speed
disassembly
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP96118045A
Other languages
German (de)
French (fr)
Other versions
EP0802392B1 (en
Inventor
André Boss
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rheinmetall Air Defence AG
Original Assignee
Oerlikon Contraves AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Oerlikon Contraves AG filed Critical Oerlikon Contraves AG
Publication of EP0802392A1 publication Critical patent/EP0802392A1/en
Application granted granted Critical
Publication of EP0802392B1 publication Critical patent/EP0802392B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C17/00Fuze-setting apparatus
    • F42C17/04Fuze-setting apparatus for electric fuzes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F42AMMUNITION; BLASTING
    • F42CAMMUNITION FUZES; ARMING OR SAFETY MEANS THEREFOR
    • F42C11/00Electric fuzes
    • F42C11/06Electric fuzes with time delay by electric circuitry

Definitions

  • the invention relates to a method and a device for calculating the disassembly time of a programmable projectile, wherein the calculation includes at least one target distance to a target object determined from sensor data, a projectile speed measured at the muzzle of a gun barrel and a predetermined optimal disassembly distance between a meeting point and a disassembly point of the projectile is the basis.
  • a device which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel.
  • the measuring device consists of two ring coils arranged at a certain distance from one another.
  • the change occurs of the magnetic flux generates a pulse in short succession in each ring coil.
  • the pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils.
  • a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile.
  • the receiving coil is connected to a counter via a high-pass filter, which is connected on the output side to a timer.
  • a disassembly time is formed from the calculated bullet speed and a hit distance to a target object determined from sensor data, which is inductively transmitted to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.
  • an attacking target can be destroyed by multiple hits, as is known, for example, from a publication OC 2052 d 94 from the company Oerlikon-Contraves, Zurich, if, after the sub-projectiles have been ejected, Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles.
  • the part carrying the sub-projectiles is separated and torn open at predetermined breaking points.
  • the ejected sub-projectiles describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.
  • the invention is based on the object of a method and an apparatus To propose a generic term by means of which an optimal hit or kill probability can be achieved while avoiding the disadvantages mentioned above.
  • a given optimal disassembly distance between a disassembly point of the projectile and a meeting point of the target is kept constant by correcting the disassembly time of the projectile.
  • the correction is made by adding a correction factor multiplied by a speed difference to the disassembly time.
  • the projectile speed difference is formed from the difference between the current measured projectile speed and a lead speed of the projectile, the lead speed being calculated from the mean of a number of previous, successive projectile speeds.
  • the advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability can be achieved.
  • the proposed correction factor for the correction of the dismantling time is based only on the shooting elements of the meeting point for the control of the weapon, namely the gun angles ⁇ , ⁇ , the time Tf and the lead speed V0v of the projectile. This enables simple integration into existing weapon control systems, which requires minimal effort.
  • 1 denotes a fire control and 2 a gun.
  • the fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search radar 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 .
  • the fire control computer 6 has at least one main filter 7 and a lead computing unit 9 .
  • the main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow radar 5 in the form of estimated target data Z such as position, speed, acceleration, etc.
  • Computing unit 9 forwards. Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.
  • a computer of the gun 2 has an evaluation circuit 10 , an update computing unit 11 and a correction computing unit 12 .
  • the evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile velocity, which is arranged at the mouth of a gun barrel 13 and is described in more detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 .
  • the update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 .
  • the correction computing unit 12 is connected on the input side to the lead computing unit 9 and on the output side to the updating computing unit 11 .
  • a gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 .
  • the connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 .
  • the meaning of the designations on the individual connections between the computing units 10 , 11 , 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description.
  • 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ).
  • the projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .
  • a support tube 20 attached to the muzzle of the gun barrel 13 consists of three parts 21 , 22 , 23 . Between the first part 21 and the second or third part 22 , 23 , ring coils 24 , 25 are arranged for measuring the projectile speed. On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21 , 22 , 23 to each other is not shown and described. Lines 28 , 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement.
  • the projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 .
  • a pulse is generated in short succession in each ring coil.
  • These pulses are fed to the evaluation circuit 10 ( FIG. 1 ), in which the projectile speed is calculated from the time interval between the pulses and a distance a between the ring coils 24 , 25 .
  • a disassembly time is calculated, as described in more detail below, which is transmitted inductively to the receiver coil 31 in digital form when the projectile 18 passes through the transmitter coil 27 for the purpose of setting the counter 32 .
  • Pz denotes a point of disassembly of the projectile 18 .
  • the ejected subprojectiles are, depending on the distance from the point of decomposition Pz, evenly distributed on approximately semicircular curves of (in perspective) circular areas F1, F2, F3, F4 of a cone C.
  • F1, F2, F3, F4 of a cone C.
  • the distance from the point of decomposition Pz is plotted in meters m
  • the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m.
  • 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.
  • the lead computation unit 9 calculates a target distance RT from a lead speed VOv and the target data Z, taking meteorological data into account for storeys with primary and secondary ballistics.
  • the lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm.
  • the lead computing unit 9 also determines a gun angle ⁇ of the azimuth and a gun angle ⁇ of the elevation.
  • the quantities ⁇ , ⁇ , Tz or Tf and VOv are referred to as shooting elements of the meeting point and are fed to the correction computing unit 12 via the data transmission 17 .
  • the current (running) time (t) is interpolated or extrapolated.
  • the tachometer value ⁇ can also be read directly from the gun and used for the calculation.
  • the corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t.
  • the newly calculated disassembly time Tz (Vm, t) is fed to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.
  • the disassembly distance Dz ( Fig. 3,4 ) can be kept constant irrespective of the scatter of the projectile speed , so that an optimal meeting or Probability of shooting can be achieved.

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Aiming, Guidance, Guns With A Light Source, Armor, Camouflage, And Targets (AREA)
  • Radar Systems Or Details Thereof (AREA)
  • Testing Relating To Insulation (AREA)
  • Investigating, Analyzing Materials By Fluorescence Or Luminescence (AREA)
  • Automatic Assembly (AREA)

Abstract

The disaggregation time determination involves performing a calculation based on an impact distance, RT, to a target determined from sensor data, a projectile velocity, Vm, at a muzzle and a given disaggregation distance, Dz. The disaggregation distance is kept constant by a correction of a disaggregation time using the equation: Tz(Vm) = Tz + K*(Vm-Vov) Tz(Vm) is the corrected disaggregation time. K is a correction factor. Vov is a lead velocity of a projectile. The correction factor is calculated based upon flying time of the projectile, air resistance and a value relating to a position of the gun barrel.

Description

Die Erfindung betrifft ein Verfahren und eine Vorrichtung Zur Berechnung der Zerlegungszeit eines programmierbaren Geschosses, wobei der Berechnung mindestens eine aus Sensordaten ermittelte Treffdistanz zu einem Zielobjekt, eine an der Mündung eines Geschützrohres gemessene Geschossgeschwindigkeit und eine vorgegebene optimale Zerlegungsdistanz zwischen einem Treffpunkt und einem Zerlegungspunkt des Geschosses zugrunde gelegt ist.The invention relates to a method and a device for calculating the disassembly time of a programmable projectile, wherein the calculation includes at least one target distance to a target object determined from sensor data, a projectile speed measured at the muzzle of a gun barrel and a predetermined optimal disassembly distance between a meeting point and a disassembly point of the projectile is the basis.

Mit der europäischen Patentanmeldung 0 300 255 ist eine Vorrichtung bekannt geworden, die eine an der Mündung eines Geschützrohres angeordnete Messvorrichtung für die Geschossgeschwindigkeit aufweist. Die Messvorrichtung besteht aus zwei in einem bestimmten Abstand voneinander angeordneten Ringspulen. Beim Durchgang eines Geschosses durch die beiden Ringspulen wird aufgrund der dabei auftretenden Aenderung des magnetischen Flusses kurz hintereinander in jeder Ringspule ein Impuls erzeugt. Die Impulse werden einer Auswerteelektronik zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und dem Abstand zwischen den Ringspulen die Geschossgeschwindigkeit errechnet wird. In Bewegungsrichtung des Geschosses ist hinter der Messvorrichtung für die Geschwindigkeit eine Sendespule angeordnet, die mit einer im Geschoss vorgesehenen Empfangsspule zusammenwirkt. Die Empfangsspule ist über ein Hochpassfilter mit einem Zähler verbunden, der ausgangsseitig mit einem Zeitzünder in Verbindung steht. Aus der errechneten Geschossgeschwindigkeit und einer aus Sensordaten ermittelten Treffdistanz zu einem Zielobjekt wird eine Zerlegungszeit gebildet, die unmittelbar nach dem Durchfliegen der Messvorrichtung induktiv auf das Geschoss übertragen wird. Mit dieser Zerlegungszeit wird der Zeitzünder eingestellt, so dass das Geschoss im Bereiche des Zielobjektes zerlegt werden kann.With the European patent application 0 300 255 a device has become known which has a measuring device for the projectile velocity arranged at the mouth of a gun barrel. The measuring device consists of two ring coils arranged at a certain distance from one another. When a projectile passes through the two toroidal coils, the change occurs of the magnetic flux generates a pulse in short succession in each ring coil. The pulses are fed to evaluation electronics, in which the projectile speed is calculated from the time interval between the pulses and the distance between the ring coils. In the direction of movement of the projectile, a transmitting coil is arranged behind the measuring device for the speed, which co-operates with a receiving coil provided in the projectile. The receiving coil is connected to a counter via a high-pass filter, which is connected on the output side to a timer. A disassembly time is formed from the calculated bullet speed and a hit distance to a target object determined from sensor data, which is inductively transmitted to the bullet immediately after the measuring device has flown through. With this disassembly time, the time fuse is set so that the projectile can be disassembled in the area of the target object.

Werden Geschosse mit Subprojektilen verwendet (Munition mit Primär- und Sekundärballistik), so kann wie beispielsweise aus einer Druckschrift OC 2052 d 94 der Firma Oerlikon-Contraves, Zürich, bekannt, ein angreifendes Ziel durch mehrfache Treffer zerstört werden, wenn nach Ausstossen der Subprojektile im Zerlegungszeitpunkt das Erwartungsgebiet des Zieles von einer durch die Subprojektile gebildeten Wolke belegt ist. Bei der Zerlegung eines solchen Geschosses wird der die Subprojektile tragende Teil abgetrennt und an Sollbruchsteiien aufgerissen. Die ausgestossenen Subprojektile beschreiben eine durch die Rotation des Geschosses hervorgerufene drallstabilisierte Flugbahn und liegen gleichmässig verteilt auf annähernd halbkreisförmigen Kurven von Kreisflächen eines Kegels, so dass eine gute Treffwahrscheinlichkeit erreicht werden kann.If projectiles with sub-projectiles are used (ammunition with primary and secondary ballistics), an attacking target can be destroyed by multiple hits, as is known, for example, from a publication OC 2052 d 94 from the company Oerlikon-Contraves, Zurich, if, after the sub-projectiles have been ejected, Time of disassembly the expected area of the target is occupied by a cloud formed by the subprojectiles. When dismantling such a projectile, the part carrying the sub-projectiles is separated and torn open at predetermined breaking points. The ejected sub-projectiles describe a swirl-stabilized trajectory caused by the rotation of the projectile and lie evenly distributed on approximately semicircular curves of circular areas of a cone, so that a good chance of hitting can be achieved.

Bei vorstehend beschriebener Vorrichtung kann durch Streuungen in der Zerlegungsdistanz, die beispielsweise durch Streuungen der Geschossgeschwindigkeit und/oder Verwendung nicht aktualisierter Werte verursacht werden, nicht in jedem Fall eine gute Treff- bzw. Abschusswahrscheinlichkeit erreicht werden. Bei grösseren Zerlegungsdistanzen würde wohl die Kreisfläche grösser, die Dichte der Subprojektile jedoch kleiner werden. Bei kleineren Zerlegungsdistanzen tritt der umgekehrte Fall ein: Die Dichte der Subprojektile wäre grösser, die Kreisfläche jedoch kleiner.In the device described above, scattering in the disassembly distance, which is caused, for example, by scattering in the bullet speed and / or the use of non-updated values, cannot always achieve a good probability of being hit or fired. With larger disassembly distances, the circular area would be larger, but the density of the subprojectiles would be smaller. The reverse occurs with smaller disassembly distances: the density of the subprojectiles would be greater, but the circular area would be smaller.

Der Erfindung liegt die Aufgabe zugrunde ein Verfahren und eine Vorrichtung gemäss Oberbegriff vorzuschlagen, mittels welchen unter Vermeidung vorstehend erwähnter Nachteile eine optimale Treff- bzw. Abschusswahrscheinlichkeit erreichbar ist.The invention is based on the object of a method and an apparatus To propose a generic term by means of which an optimal hit or kill probability can be achieved while avoiding the disadvantages mentioned above.

Diese Aufgabe wird durch die in den Patentansprüchen 1 und 10 angegebene Erfindung gelöst. Hierbei wird eine gegebene optimale Zerlegungsdistanz zwischen einem Zerlegungspunkt des Geschosses und einem Treffpunkt des Zieles durch Korrektur der Zerlegungszeit des Geschosses gleichbleibend gehalten. Die Korrektur erfolgt indem zur Zerlegungszeit ein mit einer Geschwindigkeitsdifferenz multiplizierter Korrekturfaktor addiert wird. Die Geschossgeschwindigkeitsdifferenz wird aus der Differenz der aktuellen gemessenen Geschossgeschwindigkeit und einer Vorhaltgeschwindigkeit des Geschosses gebildet, wobei die Vorhaltgeschwindigkeit aus dem Mittelwert einer Anzahl vorhergehender, aufeinanderfolgender Geschossgeschwindigkeiten errechnet wird.This object is achieved by the invention specified in claims 1 and 10. Here, a given optimal disassembly distance between a disassembly point of the projectile and a meeting point of the target is kept constant by correcting the disassembly time of the projectile. The correction is made by adding a correction factor multiplied by a speed difference to the disassembly time. The projectile speed difference is formed from the difference between the current measured projectile speed and a lead speed of the projectile, the lead speed being calculated from the mean of a number of previous, successive projectile speeds.

Die mit der Erfindung erzielten Vorteile sind darin zu sehen, dass eine gegebene Zerlegungsdistanz von der aktuellen gemessenen Geschossgeschwindigkeit unabhängig ist, so dass eine dauernde optimale Treff- bzw. Abschusswahrscheinlichkeit erzielt werden kann. Der vorgeschlagene Korrekturfaktor für die Korrektur der Zerlegungszeit basiert lediglich auf den Schiesselementen des Treffpunktes für die Steuerung der Waffe, nämich den Geschützwinkeln α, λ, der Treffzeit Tf und der Vorhaltgeschwindigkeit V0v des Geschosses. Damit ist die Möglichkeit einer einfachen, einen minimalen Aufwand erfordernden Integration in bereits bestehende Waffensteuerungssysteme gegeben.The advantages achieved with the invention can be seen in the fact that a given disassembly distance is independent of the current measured bullet speed, so that a permanent optimal hit or shot probability can be achieved. The proposed correction factor for the correction of the dismantling time is based only on the shooting elements of the meeting point for the control of the weapon, namely the gun angles α, λ, the time Tf and the lead speed V0v of the projectile. This enables simple integration into existing weapon control systems, which requires minimal effort.

Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles im Zusammenhang mit der Zeichnung näher erläutert. Es zeigen.

Fig.1
eine schematische Darstellung eines Waffensteuerungs-Systems mit der er findungsgemässen Vorrichtung,
Fig.2
einen Längsschnitt durch eine Mess- und Programmiervorrichtung,
Fig.3
ein Diagramm der Verteilung von Subprojektilen in Abhängigkeit von der Zerlegungsdistanz, und
Fig.4
eine andere Darstellung des Waffensteuerungs-Systems gemäss Fig.1.
The invention is explained in more detail below using an exemplary embodiment in conjunction with the drawing. Show it.
Fig. 1
1 shows a schematic illustration of a weapon control system with the device according to the invention,
Fig. 2
a longitudinal section through a measuring and programming device,
Fig. 3
a diagram of the distribution of subprojectiles as a function of the disassembly distance, and
Fig. 4
another representation of the weapon control system according to Fig.1 .

In der Fig.1 ist mit 1 eine Feuerleitung und mit 2 ein Geschütz bezeichnet. Die Feuerleitung 1 besteht aus einem Suchsensor 3 für die Entdeckung eines Zieles 4, einem mit dem Suchradar 3 verbundenen Folgesensor 5 für die Zielerfassung, die 3-D-Zielverfolgung und die 3-D-Zielvermessung, sowie einem Feuerleitungsrechner 6. Der Feuerleitungsrechner 6 weist mindestens ein Hauptfilter 7 und eine Vorhalt-Rechenein-heit 9 auf. Das Hauptfilter 7 ist eingangsseitig mit dem Folgesensor 5 und ausgangsseitig mit der Vorhalt-Recheneinheit 9 verbunden, wobei das Hauptfilter 7 die vom Folgeradar 5 empfangenen 3-D-Zieldaten in Form von geschätzten Zieldaten Z wie Position, Geschwindigkeit, Beschleunigung usw. an die Vorhalt-Recheneinheit 9 weiterleitet. Ueber einen wie-teren Eingang Me können der Vorhalt-Recheneinheit 9 meteorologische Daten zugeführt werden. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen bzw. Anschlüssen wird nachstehend anhand der Funktionsbeschreibung näher erläutert.In Figure 1, 1 denotes a fire control and 2 a gun. The fire control system 1 consists of a search sensor 3 for the detection of a target 4 , a follow-up sensor 5 connected to the search radar 3 for target detection, 3-D target tracking and 3-D target measurement, and a fire control computer 6 . The fire control computer 6 has at least one main filter 7 and a lead computing unit 9 . The main filter 7 is connected on the input side to the follow sensor 5 and on the output side to the lead computing unit 9 , the main filter 7 receiving the 3-D target data received from the follow radar 5 in the form of estimated target data Z such as position, speed, acceleration, etc. Computing unit 9 forwards. Meteorological data can be supplied to the lead computing unit 9 via a further input Me. The meaning of the designations on the individual connections or connections is explained in more detail below on the basis of the functional description.

Ein Rechner des Geschützes 2 weist eine Auswerteschaltung 10, eine Aufdatierungs-Recheneinheit 11 und eine Korrektur-Recheneinheit 12 auf. Die Auswerteschaltung 10 ist eingangsseitig an einer an der Mündung eines Geschützrohres 13 angeordneten, nachstehend anhand der Fig.2 näher beschriebenen Messvorrichtung 14 für die Geschossgeschwindigkeit angeschlossen und ausgangsseitig mit der Vorhalt-Recheneinheit 9 und der Aufdatierungs-Recheneinheit 11 verbunden. Die Aufdatierungs-Recheneinheit 11 ist eingangsseitig an der Vorhalt- und an der Korrektur-Recheneinheit 9,12 angeschlossen und steht ausgangsseitig mit einem in der Messvorrichtung 14 integrierten Programmierteil in Verbindung. Die Korrektur-Recheneinheit 12 ist eingangsseitig mit der Vorhalt-Recheneinheit 9 und ausgangsseitig mit der Aufdatier-Recheneinheit 11 verbunden. Ein Geschützservo 15 und eine auf einen Feuerbefehl ansprechende Auslöseeinrichtung 16 sind ebenfalls an der Vorhalt-Recheneinheit 9 angeschlossen. Die Verbindungen zwischen der Feuerleitung 1 und dem Geschütz 2 sind zu einer Data-Transmission zusammengefasst, die mit 17 bezeichnet ist. Die Bedeutung der Bezeichnungen an den einzelnen Verbindungen zwischen den Recheneinheiten 10, 11, 12 sowie zwischen der Feuerleitung 1 und dem Geschütz 2 wird nachstehend anhand der Funktionsbeschreibung näher erläutert. Mit 18 und 18' ist ein Geschoss bezeichnet, das während einer Programmierphase (18) und im Zerlegungszeitpunkt (18') dargestellt ist. Beim Geschoss 18 handelt es sich um ein programmierbares Geschoss mit Primär-und Sekundärballistik, das mit einer Ausstossladung und einem Zeitzünder ausgestattet und mit Subprojektilen 19 gefüllt ist.A computer of the gun 2 has an evaluation circuit 10 , an update computing unit 11 and a correction computing unit 12 . The evaluation circuit 10 is connected on the input side to a measuring device 14 for the projectile velocity, which is arranged at the mouth of a gun barrel 13 and is described in more detail below with reference to FIG . 2 , and is connected on the output side to the lead computing unit 9 and the update computing unit 11 . The update computing unit 11 is connected on the input side to the reserve and correction computing unit 9, 12 and is connected on the output side to a programming part integrated in the measuring device 14 . The correction computing unit 12 is connected on the input side to the lead computing unit 9 and on the output side to the updating computing unit 11 . A gun servo 15 and a triggering device 16 responding to a fire command are also connected to the lead computing unit 9 . The connections between the fire control 1 and the gun 2 are combined to form a data transmission, which is designated by 17 . The meaning of the designations on the individual connections between the computing units 10 , 11 , 12 and between the fire control system 1 and the gun 2 is explained in more detail below on the basis of the functional description. 18 and 18 ' designate a floor which is shown during a programming phase ( 18 ) and at the time of disassembly ( 18' ). The projectile 18 is a programmable projectile with primary and secondary ballistics, which is equipped with an ejection charge and a time fuse and is filled with sub-projectiles 19 .

Gemäss Fig.2 besteht ein an der Mündung des Geschützrohres 13 befestigtes Tragrohr 20 aus drei Teilen 21, 22, 23. Zwischen dem ersten Teil 21 und dem zweiten bzw. dritten Teil 22, 23 sind Ringspulen 24, 25 für die Messung der Geschossgeschwindigkeit angeordnet. Am dritten Teil 23 -auch Programmierteil genannt- ist eine in einem Spulenkörper 26 gehaltene Sendespule 27 befestigt. Die Art der Befestigung des Tragrohres 20 und der drei Teile 21, 22, 23 miteinander ist nicht weiter dargestellt und beschrieben. Für die Speisung der Ringspulen sind Leitungen 28, 29 vorgesehen. Am Umfang des Tragrohres 20 sind zwecks Abschirmung von die Messung störenden Magnetfeldern Weicheisenstäbe 30 angeordnet. Das Geschoss 18 weist eine Empfangsspule 31 auf, die über ein Filter 32 und einen Zähler 33 mit einem Zeitzünder 34 verbunden ist. Beim Durchgang des Geschosses 18 durch die beiden Ringspulen 24, 25 wird kurz hinter-einander in jeder Ringspule ein Impuls erzeugt. Diese Impulse werden der Auswerte-schaltung 10 (Fig.1) zugeführt, in welcher aus dem zeitlichen Abstand der Impulse und einem Abstand a zwischen den Ringspulen 24, 25 die Geschossgeschwindigkeit errechnet wird. Unter Berücksichtigung der Geschossgeschwindigkeit wird, wie nachstehend näher beschrieben, eine Zerlegungszeit errechnet, die in digitaler Form beim Durchgang des Geschosses 18 durch die Sendespule 27 zum Zwecke der Einstellung des Zählers 32 induktiv auf die Empfangsspule 31 übertragen wird.According to FIG. 2 , a support tube 20 attached to the muzzle of the gun barrel 13 consists of three parts 21 , 22 , 23 . Between the first part 21 and the second or third part 22 , 23 , ring coils 24 , 25 are arranged for measuring the projectile speed. On the third part 23 — also called the programming part — a transmission coil 27 held in a coil body 26 is fastened. The type of attachment of the support tube 20 and the three parts 21 , 22 , 23 to each other is not shown and described. Lines 28 , 29 are provided for supplying the ring coils. Soft iron bars 30 are arranged on the circumference of the support tube 20 for the purpose of shielding against magnetic fields which interfere with the measurement. The projectile 18 has a receiving coil 31 which is connected to a timer 34 via a filter 32 and a counter 33 . When the projectile 18 passes through the two ring coils 24 , 25 , a pulse is generated in short succession in each ring coil. These pulses are fed to the evaluation circuit 10 ( FIG. 1 ), in which the projectile speed is calculated from the time interval between the pulses and a distance a between the ring coils 24 , 25 . Taking the projectile speed into account, a disassembly time is calculated, as described in more detail below, which is transmitted inductively to the receiver coil 31 in digital form when the projectile 18 passes through the transmitter coil 27 for the purpose of setting the counter 32 .

In der Fig.3 ist mit Pz ein Zerlegungspunkt des Geschosses 18 bezeichnet. Die ausgestossenen Subprojektile liegen je nach Abstand von Zerlegungspunkt Pz gleichmässig verteilt auf annähernd halbkreisförmigen Kurven von (perspektivisch dargestellten) Kreisflächen F1, F2, F3, F4 eines Kegels C. Auf einer ersten Abzisse I ist der Abstand vom Zerlegungspunkt Pz in Metern m aufgetragen, während auf einer zweiten Abzisse II die Flächengrössen der Flächen F1, F2, F3, F4 in Quadratmetern m2 und deren Durchmesser in Metern m aufgetragen sind. Bei einem charakteristischem Geschoss mit beispielsweise 152 Subprojektilen und einem Scheitelwinkel des Kegels C von anfänglich 10° ergeben sich in Abhängigkeit vom Abstand die auf der Abzisse II aufgetragenen Werte. Die Dichte der auf den Kreisflächen F1, F2, F3, F4 befindlichen Subprojektile nimmt mit zunehmendem Abstand ab und beträgt bei den gewählten Verhältnissen 64, 16, 7 und 4 Subprojektile pro Quadratmeter. Bei einer vorgegebenen, der nachfolgend beschriebenen Berechnung der Zerlegungszeit zugrunde gelegten Zerlegungsdistanz Dz von beispielsweise 20 m, würde beim angenommenen Beispiel ein Zielgebiet von 3,5 m Durchmesser mit 16 Subprojektilen pro Quadratmeter belegt sein.In Figure 3 , Pz denotes a point of disassembly of the projectile 18 . The ejected subprojectiles are, depending on the distance from the point of decomposition Pz, evenly distributed on approximately semicircular curves of (in perspective) circular areas F1, F2, F3, F4 of a cone C. On a first abscissa I, the distance from the point of decomposition Pz is plotted in meters m, while on a second abscissa II, the area sizes of the areas F1, F2, F3, F4 are plotted in square meters m 2 and their diameter in meters m. In the case of a characteristic projectile with, for example, 152 subprojectiles and an apex angle of the cone C of initially 10 °, the values plotted on the abscissa II are obtained as a function of the distance. The density of the subprojectiles on the circular areas F1, F2, F3, F4 decreases with increasing distance and is 64, 16, 7 and 4 subprojectiles per square meter with the selected ratios. Given a given disassembly distance Dz, which is based on the calculation of the disassembly time described below, for example 20 m, a target area of 3.5 m diameter would be occupied with 16 subprojectiles per square meter in the assumed example.

In der Fig. 4 ist mit 4 und 4' das abzuwehrende Ziel bezeichnet, das in einer Treff- bzw. Abschussposition (4) und in einer der Treff- bzw. Abschussposition vorhergehenden Position (4') dargestellt.In FIG. 4 , 4 and 4 ' denote the target to be defended, which is shown in a hit or shoot position ( 4 ) and in a position ( 4' ) preceding the hit or shoot position.

Die vorstehend beschriebene Vorrichtung arbeitet wie folgt:The device described above works as follows:

Die Vorhalt-Recheneinheit 9 errechnet aus einer Vorhaltgeschwindigkeit VOv und den Zieldaten Z unter Berücksichtigung von meteorologischen Daten bei Geschossen mit Primär-und Sekundärballistik eine Treffdistanz RT.The lead computation unit 9 calculates a target distance RT from a lead speed VOv and the target data Z, taking meteorological data into account for storeys with primary and secondary ballistics.

Die Vorhaltgeschwindigkeit VOv wird beispielsweise aus dem Mittelwert einer Anzahl über die Data-Transmission 17 zugeführter gemessener Geschossgeschwindigkeiten Vm gebildet, die der aktuellen gemessenen Geschossgeschwindigkeit Vm unmittelbar vorhergehen. Aufgrund einer vorgegebenen Zerlegungsdistanz Dz und unter Berücksichtigung der von einer Treffzeit Tf abhängigen Geschossgeschwindigkeit Vg (Tf) kann eine Zerlegungszeit Tz des Geschosses nach folgenden Beziehungen ermittelt werden: Dz = Vg (Tf) ∗ ts und Tz = Tf - ts

Figure imgb0001
worin Vg(Tf) durch ballistische Approximation bestimmt ist und Tz die Flugzeit des Geschosses bis zum Zerlegungszeitpunkt Pz, sowie ts die Flugzeit eines in der Geschossrichtung fliegenden Subprojektiles vom Zerlegungspunkt Pz bis zum Treffpunkt Pf bedeuten (Fig. 3,4)The lead speed VOv is formed, for example, from the mean value of a number of measured projectile speeds Vm supplied via the data transmission 17 , which immediately precede the current measured projectile speed Vm. On the basis of a predetermined disassembly distance Dz and taking into account the projectile velocity Vg (Tf) which is dependent on a hit time Tf, a disassembly time Tz of the projectile can be determined according to the following relationships: Dz = Vg (Tf) ∗ ts and Tz = Tf - ts
Figure imgb0001
where Vg (Tf) is determined by ballistic approximation and Tz is the flight time of the projectile to the disassembly time Pz, and ts is the flight time of a subprojectile flying in the projectile direction from the disassembly point Pz to the meeting point Pf ( Fig. 3,4 )

Die Vorhalt-Recheneinheit 9 ermittelt ferner einen Geschützwinkel α des Azimutes und einen Geschützwinkel λ der Elevation. Die Grössen α, λ, Tz oder Tf und VOv werden als Schiesselemente des Treffpunktes bezeichnet und über die Data-Transmission 17 der Korrektur-Recheneinheit 12 zugeführt. Die Schiesselemente α und λ werden ausserdem noch dem Geschützservo 15 und die Schiesselemente VOv und Tz noch der Aufdatier-Recheneinheit 11 zugeführt. Wenn nur Primärballistik zur Anwendung kommt, so wird anstelle der Zerlegungszeit Tz die Treffzeit Tf = Tz+ts

Figure imgb0002
übermittelt (Fig.1, Fig.4).The lead computing unit 9 also determines a gun angle α of the azimuth and a gun angle λ of the elevation. The quantities α, λ, Tz or Tf and VOv are referred to as shooting elements of the meeting point and are fed to the correction computing unit 12 via the data transmission 17 . The shooting elements α and λ are also fed to the gun servo 15 and the shooting elements VOv and Tz are also fed to the update computing unit 11 . If only primary ballistics is used, the hit time will be used instead of the decomposition time Tz Tf = Tz + ts
Figure imgb0002
transmitted ( Fig.1, Fig.4 ).

Die vorstehend beschriebenen Berechnungen werden taktweise wiederholt durchgeführt, so dass jeweils im aktuellen Takt i die neuesten Daten α, λ, Tz oder Tf und VOv für eine bestimmte Gültigkeitsdauer zur Verfügung stehen.The calculations described above are carried out repeatedly in cycles, so that in the current cycle i the latest data α, λ, Tz or Tf and VOv are available for a specific period of validity.

Zwischen den Taktwerten wird für die aktuelle (laufende) Zeit (t) jeweils interpoliert bzw. extrapoliert.Between the clock values, the current (running) time (t) is interpolated or extrapolated.

Die Korrektur-Recheneinheit 12 errechnet am Anfang eines jeden Taktes i mit dem jeweils neuesten Satz Schiesselemente α, λ, Tz oder Tf und VOv einen Korrekturfaktor K nach der Gleichung K= -(1+δTG/δto)*TG*(1+0,25*q*(VOv*Vn) 1/2 *TG) (1+(TG*(1+0,5*q*(VOv*Vn) 1/2 *TG) * ω 2 ))*VOv

Figure imgb0003
The correction arithmetic unit 12 calculates a correction factor K according to the equation at the beginning of each cycle i using the latest set of shooting elements α, λ, Tz or Tf and VOv K = - (1 + δTG / δto) * TG * (1 + 0.25 * q * (VOv * Vn) 1/2 * TG) (1+ (TG * (1 + 0.5 * q * (VOv * Vn) 1/2 * TG) * ω 2nd )) * VOv
Figure imgb0003

Hierin ist δTG/δto die Ableitung der Flugzeit TG des Geschosses nach der Zeit, die nach der Gleichung δTG/δto = (TG i - TG i-1 )/to

Figure imgb0004
errechnet wird, wobei i der aktuelle Takt, i-1 der vorhergehende Takt und to die Dauer eines Taktes ist, und wobei die Flugzeit TG eines Geschosses gleich der Treffzeit Tf ist. ω2 ist eine die Stellung des Geschützrohres 13 betreffende Grösse, die sich nach der Beziehung ω 2 = (rate α ∗ cos λ) 2 + (rate λ ) 2
Figure imgb0005
berechnet, wobei rate α = (α i - α i-1 )/to und rate λ = (λ i - λ i-1 )/to
Figure imgb0006
die Geschützrohr-Winkelgeschwindigkeiten in Richtung α bzw. in Richtung λ bedeuten.

Vn
ist eine Normgeschwindigkeit der Ballistik.
q
ist eine den Luftwiderstand des Geschosses berücksichtigende Grösse, die sich nach der Beziehung q = (CWn ∗ γ ∗ Gq) / (2 ∗ Gm),
Figure imgb0007
errechnet, wobei die Bedeutung der einzelnen einzusetzenden Werte im Patentanspruch 9 aufgeführt ist.Herein δTG / δto is the derivative of the flight time TG of the projectile after the time, according to the equation δTG / δto = (TG i - TG i-1 ) / to
Figure imgb0004
is calculated, where i is the current measure, i-1 the previous measure and to the duration of a measure, and wherein the flight time TG of a projectile is equal to the time Tf. ω 2 is a quantity relating to the position of the gun barrel 13 , which depends on the relationship ω 2nd = (rate α ∗ cos λ) 2nd + (rate λ ) 2nd
Figure imgb0005
calculated where rate α = (α i - α i-1 ) / to and rate λ = (λ i - λ i-1 ) / to
Figure imgb0006
the gun barrel angular velocities in the direction α or in the direction λ mean.
Vn
is a standard speed of ballistics.
q
is a quantity considering the air resistance of the projectile, which depends on the relationship q = (CWn ∗ γ ∗ Gq) / (2 ∗ Gm),
Figure imgb0007
calculated, the meaning of the individual values to be used is listed in claim 9 .

Anstatt, wie oben durchgeführt, eine numerische (oder, wenn nötig eine filtrierte) Lösung zu wählen kann auch beim Geschütz direkt der Tachowert ω abgelesen und für die Rechnung verwendet werden.Instead of choosing a numerical (or, if necessary, a filtered) solution as described above, the tachometer value ω can also be read directly from the gun and used for the calculation.

Die Aufdatierungs-Recheneinheit 11 errechnet aus dem von der Korrektur-Recheneinheit 12 zugeführten Korrekturtaktor K, der von der Auswerteschaltung 10 zugeführten aktuellen gemessenen Geschossgeschwindigkeit Vm und der von der Vorhalt-Recheneinheit 9 zugeführten Vorhaltgeschwindigkeit Vov und Zerlegungszeit Tz eine korrigierte Zerlegungszeit Tz (Vm) nach der Beziehung Tz (Vm) = Tz + K ∗ (Vm-VOv).

Figure imgb0008
The update arithmetic unit 11 calculates a corrected disassembly time Tz (Vm) from the correction actuator K supplied by the correction arithmetic unit 12 , the current measured projectile speed Vm supplied by the evaluation circuit 10 and the lead speed Vov supplied by the lead computing unit 9 the relationship Tz (Vm) = Tz + K ∗ (Vm-VOv).
Figure imgb0008

Die korrigierte Zerlegungszeit Tz (Vm) wird je nach Zeitgültigkeit für die aktuelle laufende Zeit t interpoliert bzw. extrapoliert. Die neu errechnete Zerlegungszeit Tz (Vm, t) wird der Sendespule 27 des Programmierteils 23 der Messvorrichtung 14 zugeführt und wie bereits vorstehend anhand der Fig.2 beschrieben induktiv auf ein vorbeifliegendes Geschoss 18 übertragen.The corrected decomposition time Tz (Vm) is interpolated or extrapolated depending on the validity for the current running time t. The newly calculated disassembly time Tz (Vm, t) is fed to the transmitter coil 27 of the programming part 23 of the measuring device 14 and, as already described above with reference to FIG. 2 , is transmitted inductively to a projectile 18 flying by.

Mit der Korrektur der Zerlegungszeit Tz kann die Zerlegungsdistanz Dz (Fig.3,4) unabhängig von den Streuungen der Geschossgeschwindigkeit gleichbleibend gehalten werden, so dass eine optimale Treff-bzw. Abschusswahrscheinlichkeit erzielt werden kann.With the correction of the disassembly time Tz, the disassembly distance Dz ( Fig. 3,4 ) can be kept constant irrespective of the scatter of the projectile speed , so that an optimal meeting or Probability of shooting can be achieved.

BezugszeichenlisteReference list

11
FeuerleitungFire control
22nd
Geschützgun
33rd
SuchsensorSearch sensor
44th
Zieltarget
55
FolgesensorFollow sensor
66
FeuerleitungsrechnerFire control computer
77
HauptfilterMain filter
99
Vorhalt-RecheneinheitLead computing unit
1010th
AuswerteschaltungEvaluation circuit
1111
Aufdatierungs-RecheneinheitUpdate processing unit
1212th
Korrektur-RecheneinheitCorrection computing unit
1313
GeschützrohrGun barrel
1414
MessvorrichtungMeasuring device
1515
GeschützservoGun servo
1616
AuslöseeinrichtungRelease device
1717th
Data-TransmissionData transmission
1818th
Geschossbullet
18'18 '
Geschossbullet
1919th
SubprojektilSubprojectile
2020th
TragrohrSupport tube
2121
Erster TeilFirst part
2222
Zweiter TeilSecond part
2323
Dritter Teilthird part
2424th
RingspuleRing coil
2525th
RingspuleRing coil
2626
SpulenkörperBobbin
2727
SendespuleTransmitter coil
2828
Leitungmanagement
2929
Leitungmanagement
3030th
WeicheisenstäbeSoft iron bars
3131
EmpfangsspuleReceiving coil
3232
Filterfilter
3333
Zählercounter
3434
ZeitzünderTimer
aa
Abstanddistance
PzPz
Position des ZerlegungspunktesPosition of the decomposition point
F1-F4F1-F4
KreisflächenCircular areas
CC.
Kegelcone
II.
Erste AbzisseFirst abscissa
IIII
Zweite AbzisseSecond abscissa
DzDz
ZerlegungsdistanzDisassembly distance
RTRT
TreffdistanzHit distance
VOvVOv
VorhaltgeschwindigkeitLead speed
VmVm
Aktuelle gemessene GeschossgeschwindigkeitCurrent measured bullet speed
TzTz
ZerlegungszeitDisassembly time
tsts
SubprojektilflugzeitSubprojectile flight time
PfPf
Treffpunktmeeting point
αα
GeschützwinkelGun angle
λλ
GeschützwinkelGun angle
TfTf
TreffzeitMeeting time
TGTG
FlugzeitFlight time
Tz(Vm)Tz (Vm)
Korrigierte ZerlegungszeitCorrected disassembly time
MeMe
Eingang (Meteo)Entrance (Meteo)
ZZ.
ZieldatenTarget dates

Claims (10)

Verfahren zur Berechnung der Zerlegungszeit eines programmierbaren Gechosses, wobei der Berechnung mindestens eine aus Sensordaten ermittelte Treffdistanz (RT) zu einem Zielobjekt, eine an der Mündung eines Geschützrohres (13) gemessene Geschossgeschwindigkeit (Vm) und eine gegebene Zerlegungsdistanz (Dz) zwischen einem Treffpunkt (Pf) und einem Zerlegungspunkt (Pz) des Geschosses (18) zugrunde gelegt ist,
dadurch gekennzeichnet, dass die gegebene Zerlegungsdistanz (Dz) durch Korrektur der Zerlegungszeit (Tz) gleichbleibend gehalten wird, wobei die Korrektur durch die Beziehung Tz (Vm) = Tz + K ∗ (Vm-Vov)
Figure imgb0009
erfolgt, und wobei Tz (Vm)   die korrigierte Zerlegungszeit, Tz   die Zerlegungszeit, K   einen Korrekturfaktor, Vm   die aktuelle gemessene Geschossgeschwindigkeit und Vov   eine Vorhaltgeschwindigkeit des Geschosses bedeuten.
Method for calculating the disassembly time of a programmable projectile, whereby the calculation calculates at least one target distance (RT) to a target object determined from sensor data, a projectile speed (Vm) measured at the muzzle of a gun barrel ( 13 ) and a given disassembly distance (Dz) between a meeting point ( Pf) and a decomposition point (Pz) of the floor ( 18 )
characterized in that the given disassembly distance (Dz) is kept constant by correcting the disassembly time (Tz), the correction by the relationship Tz (Vm) = Tz + K ∗ (Vm-Vov)
Figure imgb0009
takes place, and being Tz (Vm) the corrected disassembly time, Tz the disassembly time, K a correction factor, Vm is the current measured bullet speed and Vov mean a lead rate of the projectile.
Verfahren nach Anspruch 1,
dadurch gekennzeichnet, dass der Korrekturfaktor (K) nach der Gleichung K= -(1+δTG/δto)*TG*(1+0,25*q*(VOv*Vn) 1/2 *TG) (1+(TG*(1+0,5*q*(VOv*Vn) 1/2 *TG) * ω 2 ))*VOv
Figure imgb0010
errechnet wird, wobei TG   eine Flugzeit des Geschosses, δTG/δto   die Ableitung der Flugzeit nach der Zeit, q   eine den Luftwiderstand des Geschosses berücksichtigende Grösse, VOv   die Vorhaltgeschwindigkeit des Geschosses, Vn   eine Normgeschwindigkeit der Ballistik und ω2   eine die Stellung des Geschützrohres betreffende Grösse bedeuten.
Method according to claim 1 ,
characterized in that the correction factor ( K ) according to the equation K = - (1 + δTG / δto) * TG * (1 + 0.25 * q * (VOv * Vn) 1/2 * TG) (1+ (TG * (1 + 0.5 * q * (VOv * Vn) 1/2 * TG) * ω 2nd )) * VOv
Figure imgb0010
is calculated, whereby TG a flight time of the projectile, δTG / δto the derivation of the flight time according to the time, q a size that takes into account the air resistance of the projectile, VOv the rate of advance of the projectile, Vn a standard speed of ballistics and ω 2 mean a size relating to the position of the gun barrel.
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass die Berechnungen taktweise wiederholt durchgeführt werden.
Method according to claim 2 ,
characterized in that the calculations are repeated in cycles.
Verfahren nach Anspruch 3,
dadurch gekennzeichnet, dass die Ableitung der Flugzeit (TG) nach der Zeit nach der Gleichung δTG/δto = (TG i - TG i-1 )/to
Figure imgb0011
berechnet wird, wobei i   der aktuelle Takt, i-1   der vorhergehende Takt und to   die Dauer eines Taktes ist.
Method according to claim 3,
characterized in that the derivation of the flight time (TG) after the time according to the equation δTG / δto = (TG i - TG i-1 ) / to
Figure imgb0011
is calculated, where i the current measure, i-1 the previous measure and to the duration of a bar.
Verfahren nach Anspruch 3,
dadurch gekennzeichnet, dass die die Stellung des Geschützrohres (13) betreffende Grösse (ω2) nach der Beziehung ω 2 = (rate α ∗ cos λ) 2 + (rate λ ) 2
Figure imgb0012
berechnet wird, worin α   einen Geschützwinkel des Azimutes, λ   einen Geschützwinkel der Elevation, rateα   eine Geschützrohr-Winkelgeschwindigkeit in α-Richtung und rateλ   eine Geschützrohr-Winkelgeschwindigkeit in λ-Richtung bedeuten.
Method according to claim 3 ,
characterized in that the size (ω 2 ) relating to the position of the gun barrel ( 13 ) according to the relationship ω 2nd = (rate α ∗ cos λ) 2nd + (rate λ ) 2nd
Figure imgb0012
is calculated in which α a gun angle of azimuth, λ a gun angle of elevation, rate α is a gun barrel angular velocity in the α direction and rate λ mean a gun barrel angular velocity in the λ direction.
Verfahren nach Anspruch 5,
dadurch gekennzeichnet, dass die Geschützrohr-Winkelgeschwindigkeiten in α-bzw. in λ-Richtung nach den Gleichungen rate α = (α i - α i-1 )/to rate λ = (λ i - λ i-1 )/to
Figure imgb0013
berechnet werden, wobei i   der aktuelle Takt, i-1   der vorhergehende Takt und to   die Dauer eines Taktes ist.
Method according to claim 5 ,
characterized in that the gun barrel angular velocities in α or. in the λ direction according to the equations rate α = (α i - α i-1 ) / to rate λ = (λ i - λ i-1 ) / to
Figure imgb0013
are calculated, where i the current measure, i-1 the previous measure and to the duration of a bar.
Verfahren nach Anspruch 3,
dadurch gekennzeichnet, dass die den Luftwiderstand des Geschosses berücksichtigende Grösse (q) nach der Beziehung q = (CWn ∗ γ ∗ Gq) / (2 ∗ Gm)
Figure imgb0014
berechnet wird, wobei CWn   einen Koeffizient für den Luftwiderstand, γ   die Luftdichte, Gq   einen Geschossquerschnitt und Gm   die Geschossmasse bedeuten.
Method according to claim 3 ,
characterized in that the size (q) taking into account the air resistance of the projectile according to the relationship q = (CWn ∗ γ ∗ Gq) / (2 ∗ Gm)
Figure imgb0014
is calculated, where CWn is a coefficient of drag, γ the air density, Gq a floor cross section and Gm mean the projectile mass.
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass die Vorhaltgeschwindigkeit (VOv) aus dem Mittelwert einer Anzahl gemessener Geschossgeschwindigkeiten gebildet wird, die der aktuellen gemessenen Geschossgeschwindigkeit (Vm) unmittelbar vorhergehen.
Method according to claim 2 ,
characterized in that the lead speed (VOv) is formed from the mean of a number of measured projectile speeds that immediately precede the current measured projectile speed (Vm).
Verfahren nach Anspruch 2,
dadurch gekennzeichnet, dass die korrigierte Zerlegungszeit (Tz [Vm]) je nach Zeitgültigkeit für die aktuelle laufende Zeit (t) interpoliert bwz. extrapoliert wird.
Method according to claim 2 ,
characterized in that the corrected disassembly time (Tz [Vm]) interpolates depending on the validity for the current running time (t). is extrapolated.
Vorrichtung zur Durchführung des Verfahrens nach Anspruch 1, mit einem Feuerleitungsrechner (6), der über eine Data-Transmission (17) mit einem Geschützrechner verbunden ist, wobei der Feuerleitungsrechner (6) mindestens eine Vorhalt-Recheneinheit (9) aufweist, und wobei der Geschützrechner minde stens eine Auswerteschaltung (10) für die Ermittlung der Geschossgeschwindigkeit (Vm) und eine Aufdatierungs-Recheneinheit (11) aufweist, die eingangsseitig zwecks Zuführung der Geschossgeschwindigkeit (Vm) mit der Auswerteschaltung (10) in Verbindung steht und ausgangsseitig an einem Programmierteil (23) einer Messvorrichtung (14) für die Geschossgeschwindigkeit (Vm) angeschlossen ist,
dadurch gekennzeichnet, dass eine Korrektur-Recheneinheit (12) für die Berechnung des Korrekturfaktors (K) vorgesehen ist, die Korrektur-Recheneinheit (12) zum Zwecke der Zuführung der der Berechnung zugrunde liegenden Schiesselemente Geschützwinkel (α,λ), Vorhaltgeschwindigkeit (VOv) und Zerlegungs-bzw. Treffzeit (Tz,Tf) eingangsseitig über die Data-Transmission (17) mit der Vorhalt-Recheneinheit (9) verbunden ist, dass die Aufdatierungs-Recheneinheit (11) zwecks Zuführung der Vorhaltgeschwindigkeit (VOv) und Zerlegungs-bzw. Treffzeit (Tz,Tf) eingangsseitig über die Data-Transmission (17) an der Vorhalt-Recheneinheit (9) angeschlossen ist und zwecks Zuführung des Korrekturfaktors (K) eingangsseitig mit der Korrektur-Recheneinheit (11) in Verbindung steht,
wobei dem Programmierte (23) über die ausgangsseitige Verbindung der Aufdatierungs-Recheneinheit (11) die in der Aufdatierungs-Recheneinheit (11) ermit telte korrigierte Zerlegungszeit (Tz(Vm)) zugeführt wird.
Device for carrying out the method according to claim 1 , with a fire control computer ( 6) which is connected to a gun computer via a data transmission ( 17) , the fire control computer ( 6 ) at least has a lead computing unit ( 9 ), and the gun computer has at least one evaluation circuit ( 10 ) for determining the projectile speed (Vm) and an update computing unit ( 11 ), which on the input side for supplying the projectile speed (Vm) with the evaluation circuit ( 10 ) is connected and is connected on the output side to a programming part ( 23 ) of a measuring device ( 14 ) for the projectile speed (Vm),
characterized in that a correction computing unit ( 12 ) is provided for calculating the correction factor (K), the correction arithmetic unit ( 12 ) for the purpose of feeding the shooting elements on which the calculation is based gun angle (α, λ), lead speed (VOv) and disassembly or. Meeting time (Tz, Tf) is connected on the input side to the lead computing unit ( 9 ) via the data transmission ( 17 ), that the update computing unit ( 11 ) for the purpose of supplying the lead speed (VOv) and disassembling or. Meeting time (Tz, Tf) on the input side is connected to the lead computing unit ( 9 ) via the data transmission ( 17 ) and is connected to the correction computing unit ( 11 ) on the input side for the purpose of supplying the correction factor ( K ),
whereby the programmed person ( 23 ) is supplied with the corrected disassembly time (Tz (Vm)) determined in the update computing unit ( 11 ) via the output-side connection of the update computing unit ( 11 ).
EP96118045A 1996-04-19 1996-11-11 Method and device for identifying a corrected desintegration time of a programmable and frangible projectile Expired - Lifetime EP0802392B1 (en)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
CH99996 1996-04-19
CH999/96 1996-04-19
CH99996 1996-04-19

Publications (2)

Publication Number Publication Date
EP0802392A1 true EP0802392A1 (en) 1997-10-22
EP0802392B1 EP0802392B1 (en) 2000-10-18

Family

ID=4200096

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96118045A Expired - Lifetime EP0802392B1 (en) 1996-04-19 1996-11-11 Method and device for identifying a corrected desintegration time of a programmable and frangible projectile

Country Status (12)

Country Link
US (1) US5814756A (en)
EP (1) EP0802392B1 (en)
JP (1) JP3891618B2 (en)
KR (1) KR100436385B1 (en)
AT (1) ATE197091T1 (en)
AU (1) AU716410B2 (en)
CA (1) CA2190385C (en)
DE (1) DE59606026D1 (en)
NO (1) NO311953B1 (en)
SG (1) SG83656A1 (en)
TR (1) TR199600951A1 (en)
ZA (1) ZA969542B (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992762A1 (en) * 1998-10-08 2000-04-12 Oerlikon Contraves Ag Method and device for transmitting information to a programmable projectile
EP0992758A1 (en) 1998-10-08 2000-04-12 Oerlikon Contraves Ag Method and device for calculating and correcting the disintegration time of a spin-stabilized programmable projectile
WO2008098562A1 (en) * 2007-02-12 2008-08-21 Krauss-Maffei Wegmann Gmbh & Co. Kg Method and device for defence against airborne assault ammunition
DE102009011447A1 (en) * 2009-03-03 2010-09-30 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle
DE102011106198B3 (en) * 2011-06-07 2012-03-15 Rheinmetall Air Defence Ag Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
DE102011018248B3 (en) * 2011-04-19 2012-03-29 Rheinmetall Air Defence Ag Device and method for programming a projectile

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2761767B1 (en) * 1997-04-03 1999-05-14 Giat Ind Sa METHOD FOR PROGRAMMING IN FLIGHT A TRIGGERING MOMENT OF A PROJECTILE ELEMENT, FIRE CONTROL AND ROCKET IMPLEMENTING SUCH A METHOD
ES2185285T3 (en) * 1998-10-08 2003-04-16 Contraves Pyrotec Ag PROCEDURE FOR CORRECTING A PRE-PROGRAMMED ACTIVATION OF A PROCESS IN A PROJECT STABILIZED BY ROTATION, DEVICE FOR THE PERFORMANCE OF THE PROCEDURE AND USE OF THE DEVICE.
DE50309574D1 (en) 2003-02-26 2008-05-21 Rwm Schweiz Ag Method for programming the cutting of projectiles and guns with programming system
DE102011109658A1 (en) 2011-08-08 2013-02-14 Rheinmetall Air Defence Ag Device and method for protecting objects
US10514234B2 (en) 2013-03-27 2019-12-24 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
US11933585B2 (en) 2013-03-27 2024-03-19 Nostromo Holdings, Llc Method and apparatus for improving the aim of a weapon station, firing a point-detonating or an air-burst projectile
DE102013007229A1 (en) 2013-04-26 2014-10-30 Rheinmetall Waffe Munition Gmbh Method for operating a weapon system
CN110440827B (en) * 2019-08-01 2022-05-24 北京神导科讯科技发展有限公司 Parameter error calibration method and device and storage medium
SE545273C2 (en) 2019-09-30 2023-06-13 Bae Systems Bofors Ab Method for optimization of burst point and weapon system

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142442A (en) * 1971-12-08 1979-03-06 Avco Corporation Digital fuze
GB2107835A (en) * 1981-10-20 1983-05-05 Sfim Correcting, from one shot to the next, the firing of a weapon
US4449041A (en) * 1980-10-03 1984-05-15 Raytheon Company Method of controlling antiaircraft fire
EP0300255A1 (en) 1987-07-20 1989-01-25 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Digital counter setting apparatus for the initiation of a timed-detonator in a projectile
EP0467055A1 (en) * 1990-07-19 1992-01-22 Oerlikon-Contraves AG Receiving coil for the programmable fuse of a projectile

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3575085A (en) * 1968-08-21 1971-04-13 Hughes Aircraft Co Advanced fire control system
US4267776A (en) * 1979-06-29 1981-05-19 Motorola, Inc. Muzzle velocity compensating apparatus and method for a remote set fuze
US4283989A (en) * 1979-07-31 1981-08-18 Ares, Inc. Doppler-type projectile velocity measurement and communication apparatus, and method
DE3309147A1 (en) * 1983-03-15 1984-09-20 Rainer Dipl.-Phys. 6901 Gaiberg Berthold Method and arrangement for correcting an ignition time
US4750423A (en) * 1986-01-31 1988-06-14 Loral Corporation Method and system for dispensing sub-units to achieve a selected target impact pattern
FR2609165A1 (en) * 1986-12-31 1988-07-01 Thomson Brandt Armements PROJECTILE COMPRISING SUB-PROJECTILES WITH A PREFINED EFFICIENCY ZONE
GB2226624B (en) * 1987-12-12 1991-07-03 Thorn Emi Electronics Ltd Projectile
DE3830518A1 (en) * 1988-09-08 1990-03-22 Rheinmetall Gmbh DEVICE FOR SETTING A FLOOR TIME
US5140329A (en) * 1991-04-24 1992-08-18 Lear Astronics Corporation Trajectory analysis radar system for artillery piece
US5267502A (en) * 1991-05-08 1993-12-07 Sd-Scicon Uk Limited Weapons systems future muzzle velocity neural network
CA2082448C (en) * 1991-05-08 2002-04-30 Christopher Robert Gent Weapons systems
US5497704A (en) * 1993-12-30 1996-03-12 Alliant Techsystems Inc. Multifunctional magnetic fuze

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4142442A (en) * 1971-12-08 1979-03-06 Avco Corporation Digital fuze
US4449041A (en) * 1980-10-03 1984-05-15 Raytheon Company Method of controlling antiaircraft fire
GB2107835A (en) * 1981-10-20 1983-05-05 Sfim Correcting, from one shot to the next, the firing of a weapon
EP0300255A1 (en) 1987-07-20 1989-01-25 Werkzeugmaschinenfabrik Oerlikon-Bührle AG Digital counter setting apparatus for the initiation of a timed-detonator in a projectile
EP0467055A1 (en) * 1990-07-19 1992-01-22 Oerlikon-Contraves AG Receiving coil for the programmable fuse of a projectile

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0992762A1 (en) * 1998-10-08 2000-04-12 Oerlikon Contraves Ag Method and device for transmitting information to a programmable projectile
EP0992758A1 (en) 1998-10-08 2000-04-12 Oerlikon Contraves Ag Method and device for calculating and correcting the disintegration time of a spin-stabilized programmable projectile
US6422119B1 (en) 1998-10-08 2002-07-23 Oerlikon Contraves Ag Method and device for transferring information to programmable projectiles
US6427598B1 (en) 1998-10-08 2002-08-06 Oerlikon Contraves Ag Method and device for correcting the predetermined disaggregation time of a spin-stabilized programmable projectile
WO2008098562A1 (en) * 2007-02-12 2008-08-21 Krauss-Maffei Wegmann Gmbh & Co. Kg Method and device for defence against airborne assault ammunition
DE102009011447A1 (en) * 2009-03-03 2010-09-30 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle
DE102009011447B4 (en) * 2009-03-03 2012-01-19 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle
DE102009011447B9 (en) * 2009-03-03 2012-08-16 Diehl Bgt Defence Gmbh & Co. Kg Method for igniting a warhead of a grenade and vehicle
DE102011018248B3 (en) * 2011-04-19 2012-03-29 Rheinmetall Air Defence Ag Device and method for programming a projectile
WO2012143218A1 (en) 2011-04-19 2012-10-26 Rheinmetall Air Defence Ag Device and method for programming a projectile
DE102011106198B3 (en) * 2011-06-07 2012-03-15 Rheinmetall Air Defence Ag Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
WO2012168190A1 (en) 2011-06-07 2012-12-13 Rheinmetall Air Defence Ag Method for determining the muzzle velocity of a projectile

Also Published As

Publication number Publication date
KR970070941A (en) 1997-11-07
CA2190385C (en) 2003-05-20
TR199600951A1 (en) 1997-11-21
ZA969542B (en) 1997-06-17
EP0802392B1 (en) 2000-10-18
NO311953B1 (en) 2002-02-18
US5814756A (en) 1998-09-29
DE59606026D1 (en) 2000-11-23
NO964755D0 (en) 1996-11-08
ATE197091T1 (en) 2000-11-15
JP3891618B2 (en) 2007-03-14
AU7172996A (en) 1997-10-23
NO964755L (en) 1997-10-20
AU716410B2 (en) 2000-02-24
KR100436385B1 (en) 2004-08-25
SG83656A1 (en) 2001-10-16
CA2190385A1 (en) 1997-10-20
JPH09280799A (en) 1997-10-31

Similar Documents

Publication Publication Date Title
EP0802391B1 (en) Method of identifying a corrected disintegration time of a programmable and frangible projectile
EP0802392B1 (en) Method and device for identifying a corrected desintegration time of a programmable and frangible projectile
DE69708343T2 (en) Passive speed data system
DE2605374C3 (en) Device for digitally setting a counter for triggering a timer in a projectile
EP0300255B1 (en) Digital counter setting apparatus for the initiation of a timed-detonator in a projectile
EP1726911A1 (en) Method and device for time setting and for correcting the ignition time in a projectile
DE2210277A1 (en) Electronic ignition system
EP0802390B1 (en) Method for identifying a corrected desintegration time of a programmable and frangible projectile
EP0769673B1 (en) Method and device to program time fuses for projectiles
EP0529489B1 (en) A firing miss-measuring method and installation for firing at a movable airborne target with a gun comprising at leat two barrels
EP1482311B1 (en) Device and method for the determination of the muzzle velocity of a projectile
EP2699871B1 (en) Device and method for programming a projectile
DE2452586C3 (en) Method and device for determining the duration of the flight path of a projectile
DE2528402C2 (en) Passive IR distance detonator
DE1623362C3 (en) Device for igniting an explosive charge or for triggering a function
EP0992761B1 (en) Method for correcting the preprogrammed triggering of a process in a spin-stabilized projectile, device for carrying out said method and use of this device
DE102011106198B3 (en) Method for determining muzzle exit velocity of air burst munition, involves determining correction factor, and weighing correction factor, and correcting measured muzzle exit velocity of following blast using weighed correction factor
DE60219564T2 (en) A method of adjusting a projectile fuse, programmer and timing fuse used in such a method
EP0992762B1 (en) Method and device for transmitting information to a programmable projectile
CH656453A5 (en) Device for firing simulation using light pulses
EP0992758A1 (en) Method and device for calculating and correcting the disintegration time of a spin-stabilized programmable projectile
DE3716450C1 (en) Setting electronic timer for munition detonator - entering type, temp. of drive charge weather and target data in fuse ignition computer
EP2226607A2 (en) Method for igniting a warhead of a grenade and vehicle
EP0348985A2 (en) Fuse for explosive projectiles
DE3903802C2 (en)

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19971211

17Q First examination report despatched

Effective date: 19990526

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR IDENTIFYING A CORRECTED DESINTEGRATION TIME OF A PROGRAMMABLE AND FRANGIBLE PROJECTILE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: OERLIKON CONTRAVES AG

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

RTI1 Title (correction)

Free format text: METHOD AND DEVICE FOR IDENTIFYING A CORRECTED DESINTEGRATION TIME OF A PROGRAMMABLE AND FRANGIBLE PROJECTILE

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE FR GB IT LI NL SE

REF Corresponds to:

Ref document number: 197091

Country of ref document: AT

Date of ref document: 20001115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59606026

Country of ref document: DE

Date of ref document: 20001123

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001108

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: OK PAT AG

ET Fr: translation filed
ITF It: translation for a ep patent filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20101112

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101118

Year of fee payment: 15

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59606026

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R084

Ref document number: 59606026

Country of ref document: DE

Effective date: 20111021

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20111110

Year of fee payment: 16

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20111219

Ref country code: DE

Ref legal event code: R082

Ref document number: 59606026

Country of ref document: DE

Representative=s name: THUL PATENTANWALTSGESELLSCHAFT MBH, DE

Effective date: 20120523

Ref country code: DE

Ref legal event code: R081

Ref document number: 59606026

Country of ref document: DE

Owner name: RHEINMETALL AIR DEFENCE AG, CH

Free format text: FORMER OWNER: OERLIKON-CONTRAVES AG, ZUERICH, CH

Effective date: 20120523

BERE Be: lapsed

Owner name: *OERLIKON CONTRAVES A.G.

Effective date: 20121130

REG Reference to a national code

Ref country code: AT

Ref legal event code: MM01

Ref document number: 197091

Country of ref document: AT

Kind code of ref document: T

Effective date: 20121111

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20121111

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20141119

Year of fee payment: 19

Ref country code: DE

Payment date: 20141119

Year of fee payment: 19

Ref country code: FR

Payment date: 20141119

Year of fee payment: 19

Ref country code: CH

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20141119

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20141125

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59606026

Country of ref document: DE

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151111

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20151201

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20160729

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151112

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20160601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20151130