EP0786531B1 - Process and installation for remelting of metals to a strand - Google Patents
Process and installation for remelting of metals to a strand Download PDFInfo
- Publication number
- EP0786531B1 EP0786531B1 EP96120752A EP96120752A EP0786531B1 EP 0786531 B1 EP0786531 B1 EP 0786531B1 EP 96120752 A EP96120752 A EP 96120752A EP 96120752 A EP96120752 A EP 96120752A EP 0786531 B1 EP0786531 B1 EP 0786531B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- billet
- chill mould
- cross
- electrode
- section
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims description 24
- 229910052751 metal Inorganic materials 0.000 title claims description 7
- 239000002184 metal Substances 0.000 title claims description 7
- 150000002739 metals Chemical class 0.000 title claims description 6
- 238000009434 installation Methods 0.000 title 1
- 238000002844 melting Methods 0.000 claims description 25
- 230000008018 melting Effects 0.000 claims description 25
- 239000002893 slag Substances 0.000 claims description 23
- 238000005266 casting Methods 0.000 claims description 17
- 229910000831 Steel Inorganic materials 0.000 claims description 7
- 239000010959 steel Substances 0.000 claims description 7
- 229910045601 alloy Inorganic materials 0.000 claims description 5
- 239000000956 alloy Substances 0.000 claims description 5
- 238000009749 continuous casting Methods 0.000 description 3
- 229910001338 liquidmetal Inorganic materials 0.000 description 3
- 238000004519 manufacturing process Methods 0.000 description 3
- 239000000155 melt Substances 0.000 description 3
- 238000012360 testing method Methods 0.000 description 3
- 230000015572 biosynthetic process Effects 0.000 description 2
- 238000005520 cutting process Methods 0.000 description 2
- 238000009826 distribution Methods 0.000 description 2
- 230000002285 radioactive effect Effects 0.000 description 2
- 229910018072 Al 2 O 3 Inorganic materials 0.000 description 1
- 229910000851 Alloy steel Inorganic materials 0.000 description 1
- 229910004261 CaF 2 Inorganic materials 0.000 description 1
- 229910000669 Chrome steel Inorganic materials 0.000 description 1
- 229910000997 High-speed steel Inorganic materials 0.000 description 1
- 238000013459 approach Methods 0.000 description 1
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 description 1
- 238000004320 controlled atmosphere Methods 0.000 description 1
- 238000001816 cooling Methods 0.000 description 1
- 238000005265 energy consumption Methods 0.000 description 1
- 238000005516 engineering process Methods 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 230000002349 favourable effect Effects 0.000 description 1
- 238000005242 forging Methods 0.000 description 1
- 230000008014 freezing Effects 0.000 description 1
- 238000007710 freezing Methods 0.000 description 1
- 238000005259 measurement Methods 0.000 description 1
- 238000010309 melting process Methods 0.000 description 1
- 239000000203 mixture Substances 0.000 description 1
- 229910052760 oxygen Inorganic materials 0.000 description 1
- 239000001301 oxygen Substances 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000007670 refining Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 238000004381 surface treatment Methods 0.000 description 1
- 239000000725 suspension Substances 0.000 description 1
Images
Classifications
-
- C—CHEMISTRY; METALLURGY
- C22—METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
- C22B—PRODUCTION AND REFINING OF METALS; PRETREATMENT OF RAW MATERIALS
- C22B9/00—General processes of refining or remelting of metals; Apparatus for electroslag or arc remelting of metals
- C22B9/16—Remelting metals
- C22B9/18—Electroslag remelting
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22D—CASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
- B22D23/00—Casting processes not provided for in groups B22D1/00 - B22D21/00
- B22D23/06—Melting-down metal, e.g. metal particles, in the mould
- B22D23/10—Electroslag casting
Definitions
- the invention relates to a process for continuous remelting of metals - especially of steels as well as Ni and Co-base alloys - to a strand by melting at least a self-consuming electrode in an electrically conductive Slag bath, which is in a short, open at the bottom Mold is provided.
- the invention also relates to a device to carry out this procedure.
- DE 1 932 763 A is a device for carrying out the Electro-slag refining process with a water-cooled, vertically arranged mold for raw blocks in particular high-alloy steel; this mold is double-walled and offers you the outer dimensions of the one to be created Raw block determining lower area, its inner cross section at most equal to the cross section of one in a warm one Slag bath is consumable electrode to be melted, wherein the lower mold area preferably in an upward direction merges conically widening intermediate area and this again in an expanded upper mold area.
- the lower mold area preferably in an upward direction merges conically widening intermediate area and this again in an expanded upper mold area.
- GB 1 413 508 A discloses a mold in the mold wall installed a non-consumable current-conducting element as well connected to the power supply via a rectifier is that both the electrode and the casting cross section - - in relation to the non-consumable element - constantly electric are negatively polarized.
- the mold takes on a funnel-shaped part that extends upwards Slag bath and thus enables melting of Electrodes whose cross-section is that of the remelting block to be produced is.
- the melting rates at ESU procedure maximum 100 - 200 kg per hour for the same Formats. This results in sump depths during continuous casting between 4 m and 8 m.
- the swamp depths in the ESU procedure measure 100 to 300 mm.
- the inventor was aware of this state of the art set the goal of eliminating the identified shortcomings and an improved process for electro-slag strand melting of metals.
- the melting rate in kg / h corresponds to 5-15 times the equivalent diameter D eq in mm and the ratio of the cross-sectional area of the melting electrode / s to the cross-sectional area of the one to be produced Pouring cross section is equal to or greater than 1.0. In this case, it must be remelted in a funnel or T mold known per se, the newly formed strand being formed in the lower, narrower part of the mold and the slag bath located above the casting level extending into the funnel-shaped part, where the Dip the tip of the melting electrode into it.
- the mold can be fixed in a work platform be installed and the strand pulled down become.
- the strand also likes on a fixed one Base plate built up and the mold raised in the way become as the strand grows. Pulling the Strands or lifting the mold can continuously or step by step.
- the step length of the Counter stroke step up to 60% of the step length of the trigger stroke step can be.
- melt current flows through the slag between the electrode tip and melting sump or in biphilar or three-phase systems between the electrodes.
- Such a current flow is also in the invention Procedure possible.
- the electrode is connected to one pole of the transformer is while the second pole of the transformer at the same time both with the strand and with at least one current-conducting element built into the mold wall connected is; this current-conducting element is in one extended upper mold part provided, in which the Slag bath in and at the bottom of the The outlet section determining the strand cross section connects.
- One pole one - either AC or DC emitting - current source 10 is via a supply line 12 with a suspension device 14 of a melting electrode 16 connected.
- the electrode 16 is by a in the Drawing not shown in detail moves that the free electrode end 17 always in one Slag bath 18 immersed.
- the slag bath 18 is provided in a mold 20 which in its funnel-like mold bottom 22 a tubular outlet part 24 for a resultant therein Remelting strand 26 has a diameter D. At the top The edge of its wall 28 has the mold 20 projecting radially Flange 30 on, as a support for a counter flange 32 of a gas-tight mountable electrode 16 surrounding hood 34 is used.
- the current supply to the other pole of the current source 10 takes place either on the line 26 via drive rollers 36 designed as current collectors and a high current return line 40 containing a high current isolator 38 or via current collectors 42 built into the mold wall 28 and another high current return line 40 a connected thereto with high current isolator 38 a . It is also possible to carry current together via line 26 and current collector 42; the return line is selected by actuating the high-current isolators 38 or 38 a mentioned.
- the proportion of the currents flowing through the current collectors 42 and the drive rollers 36 as contacts - if both of the high-current isolators 38, 38 a provided in the respective high-current return lines 40, 40 a are switched so that current passage is possible - depends on the ratio of the resistances in Slag bath 18 from. These are determined by the height of the slag bath 18 in relation to the current collectors 42 or the distance of the free end 17 of the electrode 16 from the metal mirror 44 in the mold 20 for the remelting strand 26 solidifying in its outlet part 24.
- the remelting strand 26 is correspondingly driven by the drive rollers 36 the melting of the melting electrode 16 is lowered and the mirror 44 of the liquid metal in the narrower Outlet part 24 of the mold 20 through a control device, in particular a radioactive radiation source 46, supervised.
- a control device in particular a radioactive radiation source 46, supervised.
- Drive rollers 36 serve Drive rollers 36 also as a contact for the current return 40 from strand 26 to power source 10.
- a cutting of the desired product sections from the remelting strand 26 is indicated, for example, by one at 48 Flame cutting system possible.
- the first melting electrode 16 If the first melting electrode 16 is consumed, it can be removed from the melting area by means (not shown) and replaced by a new electrode 16 a , which reaches the melting position from a waiting position outlined on the right, so that the melting process can be continued ; Continuous operation is made possible by melting several electrodes 16 in succession.
- the electrode 16 , 16 a and the slag bath 18 are protected against air access by the hood 34 , 34 a, which is sealed against the mold flange 30 by means of its counter flange 32.
- the remelting can controlled atmosphere and in the absence of atmospheric oxygen take place, with which also the generation ultra-pure remelting strands 26 allows and a burn oxygen-affine elements is prevented.
- Fuse electrodes 16 are used, their cross-sectional area in relation to the casting cross-section as large can be designated.
- the mold stroke was adjusted so that the steel level was kept about 20 to 30 mm below the funnel approach in the lower mold part with a diameter of 160 mm .
- the electrical output was 750 kW at 10 KA and 75 Volts set in the slag bath 18, the energy being about the electrode 16 is introduced into the slag bath 18 and both over the strand 26 as well as over the mold wall 28 derived from the funnel-shaped upper part has been.
- the mold was 20 with a medium speed of 87 to 95 mm / min. raised, the lifting gradually with about 10 mm stride length.
- the stroke rate was over a radioactive casting level measurement checked and controlled.
- a strand 26 of approximately 3.0 m in length was produced.
- the Surface quality was good, so that before hot working no surface treatment was required.
- Strand 26 became a stick with 100 mm square without difficulty pre-forged on a forging hammer.
- the metallographic testing showed a uniform fine-grain carbide distribution. Center increases were not found.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Mechanical Engineering (AREA)
- Manufacturing & Machinery (AREA)
- Materials Engineering (AREA)
- Metallurgy (AREA)
- Organic Chemistry (AREA)
- Manufacture And Refinement Of Metals (AREA)
- Continuous Casting (AREA)
Description
Die Erfindung betrifft ein Verfahren zum kontinuierlichen Umschmelzen von Metallen -- insbesondere von Stählen sowie Ni- und Co-Basislegierungen -- zu einem Strang durch Abschmelzen zumindest einer selbstverzehrenden Elektrode in einem elektrisch leitenden Schlackenbad, das in einer kurzen, nach unten offenen Kokille vorgesehen ist. Zudem erfaßt die Erfindung eine Vorrichtung zur Durchführung dieses Verfahrens.The invention relates to a process for continuous remelting of metals - especially of steels as well as Ni and Co-base alloys - to a strand by melting at least a self-consuming electrode in an electrically conductive Slag bath, which is in a short, open at the bottom Mold is provided. The invention also relates to a device to carry out this procedure.
Bei der Herstellung von beispielsweise hochlegierten Werkzeugstählen -- wie etwa Schnellarbeitsstählen, ledeburitischen Chromstählen oder anderen stark seigernden Stählen und Legierungen -- ist das Erzeugen kontinuierlich gegossener Stränge kleiner bis mittlerer Querschnitte mit Problemen verbunden.In the production of high-alloy tool steels, for example - such as high-speed steels, ledeburitic Chrome steels or other strongly segregating steels and alloys - The production of continuously cast strands is smaller to medium cross-sections associated with problems.
Der DE 1 932 763 A ist eine Einrichtung zur Durchführung des Elektroschlackenraffinierverfahrens mit einer wassergekühlten, vertikal angeordneten Kokille für Rohblöcke insbesondere aus hochlegiertem Stahl zu entnehmen; diese Kokille ist doppelwandig und bietet einen die Außenabmessungen des zu erzeugenden Rohblockes bestimmenden unteren Bereich an, dessen innerer Querschnitt höchstens gleich dem Querschnitt einer in einem warmen Schlackenbad zu erschmelzenden verbrauchbaren Elektrode ist, wobei der untere Kokillenbereich in einen sich nach oben vorzugsweise konisch erweiternden Zwischenbereich übergeht und dieser wiederum in einen erweiterten oberen Kokillenbereich. Hier nimmt der Strom den Weg zum Rohblock über das Schlackenbad.DE 1 932 763 A is a device for carrying out the Electro-slag refining process with a water-cooled, vertically arranged mold for raw blocks in particular high-alloy steel; this mold is double-walled and offers you the outer dimensions of the one to be created Raw block determining lower area, its inner cross section at most equal to the cross section of one in a warm one Slag bath is consumable electrode to be melted, wherein the lower mold area preferably in an upward direction merges conically widening intermediate area and this again in an expanded upper mold area. Here takes the stream made its way to the ingot through the slag bath.
Die GB 1 413 508 A offenbart eine Kokille, in deren Kokillenwand ein nichtverzehrbares stromleitendes Element eingebaut sowie über einen Gleichrichter so mit der Stromversorgung verbunden ist, dass sowohl die Elektrode als auch der Gießquerschnitt -- -- in Bezug auf das nichtverzehrbare Element -- ständig elektrisch negativ gepolt sind.GB 1 413 508 A discloses a mold in the mold wall installed a non-consumable current-conducting element as well connected to the power supply via a rectifier is that both the electrode and the casting cross section - - in relation to the non-consumable element - constantly electric are negatively polarized.
Aus DE 1 483 646 A und AT 320 884 B sind ebenfalls Varianten des Elektroschlacke-Umschmelzverfahrens bekannt. Die dort beschriebenen Verfahren mit selbstverzehrenden Elektroden ermöglichen das Herstellen von Umschmelzblöcken mit guter Oberfläche bei langsamer Blockaufbaugeschwindigkeit. Die dabei auftretenden geringen Sumpftiefen führen zu einer gleichmäßigen Erstarrung zwischen Rand und Kern und damit zu einer guten Innenqualität der umgeschmolzenen Blöcke. Die Anwendung kurzer Kokillen mit absenkbaren Bodenplatten und Elektrodenwechsel erlaubt auch hier das Bilden relativ langer Stränge. Bei der Herstellung kleiner Abmessungen wird jedoch die Erzeugung der erforderlichen Abschmelzelektroden schwierig, und die Verfahrenskosten aufgrund der dann geringen Umschmelzraten werden hoch.From DE 1 483 646 A and AT 320 884 B there are also variants of the Electroslag remelting process known. The ones described there Enable self-consuming electrodes the production of remelting blocks with a good surface slow block build speed. The small ones that occur Swamp depths lead to an even Solidification between edge and core and thus to one good internal quality of the remelted blocks. The application short molds with lowerable base plates and electrode change allows relatively long formation here, too Strands. When producing small dimensions, however the generation of the required consumable electrodes difficult, and the procedural costs due to the then low Remelting rates are high.
Um das Problem der Herstellbarkeit von Elektroden mit kleinen Querschnitten zu umgehen, wurde der Einsatz sog. Trichter- oder T-Kokillen vorgeschlagen; die Kokille nimmt in einem nach oben trichterförmig erweiterten Teil das Schlackenbad auf und ermöglicht so ein Abschmelzen von Elektroden, deren Querschnitt der des herzustellenden Umschmelzblockes ist.To the problem of the manufacturability of electrodes with small To avoid cross-sections, the use of so-called funnel or T-chill proposed; the mold takes on a funnel-shaped part that extends upwards Slag bath and thus enables melting of Electrodes whose cross-section is that of the remelting block to be produced is.
Während beim Stranggießen von Formaten zwischen 100 und 200 mm -- rund oder quadrat -- selbst bei langsamem Gießen Gießleistungen von mindestens 5 bis 10 t je Stunde und Strang erforderlich sind, betragen die Abschmelzraten beim ESU-Verfahren maximal 100 - 200 kg je Stunde bei denselben Formaten. Beim Stranggießen ergeben sich damit Sumpftiefen zwischen 4 m und 8 m. Die Sumpftiefen beim ESU-Verfahren messen dagegen 100 bis 300 mm.While in the continuous casting of formats between 100 and 200 mm - round or square - even with slow pouring Casting capacities of at least 5 to 10 t per hour and Strand are required, the melting rates at ESU procedure maximum 100 - 200 kg per hour for the same Formats. This results in sump depths during continuous casting between 4 m and 8 m. The swamp depths in the ESU procedure measure 100 to 300 mm.
Bei einer anderen Verfahrensweise wird nach AT-PS 399.463 vorgeschlagen, Stränge aus hochlegierten Stählen mit wesentlich geringeren Gießgeschwindigkeiten -- als sie beim Stranggießen üblich sind -- zu gießen, um eine verbesserte Kernzone zu erreichen bei gleichzeitiger Abdeckung des Gießspiegels durch ein elektrisch beheiztes Schlackenbad, um keine Nachteile hinsichtlich der Ausbildung der Oberfläche aufgrund zu starker Abkühlung in Kauf nehmen zu müssen. Dabei wird vorausgesetzt, daß das flüssige Metall über längere Zeit mit konstanter Temperatur aus einer beheizbaren Pfanne verfügbar gemacht werden kann. Another procedure is according to AT-PS 399.463 proposed strands of high-alloy steels with essential lower casting speeds - than with Continuous casting are common - casting to improve To reach the core zone while covering the Pouring mirror through an electrically heated slag bath, no disadvantages with regard to the formation of the surface have to put up with due to excessive cooling. It is assumed that the liquid metal over a longer period Time with constant temperature from a heatable Pan can be exposed.
Bei diesem Verfahren stellt sich vielfach wieder das Problem des Warmhaltens größerer Flüssigmetallmengen über einen längeren Zeitraum. Dies ist insbesondere dann von Bedeutung, wenn nur mit einem Strang gearbeitet wird. So ergeben sich beispielsweise beim Vergießen von Schmelzen mit 25 t Gesamtgewicht zu einem Strang mit z.B. 150 mm Durchmesser mit einer Gießrate von beispielsweise 2000 kg/h Gießzeiten von 12,5 Stunden. Während dieser Zeit muß die Schmelze in einem Zwischengefäß oder einer Pfanne warmgehalten werden, was wiederum entsprechende Energieverluste und einen Verbrauch an feuerfester Ausmauerung zur Folge hat.The problem often arises with this method keeping larger quantities of liquid metal warm a longer period. This is particularly important if only one strand is used. So surrendered for example when casting melts 25 t total weight to one strand with e.g. 150 mm diameter with a pouring rate of, for example, 2000 kg / h Casting times of 12.5 hours. During this time the Keep the melt warm in an intermediate vessel or pan be, which in turn corresponding energy losses and a consumption of refractory lining Has.
Andererseits besteht auch das Problem der Kontrolle der Gießgeschwindigkeit im Bereich von 2000 kg/h, da die hier zum Einsatz kommenden Ausgüsse mit etwa 8 mm Ausgußöffnung bei niedrigen Gießtemperaturen zum Einfrieren oder Zuschmieren neigen.On the other hand, there is also the problem of controlling the Casting speed in the range of 2000 kg / h, since the here used spouts with about 8 mm spout opening at low pouring temperatures for freezing or smearing tend.
In Kenntnis dieses Standes der Technik hat sich der Erfinder das Ziel gesetzt, die erkannten Mängel zu beseitigen und ein verbessertes Verfahren zum Elektroschlacke-Strangschmelzen von Metallen anzubieten.The inventor was aware of this state of the art set the goal of eliminating the identified shortcomings and an improved process for electro-slag strand melting of metals.
Zur Lösung dieser Aufgabe führt die Lehre der unabhängigen Patentansprüche; die Unteransprüche geben günstige Wieterbildungen an.The teaching of the independent leads to the solution of this task Claims; the subclaims give favorable residences on.
Erfindungsgemäß soll die Abschmelzrate in kg/h dem 1,5 bis 30-fachen des Strangdurchmessers -- vor allem des aus dem Umfang (U) des Gießquerschnitts errechneten äquivalenten Strangdurchmessers gemäß der Beziehung Däq = U/π -- entsprechen, wobei das Verhältnis der Querschnittsfläche einer oder mehrerer Abschmelzelektroden zur Querschnittsfläche des Gießquerschnitts größer als 0,5 gewählt wird. According to the invention, the melting rate in kg / h should correspond to 1.5 to 30 times the strand diameter - above all the equivalent strand diameter calculated from the circumference (U) of the casting cross section in accordance with the relationship D equ = U / π, the ratio the cross-sectional area of one or more melting electrodes for the cross-sectional area of the casting cross section is selected to be greater than 0.5.
Versuche haben nämlich gezeigt, daß die eingangs geschilderten Nachteile der einzelnen bekannt gewordenen Verfahren in überraschend einfacher Weise vermieden bzw. umgangen werden können, wenn beim an sich bekannten Elektroschlacke-Umschmelzverfahren mit erheblich höheren Abschmelzraten gearbeitet wird als bisher, wenn gleichzeitig Abschmelzelektroden mit einem im Vergleich zum Gießquerschnitt großen Querschnitt verwendet werden. Gute Ergebnisse werden bereits erzielt, wenn die Querschnittsfläche der Abschmelzelektrode/n mindestens 50 % der Querschnittsfläche des herzustellenden Stranges beträgt. Die erfindungsgemäßen Werte der erwähnten Abschmelzraten in kg/h sollen bei Rundquerschnitten mindestens das 1,5-fache -- aber nicht mehr als das 30-fache -- des Durchmessers in mm betragen. Bei vom Rundquerschnitt abweichenden Strangformen kann ohne weiteres mit jenem Wert für den äquivalenten Durchmesser Däq gearbeitet werden.Experiments have shown that the disadvantages of the individual methods disclosed at the outset can be avoided or circumvented in a surprisingly simple manner if the known electroslag remelting method is used with considerably higher melting rates than previously, if at the same time melting electrodes are compared with one large cross-section can be used for the casting cross-section. Good results are already achieved when the cross-sectional area of the melting electrode (s) is at least 50% of the cross-sectional area of the strand to be produced. The values according to the invention of the mentioned melting rates in kg / h for round cross sections should be at least 1.5 times - but not more than 30 times - the diameter in mm. In the case of strand shapes deviating from the round cross section, it is readily possible to work with that value for the equivalent diameter D equ .
Besonders gute Ergebnisse hinsichtlich Energieverbrauch und Qualität der Oberfläche bei gleichzeitig guter Zentrumsstruktur werden erzielt, wenn die Abschmelzrate in kg/h dem 5-15-fachen des äquivalenten Durchmessers Däq in mm entspricht und das Verhältnis der Querschnittsfläche der Abschmelzelektrode/n zur Querschnittsfläche des herzustellenden Gießquerschnitts gleich oder größer ist als 1,0. In diesem Fall muß in einer an sich bekannten Trichter- oder T-Kokille umgeschmolzen werden, wobei der neu gebildete Strang im unteren, engeren Teil der Kokille gebildet wird und das über dem Gießspiegel befindliche Schlackenbad bis in den trichterförmig erweiterten Teil reicht, wo dann die Spitze der Abschmelzelektrode in diese eintaucht.Particularly good results with regard to energy consumption and surface quality with a good center structure are achieved if the melting rate in kg / h corresponds to 5-15 times the equivalent diameter D eq in mm and the ratio of the cross-sectional area of the melting electrode / s to the cross-sectional area of the one to be produced Pouring cross section is equal to or greater than 1.0. In this case, it must be remelted in a funnel or T mold known per se, the newly formed strand being formed in the lower, narrower part of the mold and the slag bath located above the casting level extending into the funnel-shaped part, where the Dip the tip of the melting electrode into it.
Dieses hier vom Prinzip her geschilderte vorteilhafte erfindungsgemäße Verfahren kann in vielfacher Weise an die Erfordernisse des Betreibers angepaßt werden. This advantageous principle according to the invention described here in principle The procedure can be followed in many ways Operator requirements are adjusted.
So kann beispielsweise die Kokille fest in einer Arbeitsbühne eingebaut sein und der Strang nach unten abgezogen werden. Der Strang mag aber auch auf einer feststehenden Bodenplatte aufgebaut und die Kokille in der Weise angehoben werden, wie der Strang anwächst. Das Abziehen des Stranges bzw. Anheben der Kokille können kontinuierlich oder schrittweise erfolgen.For example, the mold can be fixed in a work platform be installed and the strand pulled down become. The strand also likes on a fixed one Base plate built up and the mold raised in the way become as the strand grows. Pulling the Strands or lifting the mold can continuously or step by step.
Ferner besteht die Möglichkeit, die Kokille oszillieren zu lassen, was insbesondere bei einem kontinuierlichen Strangabzug von Interesse sein wird.There is also the possibility of oscillating the mold let what especially with a continuous Strand withdrawal will be of interest.
Im Falle einer schrittweisen Strangabzugs- oder Kokillenhubbewegung kann zusätzlich an jeden Hubschritt unmittelbar ein Gegenhubschritt anschließen, wobei die Schrittlänge des Gegenhubschritts bis zu 60 % der Schrittlänge des Abzugs-Hubschritts betragen kann.In the event of a gradual strand withdrawal or mold lifting movement can also directly at each lifting step connect a counter stroke step, the step length of the Counter stroke step up to 60% of the step length of the trigger stroke step can be.
Beim konventionellen Elektroschlacke-Umschmelzverfahren fließt der Schmelzstrom durch die Schlacke zwischen Elektrodenspitze und Schmelzsumpf oder bei biphilaren oder dreiphasig angespeisten Anlagen zwischen den Elektroden. Eine derartige Stromführung ist auch beim erfindungsgemäßen Verfahren möglich.In the conventional electroslag remelting process the melt current flows through the slag between the electrode tip and melting sump or in biphilar or three-phase systems between the electrodes. Such a current flow is also in the invention Procedure possible.
Wenn mit trichterförmigen Kokillen gearbeitet wird, werden auch gute Ergebnisse mit einer Stromführung zwischen Elektrode und Kokillenwand erzielt.When working with funnel-shaped molds, also good results with current routing between electrodes and mold wall achieved.
Zu besonders guten Ergebnissen hinsichtlich der Wärmeverteilung im Schlackenbad führt eine Anordnung, bei welcher die Elektrode mit dem einen Pol des Transformators verbunden ist, während der zweite Pol des Transformators gleichzeitig sowohl mit dem Strang als auch mit zumindest einem in die Kokillenwand eingebauten stromleitenden Element verbunden ist; dieses stromleitende Element ist in einem erweiterten oberen Kokillenteil vorgesehen, in welchen das Schlackenbad hineinreicht und an den nach unten hin ein den Strangquerschnitt bestimmender Auslaufteil anschließt. For particularly good results with regard to heat distribution in the slag bath there is an arrangement in which the electrode is connected to one pole of the transformer is while the second pole of the transformer at the same time both with the strand and with at least one current-conducting element built into the mold wall connected is; this current-conducting element is in one extended upper mold part provided, in which the Slag bath in and at the bottom of the The outlet section determining the strand cross section connects.
Weitere Vorteile, Merkmale und Einzelheiten der Erfindung ergeben sich aus der nachfolgenden Beschreibung eines bevorzugten Ausführungsbeispiels sowie anhand der Zeichnung; diese zeigt in ihrer einzigen Figur einen skizzenhaften Längsschnitt durch eine Vorrichtung zum Elektroschlacke-Strangschmelzen von Metallen mit einer seitlichen Elektrode in Wartestellung.Further advantages, features and details of the invention emerge from the following description of a preferred Embodiment and with reference to the drawing; in its only figure, this shows a sketchy one Longitudinal section through a device for electro-slag strand melting of metals with a side electrode on hold.
Der eine Pol einer -- entweder Wechselstrom oder Gleichstrom
abgebenden -- Stromquelle 10 ist über eine Zuleitung
12 mit einer Aufhängeeinrichtung 14 einer Abschmelzelektrode
16 verbunden. Die Elekrode 16 wird durch eine in der
Zeichnung nicht im einzelnen wiedergegebene Einrichtung so
bewegt, daß das freie Elektrodenende 17 stets in ein
Schlackenbad 18 eintaucht.One pole one - either AC or DC
emitting -
Das Schlackenbad 18 ist in einer Kokille 20 vorgesehen, die
in ihrem querschnittlich trichterartigen Kokillenboden 22
ein rohrartiges Auslaufteil 24 für einen darin entstehenden
Umschmelzstrang 26 eines Durchmessers D aufweist. Am oberen
Rand ihrer Wand 28 weist die Kokille 20 einen radial auskragenden
Flansch 30 auf, der als Auflager für einen Gegenflansch
32 einer gasdicht aufsetzbaren, die Elektrode 16
umgebenden Haube 34 dient.The
Die Stromzuführung zum anderen Pol der Stromquelle 10 erfolgt
entweder am Strang 26 über als Stromabnehmer ausgebildete
Treibrollen 36 und eine -- einen Hochstromtrenner
38 enthaltende -- Hochstromrückleitung 40 oder aber über in
die Kokillenwand 28 eingebaute Stromabnehmer 42 und eine
andere, daran anschließende Hochstromrückleitung 40a mit
Hochstromtrenner 38a. Möglich ist auch eine Stromführung
über Strang 26 und Stromabnehmer 42 gemeinsam; dabei wird
die Rückleitung durch Betätigen der erwähnten Hochstromtrenner
38 bzw. 38a gewählt. The current supply to the other pole of the
Der Anteil der über die Stromabnehmer 42 und die Treibrollen
36 als Kontakte fließenden Ströme -- wenn beide in den
jeweiligen Hochstromrückleitungen 40, 40a vorgesehenen Hochstromtrenner
38, 38a so geschaltet sind, daß ein Stromdurchgang
ermöglicht wird -- hängt vom Verhältnis der Widerstände
im Schlackenbad 18 ab. Diese werden von der Höhe des
Schlackenbades 18 in Bezug auf die Stromabnehmer 42 bzw.
den Abstand des freien Endes 17 der Elektrode 16 vom Metallspiegel
44 in der Kokille 20 für den in deren Auslaufteil
24 erstarrenden Umschmelzstrang 26 bestimmt.The proportion of the currents flowing through the
Der Umschmelzstrang 26 wird durch die Treibrollen 36 entsprechend
dem Abschmelzen der Abschmelzelektrode 16 abgesenkt
und der Spiegel 44 des flüssigen Metalls im engeren
Auslaufteil 24 der Kokille 20 durch eine Kontrolleinrichtung,
insbesondere eine radioaktive Strahlenquelle 46,
überwacht. Gleichzeitig dienen -- wie schon beschrieben --die
Treibrollen 36 auch als Kontakt für die Stromrückleitung
40 vom Strang 26 zur Stromquelle 10.The remelting
Ein Ablängen der gewünschten Erzeugnisabschnitte vom Umschmelzstrang
26 ist beispielsweise durch eine bei 48 angedeutete
Brennschneideanlage möglich.A cutting of the desired product sections from the remelting
Ist die erste Abschmelzelektrode 16 verzehrt, kann diese
durch -- hier nicht gezeigte -- Einrichtungen aus dem
Schmelzbereich entfernt und durch eine neue Elektrode 16a
ersetzt werden, die aus einer rechts skizzierte Wartestellung
in Schmelzposition gelangt, so daß der Schmelzvorgang
fortgesetzt zu werden vermag; durch das Abschmelzen mehrerer
Elektroden 16 hintereinander wird ein kontinuierlicher
Betrieb ermöglicht. If the
Die Elektrode 16,16a und das Schlackenbad 18 sind durch
jene -- wie gesagt, mittels ihres Gegenflansches 32 gegen
den Kokillenflansch 30 abgedichtete -- Haube 34,34a gegen
Luftzutritt geschützt.The
In der beschriebenen Vorrichtung kann das Umschmelzen unter
kontrollierter Atmosphäre sowie unter Ausschluß des Luftsauerstoffes
stattfinden, womit auch die Erzeugung
höchstreiner Umschmelzstränge 26 ermöglicht und ein Abbrand
sauerstoffaffiner Elemente verhindert wird. Dabei sollen
Abschmelzelektroden 16 eingesetzt werden, deren Querschnittsfläche
im Verhältnis zum Gießquerschnitt als groß
bezeichnet werden kann.In the described device, the remelting can
controlled atmosphere and in the absence of atmospheric oxygen
take place, with which also the generation
ultra-pure remelting
Bei Strangformen, die vom Rundquerschnitt abweichen, sei
ein äquivalenter Durchmesser Däq für den Umschmelzstrang 26
angenommen, der aus dem Umfang U abgeleitet werden kann mit
Zur Erprobung der erfindungsgemäßen Technologie wurde an
einer ESU-Anlage mit Hebekokille ein Versuch gefahren.
Nach dem Aufschmelzen von 55 kg Schlacke der Zusammensetzung
30 % CaO, 30 % Al2O3, 40 % CaF2 wurde der Kokillenhub
so eingestellt, daß der Stahlspiegel etwa 20 bis 30 mm
unterhalb des Trichteransatzes im unteren Kokillenteil mit
160 mm Durchmesser gehalten wurde. After melting 55 kg of slag with the
Die elektrische Leistung wurde auf 750 kW bei 10 KA und 75
Volt im Schlackenbad 18 eingestellt, wobei die Energie über
die Elektrode 16 in das Schlackenbad 18 eingebracht und sowohl
über den Strang 26 als auch über die Kokillenwand 28
des trichterförmig erweiterten oberen Teils abgeleitet
wurde.The electrical output was 750 kW at 10 KA and 75
Volts set in the
Bei diesen Bedingungen stellte sich eine Abschmelzrate zwischen 820 und 900 kg/h ein. Dementsprechend wurde die Kokille 20 mit einer mitteleren Geschwindigkeit von 87 bis 95 mm/min. angehoben, wobei das Heben schrittweise mit etwa 10 mm Schrittlänge erfolgte. Die Hubfrequenz wurde über eine radioaktive Gießspiegelmessung kontrolliert und gesteuert.Under these conditions there was a melting rate between 820 and 900 kg / h. Accordingly, the mold was 20 with a medium speed of 87 to 95 mm / min. raised, the lifting gradually with about 10 mm stride length. The stroke rate was over a radioactive casting level measurement checked and controlled.
Es wurde ein Strang 26 mit etwa 3,0 m Länge erzeugt. Die
Oberflächengüte war gut, so daß vor der Warmverformung
keine Oberflächenbehandlung erforderlich war. Der Strang 26
wurde ohne Schwierigkeiten zu einem Knüppel mit 100 mm quadrat
auf einem Schmiedehammer vorgeschmiedet.A
Die metallographische Erprobung ergab eine gleichmäßig feinkörnige Karbidverteilung. Zentrumsseigerungen wurden nicht festgestellt.The metallographic testing showed a uniform fine-grain carbide distribution. Center increases were not found.
Claims (10)
- Method for remelting metals, in particular steels as well as Ni-based and Co-based alloys, into a billet by melting off at least one consumable electrode in an electrically conductive slag bath which is provided in a short, open-bottomed chill mould, characterised in that a melt-off rate is set in kg/h, corresponding to 1.5 to 30 times the billet diameter (D, Daq) in mm, wherein the ratio of the cross-sectional area of one or more consumable electrodes to the cross-sectional area of the casting cross-section or of the billet to be produced is selected at greater than 0.5.
- Method according to claim 1, characterised by an equivalent billet diameter (Daq) calculated from the circumference (U) of the casting cross-section and differing from the round cross-section, according to the expression Daq - U/π.
- Method for remelting metals in a funnel chill mould according to claim 1 or 2, characterised in that the melt-off race in kg/h corresponds to 5 to 15 times the equivalent billet diameter (Daq) calculated from the circumference (U) of the casting cross-section, and the ratio of the cross-seccional area(s) of the consumable electrode(s) to the cross-sectional area of the casting cross-section is equal to or greater than 1.0, wherein the billet is formed in the lower narrow portion of the funnel chill mould, and the slag bath extends as far as the wider upper portion thereof.
- Method according to any of claims 1 to 3, characterised in that the formed billet is drawn off continuously from the chill mould, wherein if occasion arises the formed billet is stationary and the chill mould is lifted continuously.
- Method according co any of claims 1 to 3, characterised in that the formed billet is drawn off stepwise from the chill mould, wherein if occasion arises the formed billet is stationary and the chill mould is lifted stepwise.
- Method according to claim 4, characterised in that the chill mould is moved in oscillating fashion.
- Method according to claim 5, characterised in that immediately after each lifting step a counterlifting step is performed in the opposite direction, and the stroke length of the counterlifting step is selected at not more than 60% of the stroke length of the preceding lifting step.
- Mechod according to one or more of claims 1 to 7, characterised by a fusing current flowing between electrode and billet or by a fusing current flowing between electrode and chill mould.
- Method according to one or more of claims 1 to 7, characterised by a fusing current flowing between on the one hand electrode and on the other hand simultaneously both billet and chill mould.
- Apparatus for carrying out the method according to one or more of the preceding claims with at least one electrode (16) as well as a chill mould (20) associated with a current source (10) for a slag bath (18) extending into a wider upper portion (22) of the chill mould, at least one electrically conductive element (42) in the wider chill mould portion (22) of the chill mould wall (28), and also an outlet portion (24) which adjoins the chill mould portion at the bottom and defines the billet cross-section, wherein the electrode (16) is connected to one terminal of the current source (10) and its other terminal is connected both to the billet (24) and to the electrically conductive element(s) (42) in the chill mould wall (28).
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
AT15196 | 1996-01-29 | ||
AT0015196A AT406384B (en) | 1996-01-29 | 1996-01-29 | METHOD FOR ELECTROSHELL STRAND MELTING OF METALS |
AT151/96 | 1996-01-29 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0786531A1 EP0786531A1 (en) | 1997-07-30 |
EP0786531B1 true EP0786531B1 (en) | 2000-07-19 |
EP0786531B2 EP0786531B2 (en) | 2006-08-02 |
Family
ID=3482892
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP96120752A Expired - Lifetime EP0786531B2 (en) | 1996-01-29 | 1996-12-21 | Process and installation for remelting of metals to a strand |
Country Status (5)
Country | Link |
---|---|
US (1) | US5799721A (en) |
EP (1) | EP0786531B2 (en) |
JP (1) | JP3949208B2 (en) |
AT (1) | AT406384B (en) |
DE (1) | DE19654021C2 (en) |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT410412B (en) * | 2000-11-10 | 2003-04-25 | Inteco Int Techn Beratung | METHOD OF ELECTRIC SLACKING METHODS OF MELTING METALS |
AT410413B (en) * | 2000-11-14 | 2003-04-25 | Inteco Int Techn Beratung | METHOD FOR ELECTROSHELL MELTING OF METALS |
Families Citing this family (11)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE19614182C1 (en) * | 1996-04-11 | 1997-07-31 | Inteco Int Techn Beratung | Water-cooled casting die for production of blocks or strips |
DE19921161B4 (en) * | 1999-05-07 | 2011-01-20 | Ald Vacuum Technologies Ag | Electroslag remelting plant with a mold and a hood |
AT408528B (en) * | 1999-06-08 | 2001-12-27 | Inteco Int Techn Beratung | METHOD AND DEVICE FOR THE CONTINUOUS PRODUCTION OF MOLDED OR MELTED STRANDS BY AN ELECTROSLACK METHOD |
AT409233B (en) * | 2000-02-07 | 2002-06-25 | Inteco Int Techn Beratung | METHOD AND ARRANGEMENT FOR PRODUCING CAST BODIES FROM METALS |
JP2001262245A (en) * | 2000-03-21 | 2001-09-26 | General Electric Co <Ge> | Apparatus and method for refining bottom-pouring type electroslag |
US20050173092A1 (en) * | 2004-02-10 | 2005-08-11 | Kennedy Richard L. | Method and apparatus for reducing segregation in metallic ingots |
US20100263484A1 (en) * | 2005-08-11 | 2010-10-21 | Advanced Intellectual Holdings Pty Ltd | Smelting furnace |
DE202012010150U1 (en) | 2012-10-24 | 2012-11-29 | Egon Evertz Kg (Gmbh & Co.) | Plant for electric slag remelting |
DE102015117661A1 (en) * | 2015-07-27 | 2017-02-02 | Ald Vacuum Technologies Gmbh | Electroslag remelting |
CN111118302B (en) * | 2019-12-31 | 2022-04-19 | 浙江正达模具有限公司 | Crystallizer for metal electroslag remelting, electroslag remelting device and electroslag remelting method |
DE102021209501B4 (en) | 2021-08-30 | 2023-05-25 | Fraunhofer-Gesellschaft zur Förderung der angewandten Forschung eingetragener Verein | Continuous casting device and method for continuous casting |
Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1413508A (en) * | 1972-08-25 | 1975-11-12 | British Steel Corp | Secondary refining process |
Family Cites Families (23)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE1483646A1 (en) | 1965-06-11 | 1969-09-25 | Suedwestfalen Ag Stahlwerke | Method and device for the production of cast blocks, preferably steel blocks |
FR1513573A (en) * | 1967-01-06 | 1968-02-16 | Soc Metallurgique Imphy | Method and device for refining metal in a continuous casting plant |
SE332833B (en) * | 1968-06-27 | 1977-09-19 | Asea Ab | KOKILL FOR MANUFACTURE OF GOODS FROM STEEL AND METAL ALLOYS BY THE ELECTROSIQUE GRAGINATION METHOD |
GB1246676A (en) * | 1968-10-08 | 1971-09-15 | Ts Lab Avtomatiki | Electroslag remelting of metal |
US3665081A (en) † | 1969-06-16 | 1972-05-23 | Boris Evgenicvich Paton | Apparatus for electroslag remelting of consumable electrodes |
SE364648B (en) * | 1970-12-04 | 1974-03-04 | Asea Ab | |
JPS511643B2 (en) * | 1972-08-28 | 1976-01-19 | ||
US3847205A (en) * | 1972-10-03 | 1974-11-12 | Special Metals Corp | Control apparatus for continuously casting liquid metal produced from consumable electrodes |
DE2328804C2 (en) * | 1973-06-06 | 1975-07-17 | Leybold-Heraeus Gmbh & Co Kg, 5000 Koeln | Method for electroslag remelting in a funnel-shaped mold |
DE2340525A1 (en) * | 1973-08-10 | 1975-02-20 | Leybold Heraeus Gmbh & Co Kg | Electroslag melting of consumable electrodes - with one pole of power supply connected to both the ingot and the mould |
DE2505378C3 (en) * | 1975-02-08 | 1981-01-29 | Leybold-Heraeus Gmbh, 5000 Koeln | Process for the production of consumable electrodes for the recovery of metal components from the grinding dust of high-quality metals and alloys |
US4145563A (en) * | 1976-04-22 | 1979-03-20 | Venjukovsky Armaturny Zavod | Plant for and method of electroslag remelting of metals and alloys |
DE2632863C2 (en) † | 1976-07-21 | 1978-05-24 | Institut Elektrosvarki Imeni E.O. Patona Akademii Nauk Ukrainskoj Ssr, Kiew (Sowjetunion) | Equipment for the production of large-ton metal blocks by electroslag remelting |
US4291744A (en) * | 1979-02-14 | 1981-09-29 | Medovar Boris I | Apparatus for electroslag remelting of consumable electrodes |
DE2942485A1 (en) † | 1979-10-20 | 1981-04-30 | Leybold-Heraeus GmbH, 5000 Köln | Ferro-zirconium prodn. by electroslag remelting - of ferrous hollow body contg. mixt. of zirconium oxide and calcium |
US4433242A (en) † | 1981-08-20 | 1984-02-21 | Cabot Corporation | ESR Hollows molten metal/slag interface detection |
JPS58144569A (en) * | 1982-02-19 | 1983-08-27 | Hitachi Ltd | Electromagnetic shield |
DE3721945A1 (en) † | 1986-10-27 | 1988-05-19 | Inteco Int Techn Beratung | Method and appliance for operating a pressurised electroslag remelting plant |
AT388751B (en) * | 1987-01-09 | 1989-08-25 | Inteco Int Techn Beratung | METHOD FOR PRODUCING BLOCKS FROM MELTING ELECTRODES IN SHORT SLIDING CHILLERS |
AT399463B (en) * | 1987-03-03 | 1995-05-26 | Inteco Int Techn Beratung | METHOD FOR CONTINUOUSLY CASTING ELECTRIC STEEL AND ALLOYS |
US4919191A (en) * | 1988-05-17 | 1990-04-24 | Jeneric/Pentron Incorporated | Molten-metal forming method and apparatus which are bottom-loading, bottom-pouring and bottom-unloading |
US5300781A (en) † | 1991-12-09 | 1994-04-05 | Kay-Ray/Sensall, Inc. | Non-hydrogenous process level measurement |
JP3072199B2 (en) * | 1992-10-22 | 2000-07-31 | 株式会社日本製鋼所 | Method for producing Ni-Fe-based super heat-resistant alloy ingot |
-
1996
- 1996-01-29 AT AT0015196A patent/AT406384B/en not_active IP Right Cessation
- 1996-12-21 DE DE19654021A patent/DE19654021C2/en not_active Expired - Fee Related
- 1996-12-21 EP EP96120752A patent/EP0786531B2/en not_active Expired - Lifetime
-
1997
- 1997-01-23 US US08/787,687 patent/US5799721A/en not_active Expired - Lifetime
- 1997-01-28 JP JP02955097A patent/JP3949208B2/en not_active Expired - Lifetime
Patent Citations (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
GB1413508A (en) * | 1972-08-25 | 1975-11-12 | British Steel Corp | Secondary refining process |
Cited By (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
AT410412B (en) * | 2000-11-10 | 2003-04-25 | Inteco Int Techn Beratung | METHOD OF ELECTRIC SLACKING METHODS OF MELTING METALS |
AT410413B (en) * | 2000-11-14 | 2003-04-25 | Inteco Int Techn Beratung | METHOD FOR ELECTROSHELL MELTING OF METALS |
Also Published As
Publication number | Publication date |
---|---|
JPH09206890A (en) | 1997-08-12 |
EP0786531A1 (en) | 1997-07-30 |
EP0786531B2 (en) | 2006-08-02 |
ATA15196A (en) | 1999-09-15 |
AT406384B (en) | 2000-04-25 |
JP3949208B2 (en) | 2007-07-25 |
US5799721A (en) | 1998-09-01 |
DE19654021A1 (en) | 1997-07-31 |
DE19654021C2 (en) | 2001-05-31 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0786531B1 (en) | Process and installation for remelting of metals to a strand | |
DE60024142T2 (en) | CASTING SYSTEM AND CASTING METHOD FOR HIGH-PURITY AND FINE-CARBURETED METAL CASTING | |
DE69704200T2 (en) | FURTHER PROCESSING THROUGH ELECTRIC SLAG REMELING OF CLEANED METALS | |
AT410412B (en) | METHOD OF ELECTRIC SLACKING METHODS OF MELTING METALS | |
EP1253986B1 (en) | Method and arrangement for producing casting moulds from metal | |
DE1962135C3 (en) | Process for cleaning metals in an electroslag remelting furnace | |
DE2655602C2 (en) | Method and apparatus for making blocks | |
DE1483646A1 (en) | Method and device for the production of cast blocks, preferably steel blocks | |
DE2804487C2 (en) | Device for filling the block heads of cast metal blocks using the electroslag remelting process | |
DE2123368B2 (en) | POWER SUPPLY DEVICE FOR AN ELECTRIC SLAG FURNACE | |
EP1334214B1 (en) | Method and device for producing ingots or strands of metal by melting electrodes in an electroconductive slag bath | |
DE2001256B2 (en) | DEVICE FOR THE PRODUCTION OF BLOCKS | |
DE1803473A1 (en) | Continuous metal casting installation | |
DE3734339A1 (en) | METHOD AND DEVICE FOR CONTINUOUSLY CASTING ELASTIC STEELS AND ALLOYS | |
EP1257675B1 (en) | Method and arrangement for producing hollow moulded bodies from metal | |
DE1932763C3 (en) | Use of a permanent mold for the production of ingots from metal alloys, in particular from steel, in the electroslag remelting process | |
DE60029835T2 (en) | SYSTEM FOR CONTINUOUS FEEDING OF SELF-DRIVEN ELECTRODES IN AN ELECTRIC SLIP TRANSPORT SYSTEM | |
DE1057291B (en) | Process and device for arc melting of metals in a continuous casting mold in twin design | |
DE1817124A1 (en) | Method and device for cooling metal melts formed by electroslag remelting, in particular steel melts | |
DE60017077T2 (en) | Electric slag remelting systems with floor spout and controlled electric current path | |
DE2113521A1 (en) | Electroslag remelting process and device for its implementation | |
AT345488B (en) | DEVICE FOR THE SIMULTANEOUS PRODUCTION OF SEVERAL BLOCKS BY ELECTRIC MELTING | |
EP1187943A1 (en) | Method and device for the continuous production of electroslag-casted or -remelted billets | |
AT314751B (en) | Methods and devices for the production of hollow blocks by the electroslag remelting process | |
DE3436958A1 (en) | METAL FINISHING PROCESS |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): BE CH FR GB IT LI SE |
|
17P | Request for examination filed |
Effective date: 19971119 |
|
17Q | First examination report despatched |
Effective date: 19981104 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): BE CH FR GB IT LI SE |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
ITF | It: translation for a ep patent filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: HIEBSCH & PEEGE AG PATENTANWAELTE |
|
ET | Fr: translation filed | ||
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20001012 |
|
PLBQ | Unpublished change to opponent data |
Free format text: ORIGINAL CODE: EPIDOS OPPO |
|
PLBI | Opposition filed |
Free format text: ORIGINAL CODE: 0009260 |
|
26 | Opposition filed |
Opponent name: ALD VACUUM TECHNOLOGIES AG Effective date: 20010411 |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
PLBF | Reply of patent proprietor to notice(s) of opposition |
Free format text: ORIGINAL CODE: EPIDOS OBSO |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
RDAH | Patent revoked |
Free format text: ORIGINAL CODE: EPIDOS REVO |
|
APAC | Appeal dossier modified |
Free format text: ORIGINAL CODE: EPIDOS NOAPO |
|
APBQ | Date of receipt of statement of grounds of appeal recorded |
Free format text: ORIGINAL CODE: EPIDOSNNOA3O |
|
APAA | Appeal reference recorded |
Free format text: ORIGINAL CODE: EPIDOS REFN |
|
APAH | Appeal reference modified |
Free format text: ORIGINAL CODE: EPIDOSCREFNO |
|
APBU | Appeal procedure closed |
Free format text: ORIGINAL CODE: EPIDOSNNOA9O |
|
PUAH | Patent maintained in amended form |
Free format text: ORIGINAL CODE: 0009272 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: PATENT MAINTAINED AS AMENDED |
|
27A | Patent maintained in amended form |
Effective date: 20060802 |
|
AK | Designated contracting states |
Kind code of ref document: B2 Designated state(s): BE CH FR GB IT LI SE |
|
GBTA | Gb: translation of amended ep patent filed (gb section 77(6)(b)/1977) |
Effective date: 20060802 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: AEN Free format text: AUFRECHTERHALTUNG DES PATENTES IN GEAENDERTER FORM |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: RPEO |
|
ET3 | Fr: translation filed ** decision concerning opposition | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PFA Owner name: INTECO INTERNATIONALE TECHNISCHE BERATUNG GESELLS Free format text: INTECO INTERNATIONALE TECHNISCHE BERATUNG GESELLSCHAFT MBH#WIENER STRASSE 25#A-8600 BRUCK A.D. MUR (AT) -TRANSFER TO- INTECO INTERNATIONALE TECHNISCHE BERATUNG GESELLSCHAFT MBH#WIENER STRASSE 25#A-8600 BRUCK A.D. MUR (AT) |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: CH Payment date: 20121224 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20121217 Year of fee payment: 17 Ref country code: GB Payment date: 20121227 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20121219 Year of fee payment: 17 Ref country code: SE Payment date: 20121227 Year of fee payment: 17 Ref country code: FR Payment date: 20130117 Year of fee payment: 17 |
|
BERE | Be: lapsed |
Owner name: INTERNATIONALE TECHNISCHE BERATUNG G.M.B.H. *INTEC Effective date: 20131231 |
|
REG | Reference to a national code |
Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20131221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131222 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140829 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131221 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131231 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20131221 |