US3847205A - Control apparatus for continuously casting liquid metal produced from consumable electrodes - Google Patents

Control apparatus for continuously casting liquid metal produced from consumable electrodes Download PDF

Info

Publication number
US3847205A
US3847205A US00294746A US29474672A US3847205A US 3847205 A US3847205 A US 3847205A US 00294746 A US00294746 A US 00294746A US 29474672 A US29474672 A US 29474672A US 3847205 A US3847205 A US 3847205A
Authority
US
United States
Prior art keywords
metal
electrode
electrodes
casting
alloyed
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
US00294746A
Inventor
F Soykan
J Huntington
F Darmara
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ALLEGHENY INTERNATIONAL ACCEPTANCE Corp
Special Metals Corp
Original Assignee
Special Metals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Special Metals Corp filed Critical Special Metals Corp
Priority to US00294746A priority Critical patent/US3847205A/en
Priority to IT52854/73A priority patent/IT996233B/en
Priority to GB4599673A priority patent/GB1440143A/en
Priority to GB4118475A priority patent/GB1440144A/en
Priority to JP11063973A priority patent/JPS5632069B2/ja
Priority to DE19732349744 priority patent/DE2349744A1/en
Priority to CA182,590A priority patent/CA992721A/en
Priority to FR7335393A priority patent/FR2201144B1/fr
Priority to SE7313484A priority patent/SE419511B/en
Priority to US503408A priority patent/US3920062A/en
Application granted granted Critical
Publication of US3847205A publication Critical patent/US3847205A/en
Assigned to CITICORP INDUSTRIAL CREDIT, INC., BOND COURT BLDG., STE. 615, 1300 E. 9TH ST., CLEVELAND, OH. 44114 reassignment CITICORP INDUSTRIAL CREDIT, INC., BOND COURT BLDG., STE. 615, 1300 E. 9TH ST., CLEVELAND, OH. 44114 SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECIAL METALS CORPORATION
Assigned to AL-INDUSTRIAL PRODUCTS, INC. reassignment AL-INDUSTRIAL PRODUCTS, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECIAL METALS CORPORATION A DE CORP
Assigned to ALLEGHENY INTERNATIONAL ACCEPTANCE CORPORATION reassignment ALLEGHENY INTERNATIONAL ACCEPTANCE CORPORATION ASSIGNMENT OF ASSIGNORS INTEREST. Assignors: AL- INDUSTRIAL PRODUCTS INC.
Assigned to HELLER FINANCIAL, INC. reassignment HELLER FINANCIAL, INC. SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECIAL METALS CORPORATION
Assigned to SPECIAL METALS CORPORATION reassignment SPECIAL METALS CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: CITICORP INDUSTRIAL CREDIT, INC.
Assigned to SPECIAL METALS CORPORATION reassignment SPECIAL METALS CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: AL-INDUSTRIAL PRODUCTS, INC., A CORP. OF PA, ALLEGHENY INTERNATIONAL, INC., A CORP. OF PA
Assigned to SPECIAL METALS CORPORATION reassignment SPECIAL METALS CORPORATION RELEASED BY SECURED PARTY (SEE DOCUMENT FOR DETAILS). Assignors: HELLER FINANCIAL, INC.
Anticipated expiration legal-status Critical
Assigned to CREDIT LYONNAIS NEW YORK BRANCH reassignment CREDIT LYONNAIS NEW YORK BRANCH SECURITY INTEREST (SEE DOCUMENT FOR DETAILS). Assignors: SPECIAL METALS CORPORATION
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/14Plants for continuous casting
    • B22D11/141Plants for continuous casting for vertical casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D11/00Continuous casting of metals, i.e. casting in indefinite lengths
    • B22D11/16Controlling or regulating processes or operations
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22DCASTING OF METALS; CASTING OF OTHER SUBSTANCES BY THE SAME PROCESSES OR DEVICES
    • B22D23/00Casting processes not provided for in groups B22D1/00 - B22D21/00
    • B22D23/06Melting-down metal, e.g. metal particles, in the mould
    • B22D23/10Electroslag casting
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B22CASTING; POWDER METALLURGY
    • B22FWORKING METALLIC POWDER; MANUFACTURE OF ARTICLES FROM METALLIC POWDER; MAKING METALLIC POWDER; APPARATUS OR DEVICES SPECIALLY ADAPTED FOR METALLIC POWDER
    • B22F9/00Making metallic powder or suspensions thereof
    • B22F9/02Making metallic powder or suspensions thereof using physical processes
    • B22F9/06Making metallic powder or suspensions thereof using physical processes starting from liquid material
    • B22F9/08Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying
    • B22F9/082Making metallic powder or suspensions thereof using physical processes starting from liquid material by casting, e.g. through sieves or in water, by atomising or spraying atomising using a fluid
    • B22F2009/0848Melting process before atomisation

Definitions

  • control of the temperature of the molten steel often requires the use of preheated ladles and a preheated tundish; however, with preheating and controls, the volume of metal poured into the mold and its temperature are extremely difficult to control, meaning that the freezing or solidification rate of the resulting casting is also difficult to control.
  • the melting and casting processes are carried out in a controlled atmosphere, vacuum being the preferred means of controlling said atmosphere.
  • the method according to the present invention comprises the steps of providing an electrode from a metal ingot corresponding to the desired metallurgical composition of a billet to be continuously cast, striking an are between the consumable electrode and a second electrode, controlling the melting rate by adjusting the power input to the electrodes on the basis of a desired solidification rate, providing a controlled atmosphere for the melting of the consumable electrode in a tundish in a given quantity to homogenize the metallurgical constitutents of the liquid metal, continuously passing the homogenized metal from the tundish into an openended fluid cooled mold to partially solidify the metal and form a billet thereof, continuously withdrawing the partially solidified billet from the mold, further cooling the billet withdrawn from the mold, and discharging the solidified casting from within the controlled atmosphere. Additionally, there may be incorporated the step of severing the solidified casting into billets of predetermined length.
  • the control apparatus includes a power supply having control means for adjusting the power delivered to the electrodes for varying the rate of continuous melting of the consumable electrode.
  • the apparatus further includes an electrode position control for maintaining a predetermined arc gap between the electrodes.
  • FIG. 1 is a schematic view of one embodiment of the present invention
  • FIG. 2 is a second embodiment of the electrode melting apparatus for delivering liquid metal to the continuous casting apparatus shown in FIG. 1;
  • FIG. 3 is a third embodiment of the electrode melting apparatus using two consumable electrodes.
  • a tundish 10 having a heating source (e.g., an induction coil 11 for preheating the tundish to prevent premature freezing of liquid metal passing into it from consumable electrode 52 and fluid cooled non-consumable stool 54.)
  • the tundish also includes a skimmer wall 14 to prevent the outflow of slag or other impurities which may be floating on the metal surface in the tundish.
  • a nozzle 15 directs the metal passing from the tundish into an open-ended continuous casting mold 16.
  • the mold includes walls which form water passageways for withdrawing heat from the liquid metal to form a partially solidified casting in the form of a billet. Other shapes and forms of casting may be provided through the use of different molds.
  • a vacuum line 23a to evacuate housing 23 and an inert gas supply line 23b to provide an inert atmosphere for melting and solidification of the casting are connected to housing 23.
  • vacuum line 23a and/or inert gas supply line 23b could be used to provide the desired controlled atmosphere.
  • a dynamic seal 24 at the lower end of the housing 23 prevents contamination of the atmosphere within the housing.
  • This seal incorporates a plurality of vacuum chambers each connected to a vacuum line (e.g., 25a, 25b and 25c, respectively).
  • the billet casting may be cut into desired billet lengths by a cut-off blade 26 driven by a motor 26a.
  • this electrode is formed from an ingot of pre-alloyed metal corresponding in composition to that of the ultimate billets to be continuously cast.
  • a non-consumable fluid cooled stool 54 below this electrode is a non-consumable fluid cooled stool 54.
  • the electrode and stool are connected by transmission lines 30 and 31, respectively, to a power supply 32 and a potentiometer 33 having a slide wire 34 manually set to vary the power delivered from the supply 32 to the electrode and the stool.
  • the electrode 52 is contained within a chamber 51 within which it is supported vertically by means of support rod assembly 53. This support rod assembly 53 permits adjusting the position of the electrode to strike an arc on the non-consumable stool or electrode 54.
  • the term electrode means either a consumable or nonconsumable electrode. As will be seen in some embodiments only one electrode is consumable; while in others both are consumable. As liquid metal droplets fall from the consumable electrode 52, they form a shallow pool on the stool 54 from where the liquid metal flows into a preheated tundish 10. The tundish can be heated by electrical induction or resistance or other means 11.
  • a skimmer wall 14 prevents the outflowing of slag or other impurities which may float upon the surface of the metal.
  • the nozzle 15 directs the liquid metal into the upper end of the mold 16 wherein initial solidification of the casting occurs.
  • the guide rolls 1? contact the casting as it is delivered from the mold.
  • the billet travels downwardly through the pinch rolls 19, guide rolls 22 and through the dynamic seal 24.
  • the power supply to the electrode and stool is controlled in a manner such that the volume of liquid metal which is poured into the casting mold is controlled to achieve the desired freezing rate and grain structure in the resulting casting.
  • the entire system from chamber 51 through housing 23, including the intermediate segment surrounding tundish 10 and pouring nozzle 15, is enclosed and sealed, as shown, so as to provide a controlled atmosphere, e.g., vacuum or inert gas.
  • FIG. 2 illustrates the same embodiment of FIG. 1, except for a different pouring nozzle 59 which receives molten metal from stool 58 and directs the molten metal into'mold l6.
  • Pouring nozzle may be heated by means of the electrical resistance or induction coils 60. At least partial homogenization of the molten metal will occur in the pouring nozzle as in the tundish.
  • the use of the stool S4 in the embodiment of FIG. 1 and stool 58 according to the embodiment of FIG. 2 provides an immediate shallow pool area for collecting liquid metal droplets from the electrode.
  • the depth of the pool is selected for optimum temperature of the metal flowing from the stool. This depth is usually less than one-third the diameter of the electrode 52.
  • Miniscus level control in the mold is governed by the withdrawal rolls 19 which are driven by a motor 21.
  • the speed of this motor is controlled by a signal from a height sensing transducer 43 connected through conductor 44 to control amplifier 45 and servo system 46.
  • the miniscus level rises or falls within the mold; and the signal level from the liquid level transducer changes in proportion to the height.
  • the speed of motor 21 is changed in accordance with the signal level in such a way as to maintain the miniscus height within predetermined limits.
  • an embodiment which includes two consumable electrodes 12 and 13 in the preferred form. These electrodes are formed from ingots of prealloyed metal corresponding in composition to that of the ultimate billets to be continuously cast.
  • the electrodes are connected by electrical transmission lines 30 and 31 respectively to a polarity reversing switch 71 and through other electrical transmission lines 73 and 74, respectively, to power supply 32.
  • a potentiometer 33 having a slide wire 34 is manually set to vary the power delivered from the supply 32 to the electrodes.
  • a sight glass 35 is provided in the housing for viewing the arc gap between the electrodes which are adjusted to continually maintain a predetermined arc gap by hydraulic drives 36 and 37.
  • Lines 380 and 38b connect the hydraulic drives to a servo system 40 which is controlled by an electrode position control 39 through the lines 40a and 40b; Electrodes 12 and 13 are oscillated at least 180 about their axes in opposite directions by means of motors 69 and 70. Oscillation speed is controlled through a timer, not
  • the apparatus is placed in operation by adjusting the relative position of the consumable electrodes 12 and 13 through the operation of hydraulic drives 36 and 37 to obtain proper spacing for striking an electric arc.
  • Current passes through the lines 30 and 31 in order to strike an arc and melt the electrodes.
  • Proper spacing and centering of the electrodes is maintained by the electrode position control 39 as the electrodes are continuously consumed.
  • the electrodes 12 and 13 are continually oscillated by means of motors 69 and 70 to insure uniform burnoff across the opposing faces of the electrodes during the melting process. The character of the arc is observed through the sight port 35.
  • the polarities of the electrodes are preferably changed periodically by means of polarity reversing switch 71.
  • Molten metal from the electrodes is collected to form a pool of liquid metal and homogenize it in tundish 10, which may be similar to that described in the embodiment of FIG. 1.
  • the metal from tundish it) flows under skimmer l4 and through nozzle 15 into the continuous casting mold 16. The remainder of the process is identical with that described in the embodiment of FIG. 1.
  • An apparatus for continuously casting prealloyed metal at a predetermined freezing rate to achieve a desired grain structure in the resulting casting comprising:
  • first and second electrodes forming a gap within said enclosed chamber for striking an arc therein, at least one of said electrodes being an ingot and the sole supply of pre-alloyed metal having a composition corresponding to the composition of a prealloyed continuous casting to be ultimately formed,
  • a power supply connected to said electrodes for melting the electrode of pre-alloyed metal
  • electrode position control means including a drive for adjusting said gap to maintain an arc between said electrodes
  • an open-ended fluid-cooled mold receiving a continuous stream of molten metal from said means for collecting liquid metal and partially solidifying the molten metal to continuously form apartially solidified casting
  • adjustable control means to vary the power delivered by said power supply to said electrodes for controllably varying the rate of continuous melting of the pre-alloyed electrode on the basis of a predetermined solidification rate of the pre-alloyed metal by said mold to form said pre-alloyed casting with a desired grain structure
  • said first electrode includes a consumable ingot of prealloyed metal
  • said second electrode comprises a stool for collecting a pool of liquid metal from said ingot.
  • control means includes a potentiometer having an adjustable slide wire for selecting a desired melting rate.

Abstract

The melting rate of pre-alloyed consumable electrodes, melted in a controlled atmosphere, is selected and controlled to provide a desired freezing rate of a solidified billet delivered from a continuous casting machine. By controlling the power input to the electrode, the volume and temperature of metal melted and poured into the casting mold is also controlled to achieve a desired freezing rate and grain structure in the resulting ingot.

Description

United States Patent [191 Soykan et al.
[ Nov. 12, 1974 1 CONTROL APPARATUS FOR CONTINUOUSLY CASTING LIQUID METAL PRODUCED FROM CONSUMABLE ELECTRODES [751 Inventors: Ferhun H. Soykan: John S.
Huntington: Falih N. Darmara, all of New Hartford, NY.
[73] Assignee: Special Metals Corporation, New
Hartford, NY.
[22] Filed: Oct. 3, 1972 [21] Appl. No.: 294,746
[52] US. Cl. 164/155, 164/252 [51] Int. Cl B22d 17/32 [58] Field of Search 164/52, 252, 258, 155
[56] References Cited UNITED STATES PATENTS 3,650,311 3/1972 Fritsche 164/52 P0 WEI? SUPPL Y 7'0 VA CUUM PUMP WA TER //v WATER our 70 VA cuuM PUMP 3.764297 10/1973 Coad et al. 266/34 V X Primary Examiner-J. Spencer Overholser Assistant Examiner-John EjRoethcl Attorney, Agent, or Firm-Vincent G. Gioia: Robert F. Dropkin [5 7} ABSTRACT The melting rate of pre-alloyed consumable electrodes, melted in a controlled atmosphere, is selected 'and controlled to provide a desired freezing rate of a solidified billet delivered from a continuous casting machine. By controlling the power input to the electrode, the volume and temperature of metal melted and poured into the casting mold is also controlled to achieve a desired freezing rate and grain structure in the resulting ingot.
7 Claims, 3 Drawing Figures v r0 VACUUM PUMPS PUMP T0 VACUUM PATENTEUHUV 12 I974 POWER SUPPLY POWER SUPPLY CONTROL ELECT/P POSITION CONTROL APPARATUS FOR CONTINUOUSLY CASTING LIQUID METAL PRODUCED FROM CONSUMABLE ELECTRODES BACKGROUND OF THE INVENTION As is known, in the continuous casting process for ferrous alloys, molten metal from a tundish or the like is poured into a water-cooled mold, the resulting ingot formed upon cooling being pulled from the bottom of the mold continuously. As the molten metal comes into contact with the walls of the water-cooled mold, a thin solidified skin forms which usually separates from the mold wall shortly after solidification. As a result, most of the molten metal within the interior of the issuing casting solidifies after it leaves the watercooled mold. In order to effectively carry out the process of continuous casting of ferrous alloys, precise control of the temperature of the molten metal and the volume of metal poured into the mold is required. In a continuous casting process for carbon steels, for example, control of the temperature of the molten steel often requires the use of preheated ladles and a preheated tundish; however, with preheating and controls, the volume of metal poured into the mold and its temperature are extremely difficult to control, meaning that the freezing or solidification rate of the resulting casting is also difficult to control.
SUMMARY OF THE INVENTION It is an object of the present invention to provide a controlled solidification rate of a continuously cast prealloyed metal supplied from a consumable electrode which is formed as an ingot of the pre-alloyed metal. The melting and casting processes are carried out in a controlled atmosphere, vacuum being the preferred means of controlling said atmosphere.
The method according to the present invention comprises the steps of providing an electrode from a metal ingot corresponding to the desired metallurgical composition of a billet to be continuously cast, striking an are between the consumable electrode and a second electrode, controlling the melting rate by adjusting the power input to the electrodes on the basis of a desired solidification rate, providing a controlled atmosphere for the melting of the consumable electrode in a tundish in a given quantity to homogenize the metallurgical constitutents of the liquid metal, continuously passing the homogenized metal from the tundish into an openended fluid cooled mold to partially solidify the metal and form a billet thereof, continuously withdrawing the partially solidified billet from the mold, further cooling the billet withdrawn from the mold, and discharging the solidified casting from within the controlled atmosphere. Additionally, there may be incorporated the step of severing the solidified casting into billets of predetermined length.
The control apparatus according to the present invention includes a power supply having control means for adjusting the power delivered to the electrodes for varying the rate of continuous melting of the consumable electrode. The apparatus further includes an electrode position control for maintaining a predetermined arc gap between the electrodes.
These features and advantages of the present invention, as well as others will be more readily understood when the following description is read in light of the accompanying drawings, in which:
FIG. 1 is a schematic view of one embodiment of the present invention;
FIG. 2 is a second embodiment of the electrode melting apparatus for delivering liquid metal to the continuous casting apparatus shown in FIG. 1; and
FIG. 3 is a third embodiment of the electrode melting apparatus using two consumable electrodes.
With reference now to FIG. I, there is provided a tundish 10 having a heating source (e.g., an induction coil 11 for preheating the tundish to prevent premature freezing of liquid metal passing into it from consumable electrode 52 and fluid cooled non-consumable stool 54.) The tundish also includes a skimmer wall 14 to prevent the outflow of slag or other impurities which may be floating on the metal surface in the tundish. A nozzle 15 directs the metal passing from the tundish into an open-ended continuous casting mold 16. The mold includes walls which form water passageways for withdrawing heat from the liquid metal to form a partially solidified casting in the form of a billet. Other shapes and forms of casting may be provided through the use of different molds. As the outer skin of the casting solidifies, it passes from the mold and between a pair of guide rolls 17 which provide support for the billet during its withdrawal from the mold. The billet is pulled downwardly by a pair of pinch rolls 19 which are driven by a motor 21. Downstream of the pinch rolls there are provided additional guide rolls 22 which control the delivery of the casting from within a housing 23. The housing provides a non-reactive and protective atmosphere for the continuous casting apparatus as described thus far. A vacuum line 23a to evacuate housing 23 and an inert gas supply line 23b to provide an inert atmosphere for melting and solidification of the casting are connected to housing 23. Of course, either vacuum line 23a and/or inert gas supply line 23b could be used to provide the desired controlled atmosphere. A dynamic seal 24 at the lower end of the housing 23 prevents contamination of the atmosphere within the housing. This seal incorporates a plurality of vacuum chambers each connected to a vacuum line (e.g., 25a, 25b and 25c, respectively). The billet casting may be cut into desired billet lengths by a cut-off blade 26 driven by a motor 26a.
With reference now to the electrode 52, in the preferred form, this electrode is formed from an ingot of pre-alloyed metal corresponding in composition to that of the ultimate billets to be continuously cast. Below this electrode is a non-consumable fluid cooled stool 54. In this embodiment, the electrode and stool are connected by transmission lines 30 and 31, respectively, to a power supply 32 and a potentiometer 33 having a slide wire 34 manually set to vary the power delivered from the supply 32 to the electrode and the stool. The electrode 52 is contained within a chamber 51 within which it is supported vertically by means of support rod assembly 53. This support rod assembly 53 permits adjusting the position of the electrode to strike an arc on the non-consumable stool or electrode 54. In this specification and the appended claims, the term electrode means either a consumable or nonconsumable electrode. As will be seen in some embodiments only one electrode is consumable; while in others both are consumable. As liquid metal droplets fall from the consumable electrode 52, they form a shallow pool on the stool 54 from where the liquid metal flows into a preheated tundish 10. The tundish can be heated by electrical induction or resistance or other means 11.
As the metal passes from the tundish, a skimmer wall 14 prevents the outflowing of slag or other impurities which may float upon the surface of the metal. The nozzle 15 directs the liquid metal into the upper end of the mold 16 wherein initial solidification of the casting occurs. The guide rolls 1? contact the casting as it is delivered from the mold. The billet travels downwardly through the pinch rolls 19, guide rolls 22 and through the dynamic seal 24. The power supply to the electrode and stool is controlled in a manner such that the volume of liquid metal which is poured into the casting mold is controlled to achieve the desired freezing rate and grain structure in the resulting casting. The entire system from chamber 51 through housing 23, including the intermediate segment surrounding tundish 10 and pouring nozzle 15, is enclosed and sealed, as shown, so as to provide a controlled atmosphere, e.g., vacuum or inert gas.
FIG. 2 illustrates the same embodiment of FIG. 1, except for a different pouring nozzle 59 which receives molten metal from stool 58 and directs the molten metal into'mold l6. Pouring nozzle may be heated by means of the electrical resistance or induction coils 60. At least partial homogenization of the molten metal will occur in the pouring nozzle as in the tundish.
The use of the stool S4 in the embodiment of FIG. 1 and stool 58 according to the embodiment of FIG. 2 provides an immediate shallow pool area for collecting liquid metal droplets from the electrode. The depth of the pool is selected for optimum temperature of the metal flowing from the stool. This depth is usually less than one-third the diameter of the electrode 52.
Miniscus level control in the mold is governed by the withdrawal rolls 19 which are driven by a motor 21. The speed of this motor is controlled by a signal from a height sensing transducer 43 connected through conductor 44 to control amplifier 45 and servo system 46. As the melt rate changes, the miniscus level rises or falls within the mold; and the signal level from the liquid level transducer changes in proportion to the height. The speed of motor 21 is changed in accordance with the signal level in such a way as to maintain the miniscus height within predetermined limits.
With reference now to FIG. 3, an embodiment is shown which includes two consumable electrodes 12 and 13 in the preferred form. These electrodes are formed from ingots of prealloyed metal corresponding in composition to that of the ultimate billets to be continuously cast. The electrodes are connected by electrical transmission lines 30 and 31 respectively to a polarity reversing switch 71 and through other electrical transmission lines 73 and 74, respectively, to power supply 32. A potentiometer 33 having a slide wire 34 is manually set to vary the power delivered from the supply 32 to the electrodes. A sight glass 35 is provided in the housing for viewing the arc gap between the electrodes which are adjusted to continually maintain a predetermined arc gap by hydraulic drives 36 and 37. Lines 380 and 38b connect the hydraulic drives to a servo system 40 which is controlled by an electrode position control 39 through the lines 40a and 40b; Electrodes 12 and 13 are oscillated at least 180 about their axes in opposite directions by means of motors 69 and 70. Oscillation speed is controlled through a timer, not
shown, at a preset desired rate. An alternative to oscillation is the rotation of electrodes in opposite directions. However, at the present time oscillation has proven to be better.
The apparatus is placed in operation by adjusting the relative position of the consumable electrodes 12 and 13 through the operation of hydraulic drives 36 and 37 to obtain proper spacing for striking an electric arc. Current passes through the lines 30 and 31 in order to strike an arc and melt the electrodes. Proper spacing and centering of the electrodes is maintained by the electrode position control 39 as the electrodes are continuously consumed. The electrodes 12 and 13 are continually oscillated by means of motors 69 and 70 to insure uniform burnoff across the opposing faces of the electrodes during the melting process. The character of the arc is observed through the sight port 35. In order to further compensate for the problem of unequal burnoff rates of electrodes with opposite polarities, the polarities of the electrodes are preferably changed periodically by means of polarity reversing switch 71. Molten metal from the electrodes is collected to form a pool of liquid metal and homogenize it in tundish 10, which may be similar to that described in the embodiment of FIG. 1. The metal from tundish it) flows under skimmer l4 and through nozzle 15 into the continuous casting mold 16. The remainder of the process is identical with that described in the embodiment of FIG. 1.
Although the invention has been shown in connection with certain specific embodiments, it will be readily apparent to those skilled in the art that various changes in form and arrangement of parts may be made to suit requirements without departing from the spirit and scope of the invention.
What is claimed is:
1. An apparatus for continuously casting prealloyed metal at a predetermined freezing rate to achieve a desired grain structure in the resulting casting, said apparatus comprising:
an enclosed chamber having a controlled atmosphere therein,
first and second electrodes forming a gap within said enclosed chamber for striking an arc therein, at least one of said electrodes being an ingot and the sole supply of pre-alloyed metal having a composition corresponding to the composition of a prealloyed continuous casting to be ultimately formed,
a power supply connected to said electrodes for melting the electrode of pre-alloyed metal,
electrode position control means including a drive for adjusting said gap to maintain an arc between said electrodes,
means spaced from said electrode of pre-alloyed metal for collecting liquid metai therefrom to form a homogeneous stream of molten metal within said enclosed chamber,
an open-ended fluid-cooled mold receiving a continuous stream of molten metal from said means for collecting liquid metal and partially solidifying the molten metal to continuously form apartially solidified casting,
adjustable control means to vary the power delivered by said power supply to said electrodes for controllably varying the rate of continuous melting of the pre-alloyed electrode on the basis of a predetermined solidification rate of the pre-alloyed metal by said mold to form said pre-alloyed casting with a desired grain structure, and
means for continuously withdrawing and solidifying the partially solidified casting from said mold for displacement from said chamber.
2. An apparatus according to claim 1 wherein said first electrode includes a consumable ingot of prealloyed metal, and said second electrode comprises a stool for collecting a pool of liquid metal from said ingot.
3. An apparatus according to claim 1 wherein said control means includes a potentiometer having an adjustable slide wire for selecting a desired melting rate.
4. An apparatus according to claim 3 wherein said electrode position control means receives .an electrical and a motor for driving said pinch rolls.

Claims (7)

1. An apparatus for continuously casting prealloyed metal at a predetermined freezing rate to achieve a desired grain structure in the resulting casting, said apparatus comprising: an enclosed chamber having a controlled atmosphere therein, first and second electrodes forming a gap within said enclosed chamber for striking an arc therein, at least one of said electrodes being an ingot and the sole supply of pre-alloyed metal having a composition corresponding to the composition of a pre-alloyed continuous casting to be ultimately formed, a power supply connected to said electrodes for melting the electrode of pre-alloyed metal, electrode position control means including a drive for adjusting said gap to maintain an arc between said electrodes, means spaced from said electrode of pre-alloyed metal for collecting liquid metal therefrom to form a homogeneous stream of molten metal within said enclosed chamber, an open-ended fluid-cooled mold receiving a continuous stream of molten metal from said means for collecting liquid metal and partially solidifying the molten metal to continuously form a partially solidified casting, adjustable control means to vary the power delivered by said power supply to said electrodes for controllably varying the rate of continuous melting of the pre-alloyed electrode on the basis of a predetermined solidification rate of the pre-alloyed metal by said mold to form said pre-alloyed casting with a desired grain structure, and means for continuously withdrawing and solidifying the partially solidified casting from said mold for displacement from said chamber.
2. An apparatus according to claim 1 wherein said first electrode includes a consumable ingot of pre-alloyed metal, and said second electrode comprises a stool for collecting a pool of liquid metal from said ingot.
3. An apparatus according to claim 1 wherein said control means includes a potentiometer having an adjustable slide wire for selecting a desired melting rate.
4. An apparatus according to claim 3 wherein said electrode position control means receives an electrical signal proportional to the delivery of power to said electrodes from said power supply.
5. An apparatus according to claim 1 further comprising means for producing an electrical signal proportional to the withdrawal speed of the solidified casting from said mold.
6. An apparatus according to claim 1 further comprising means for producing an electrical signal proportional to the height of molten metal in said open-ended fluid-cooled mold.
7. An apparatus according to claim 5 wherein said means for continuously withdrawing and solidifying a partially solidified casting includes a pair of pinch rolls, and a motor for driving said pinch rolls.
US00294746A 1972-10-03 1972-10-03 Control apparatus for continuously casting liquid metal produced from consumable electrodes Expired - Lifetime US3847205A (en)

Priority Applications (10)

Application Number Priority Date Filing Date Title
US00294746A US3847205A (en) 1972-10-03 1972-10-03 Control apparatus for continuously casting liquid metal produced from consumable electrodes
IT52854/73A IT996233B (en) 1972-10-03 1973-10-01 PROCEDURE AND CONTROL EQUIPMENT FOR THE CONTINUOUS CASTING OF LIQUID METAL PRODUCED FROM CONSUMABLE ELECTRODES
GB4118475A GB1440144A (en) 1972-10-03 1973-10-02 Control apparatus for continuously casting liquid metal produced from a consumable electrode
GB4599673A GB1440143A (en) 1972-10-03 1973-10-02 Control method for continuously casting liquid metal produced from a consumable electrode
DE19732349744 DE2349744A1 (en) 1972-10-03 1973-10-03 PROCESS AND DEVICE FOR CONTINUOUS PASTING OF METALS SUPPLIED BY USING ELECTRODES
CA182,590A CA992721A (en) 1972-10-03 1973-10-03 Control method and apparatus for continuously casting liquid metal produced from consumable electrodes
FR7335393A FR2201144B1 (en) 1972-10-03 1973-10-03
SE7313484A SE419511B (en) 1972-10-03 1973-10-03 PROCEDURE FOR CASTING OF FORGED METAL SUPPLIED FROM CONSUMABLE ELECTRODES AND DEVICE IMPLEMENTING THE PROCEDURE
JP11063973A JPS5632069B2 (en) 1972-10-03 1973-10-03
US503408A US3920062A (en) 1972-10-03 1974-09-05 Control method for continuously casting liquid metal produced from consumable electrodes

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
US00294746A US3847205A (en) 1972-10-03 1972-10-03 Control apparatus for continuously casting liquid metal produced from consumable electrodes

Publications (1)

Publication Number Publication Date
US3847205A true US3847205A (en) 1974-11-12

Family

ID=23134759

Family Applications (1)

Application Number Title Priority Date Filing Date
US00294746A Expired - Lifetime US3847205A (en) 1972-10-03 1972-10-03 Control apparatus for continuously casting liquid metal produced from consumable electrodes

Country Status (8)

Country Link
US (1) US3847205A (en)
JP (1) JPS5632069B2 (en)
CA (1) CA992721A (en)
DE (1) DE2349744A1 (en)
FR (1) FR2201144B1 (en)
GB (2) GB1440143A (en)
IT (1) IT996233B (en)
SE (1) SE419511B (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018290A1 (en) * 1979-05-14 1980-11-27 Special Metals Corp METHOD AND DEVICE FOR MANUFACTURING FINE-GRINED CASTING PIECES
EP0218536A2 (en) * 1985-10-03 1987-04-15 Howmet Corporation A method of forming a fine-grained equiaxed casting
US10155263B2 (en) 2012-09-28 2018-12-18 Ati Properties Llc Continuous casting of materials using pressure differential

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2424781A1 (en) * 1978-05-03 1979-11-30 Inst Elektroswarki Patona Electroslag casting of large ingots using non-consumable electrodes - where molten metal is fed into mould contg. molten slag in inert gas atmos.
US5735212A (en) 1994-08-09 1998-04-07 Baldwin-Japan Ltd. Cylinder cleaning apparatus
AT406384B (en) * 1996-01-29 2000-04-25 Inteco Int Techn Beratung METHOD FOR ELECTROSHELL STRAND MELTING OF METALS
US8689856B1 (en) * 2013-03-05 2014-04-08 Rti International Metals, Inc. Method of making long ingots (cutting in furnace)
WO2022029302A1 (en) 2020-08-06 2022-02-10 Sms Group Gmbh Method for regulating a stopper casting device in a vacuum induction casting device, device for automatically controlling a stopper casting device, and system for charging, melting, and casting metal and metal alloys under a vacuum and/or a protective gas atmosphere
CN112536428B (en) * 2020-12-04 2022-07-15 东北特殊钢集团股份有限公司 Production method of phi 1600 mm-phi 1850mm large-scale stripping electroslag ingot

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650311A (en) * 1969-05-14 1972-03-21 Sandel Ind Inc Method for homogeneous refining and continuously casting metals and alloys
US3764297A (en) * 1971-08-18 1973-10-09 Airco Inc Method and apparatus for purifying metal

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3650311A (en) * 1969-05-14 1972-03-21 Sandel Ind Inc Method for homogeneous refining and continuously casting metals and alloys
US3764297A (en) * 1971-08-18 1973-10-09 Airco Inc Method and apparatus for purifying metal

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3018290A1 (en) * 1979-05-14 1980-11-27 Special Metals Corp METHOD AND DEVICE FOR MANUFACTURING FINE-GRINED CASTING PIECES
US4261412A (en) * 1979-05-14 1981-04-14 Special Metals Corporation Fine grain casting method
EP0218536A2 (en) * 1985-10-03 1987-04-15 Howmet Corporation A method of forming a fine-grained equiaxed casting
EP0218536A3 (en) * 1985-10-03 1987-09-02 Howmet Turbine Components Corporation A method of forming a fine-grained equiaxed casting
US10155263B2 (en) 2012-09-28 2018-12-18 Ati Properties Llc Continuous casting of materials using pressure differential
US10272487B2 (en) 2012-09-28 2019-04-30 Ati Properties Llc Continuous casting of materials using pressure differential

Also Published As

Publication number Publication date
JPS4972130A (en) 1974-07-12
SE419511B (en) 1981-08-10
JPS5632069B2 (en) 1981-07-25
GB1440143A (en) 1976-06-23
GB1440144A (en) 1976-06-23
IT996233B (en) 1975-12-10
FR2201144A1 (en) 1974-04-26
DE2349744A1 (en) 1974-04-11
CA992721A (en) 1976-07-13
FR2201144B1 (en) 1980-07-04

Similar Documents

Publication Publication Date Title
US3829538A (en) Control method and apparatus for the production of powder metal
US3522836A (en) Method of manufacturing wire and the like
US3605863A (en) Apparatus for manufacturing wire and the like
US3800848A (en) Method for continuous vacuum casting of metals or other materials
EP0013076A1 (en) Process and apparatus for producing metallic slurries
US3650311A (en) Method for homogeneous refining and continuously casting metals and alloys
US3920062A (en) Control method for continuously casting liquid metal produced from consumable electrodes
KR20160105428A (en) Method and plant for the production of long ingots having a large cross-section
US4645534A (en) Process for control of continuous casting conditions
EP0471798B1 (en) Induction skull melt spinning of reactive metal alloys
EP1259348B1 (en) Casting system and method for forming highly pure and fine grain metal castings
US3847205A (en) Control apparatus for continuously casting liquid metal produced from consumable electrodes
US3752216A (en) Apparatus for homogeneous refining and continuously casting metals and alloys
KR860000126B1 (en) Method of electromagnetic thin strip casting
GB1242351A (en) Process and apparatus for purifying metals by submerged arc casting
EP0543290A3 (en) A process for ingot casting employing a magnetic field for reducing macrosegregation and associated apparatus and ingot
RU2003120795A (en) PROCESSING MELTED METALS BY MOVING ELECTRIC ARC
US5799721A (en) Method of remelting metals to form an elongate portion and apparatus therefor
US5427173A (en) Induction skull melt spinning of reactive metal alloys
US3788383A (en) Apparatus for the continuous extraction of electroslag remelted metals
US3915217A (en) Process for electroslag remelting in a funnel shaped crucible
US4167963A (en) Method and apparatus for feeding molten metal to an ingot during solidification
US3804150A (en) Apparatus for electroslag remelting
JPH06102251B2 (en) Control method of molten metal flow rate in thin plate casting
US6283198B1 (en) Electroslag facing process

Legal Events

Date Code Title Description
AS Assignment

Owner name: AL-INDUSTRIAL PRODUCTS, INC. 2700 TWO OLIVER PLAZA

Free format text: SECURITY INTEREST;ASSIGNOR:SPECIAL METALS CORPORATION A DE CORP;REEL/FRAME:004212/0061

Effective date: 19831229

Owner name: CITICORP INDUSTRIAL CREDIT, INC., BOND COURT BLDG.

Free format text: SECURITY INTEREST;ASSIGNOR:SPECIAL METALS CORPORATION;REEL/FRAME:004207/0501

Effective date: 19831223

AS Assignment

Owner name: ALLEGHENY INTERNATIONAL ACCEPTANCE CORPORATION

Free format text: ASSIGNMENT OF ASSIGNORS INTEREST.;ASSIGNOR:AL- INDUSTRIAL PRODUCTS INC.;REEL/FRAME:004379/0797

Effective date: 19850306

AS Assignment

Owner name: HELLER FINANCIAL, INC., 101 PARK AVE., NEW YORK, N

Free format text: SECURITY INTEREST;ASSIGNOR:SPECIAL METALS CORPORATION;REEL/FRAME:004756/0171

Effective date: 19870827

AS Assignment

Owner name: SPECIAL METALS CORPORATION

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:CITICORP INDUSTRIAL CREDIT, INC.;REEL/FRAME:004764/0322

Effective date: 19870825

AS Assignment

Owner name: SPECIAL METALS CORPORATION, 240 TWO CHATHAM CENTER

Free format text: RELEASED BY SECURED PARTY;ASSIGNORS:AL-INDUSTRIAL PRODUCTS, INC., A CORP. OF PA;ALLEGHENY INTERNATIONAL, INC., A CORP. OF PA;REEL/FRAME:004846/0078

Effective date: 19870827

Owner name: SPECIAL METALS CORPORATION,PENNSYLVANIA

Free format text: RELEASED BY SECURED PARTY;ASSIGNORS:AL-INDUSTRIAL PRODUCTS, INC., A CORP. OF PA;ALLEGHENY INTERNATIONAL, INC., A CORP. OF PA;REEL/FRAME:004846/0078

Effective date: 19870827

AS Assignment

Owner name: SPECIAL METALS CORPORATION, NEW YORK

Free format text: RELEASED BY SECURED PARTY;ASSIGNOR:HELLER FINANCIAL, INC.;REEL/FRAME:005463/0096

Effective date: 19900831

AS Assignment

Owner name: CREDIT LYONNAIS NEW YORK BRANCH, NEW YORK

Free format text: SECURITY INTEREST;ASSIGNOR:SPECIAL METALS CORPORATION;REEL/FRAME:006540/0204

Effective date: 19900831