EP0780631B1 - Procédé et brûleur pour la combustion d'hydrogène - Google Patents

Procédé et brûleur pour la combustion d'hydrogène Download PDF

Info

Publication number
EP0780631B1
EP0780631B1 EP96119733A EP96119733A EP0780631B1 EP 0780631 B1 EP0780631 B1 EP 0780631B1 EP 96119733 A EP96119733 A EP 96119733A EP 96119733 A EP96119733 A EP 96119733A EP 0780631 B1 EP0780631 B1 EP 0780631B1
Authority
EP
European Patent Office
Prior art keywords
hydrogen
burner
combustion chamber
bores
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96119733A
Other languages
German (de)
English (en)
Other versions
EP0780631A2 (fr
EP0780631A3 (fr
Inventor
Friedemann Prof. Dr.-Ing. Suttrop
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Operations GmbH
Original Assignee
Airbus Operations GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Airbus Operations GmbH filed Critical Airbus Operations GmbH
Publication of EP0780631A2 publication Critical patent/EP0780631A2/fr
Publication of EP0780631A3 publication Critical patent/EP0780631A3/fr
Application granted granted Critical
Publication of EP0780631B1 publication Critical patent/EP0780631B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/46Details, e.g. noise reduction means
    • F23D14/70Baffles or like flow-disturbing devices
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/20Non-premix gas burners, i.e. in which gaseous fuel is mixed with combustion air on arrival at the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/9901Combustion process using hydrogen, hydrogen peroxide water or brown gas as fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D2209/00Safety arrangements
    • F23D2209/20Flame lift-off / stability

Definitions

  • the invention relates to a method for burning hydrogen and a burner to carry out the procedure.
  • Hydrogen (H2) as fuel for all types of burners, for example for combustion chambers for gas turbines, is characterized by a particularly high reactivity and thus by an extraordinary great stability of the combustion, even with excess air, such as in combustion chambers modern gas turbines occur.
  • NOx nitrogen oxide
  • a distribution chamber of plate-like shape for the hydrogen transverse to the flow direction of the air hereinafter referred to as the main flow direction
  • the distribution chamber in the main flow direction of a variety of Air ducts with an inlet opening and an outlet opening is penetrated. Every air pipe stands with small holes, which are located near the inlet opening, with the distribution chamber in connection. If H2 is now introduced into the distribution chamber, it flows across Main flow direction to the individual holes and thus reaches the air ducts. Will now at the same time Air is blown through the air guide pipes into the combustion chamber, so both gases mix within the air pipes. The mixture produced in this way then enters the combustion chamber and is ignited.
  • the arrangement of the distribution chamber makes the structure of the burner essential Simplified, as this enables individual hydrogen lines to the individual air ducts or Burning zones can be avoided.
  • a plate-shaped gas burner is known from US-A 1,968,359. According to FIGS. 1 and 3 This publication has 24 air channels, four channels for each of these air channels flow the fuel so that a total of 96 individual combustion zones are created. According to these orders of magnitude one skilled in the art will recognize that these firing zones used are by no means something with micro-burning zones in the respective areas of the bores of a distribution channel from one Burner for burning hydrogen, the exemplary embodiment of which he added from the FIGS. 18 and 19 and 20 and 21 including their correlating exemplary explanations below may have to do.
  • EP-A 0 334 736 cannot Clearly remove process step after the readable "when starting up the burner after injecting hydrogen and air into the combustion chamber with an air environment Fine distribution to a large number of micro-combustion zones in the respective areas of the holes is formed.
  • the gas burner which has become known from EP-A 0 334 736 and which passes through several nozzles the combustion of a flame generated in the air combustible compressed gas includes one Air chamber, one wall of which is perforated with a large number of openings close together, where the flame is generated.
  • the invention is based on the object of a method for the diffusion combustion of H2 and a burner to carry out this procedure so that by a drastic Increase in the burning zones a significant reduction in NOx formation compared to previous ones Burners with diffusion combustion is achieved.
  • Figures 1 to 4 show a burner for burning H2 for installation, for example, in the Combustion chamber of a gas turbine.
  • the burner has a plate-like shape and is transverse to the main flow direction built into the combustion chamber.
  • the edge area of the burner and its connection with the combustion chamber housing, not shown, is not shown and can be designed as desired his.
  • the burner consists of a first perforated plate 2 and a second perforated plate 3 passing through a plurality of guide tubes 4 are kept at a constant distance d.
  • the Holes can be arranged according to certain matrix mustem.
  • the first perforated plate 2 is, for example made of a suitable metal and is gas impermeable.
  • the second perforated plate 3 is gas-permeable and consists of a suitable porous Material, for example made of a sintered metal.
  • the holes in both plates 2, 3 are congruent attached so that each hole in the first plate 2 with the associated hole of the second plate 3 forms a pair of holes.
  • the cohesion of the burner is essentially due to this made that a guide tube 4 is used as a spacer and fixed in each pair of holes.
  • the guide tubes 4 have peripheral beads 5 which are rolled outwards.
  • the guide tubes 4 are fixed in the perforated plate 2, for example by soldering or Welding, whereas the fixation in the plate 3, for example by rolling or flanging can be done. This results in cooperation with the bead 5 between the guide tubes 4 and the perforated plate 3 each have a positive connection.
  • This essentially forms the perforated plates 2, 3 with the guide tubes 4 a distribution chamber.
  • the guide pin consists of Basically a cylindrical rotating body with a stop 6a, a guide part 6b, a holder 8 and a disk 9.
  • the outer diameter of the guide part 6b corresponds to in about the inner diameter of the guide tube 4 and has in the example embodiment shown four axial guide channels 7.
  • the bracket 8 is attached to the right of the guide part in Figures 3 and 5 and practically represents an area with a reduced diameter, which concentrically Disc 9 carries, whose outer diameter corresponds approximately to that of the guide part 6b.
  • the Stop 6a is formed by a region which is short in the axial direction and whose outer diameter is larger than that of the guide part 6b.
  • a guide pin 6 is inserted until the stop 6a abuts the perforated plate 2 and is in this position permanently fixed. Such an assembly forms an injector.
  • the geometry the guide pin 6 is selected so that when it is inserted up to the respective stop 6a a predetermined redirection, d. H. gives a predetermined flame shape. It is also conceivable that the stops 6a are omitted for reasons of weight. In this case the insertion takes place the guide pin 6 in the guide tubes 4 in a predetermined axial position by means of a Manufacturing device.
  • the extremely simple structure of the injectors enables them to be miniaturized that a much larger number of them can be installed per combustion chamber. As a result of Miniaturization in the specified order of magnitude becomes the firing zones micro-firing zones called.
  • FIGS 6 and 7 show a further embodiment of a burner, consisting of individual for the hydrogen provided elongated distribution channels 11 of U-shaped cross section, the to the combustion chamber are closed off by walls 12 made of a porous sintered metal.
  • the Channels 11 are connected to one another by perforated profiles 13 of an angular cross section, that in each case the free longitudinal edges of a perforated profile 13 on the longitudinal edges of two neighboring ones Distribution channels 11 are attached.
  • the holes 14 are in the strip-shaped legs the perforated profiles 13 attached at a uniform distance. To start up this burner gaseous hydrogen is introduced into the distribution channels 11. At the same time, air gets through the holes 14 are blown into the combustion chamber.
  • a stoichiometric one forms in the region of each bore 14 Zone that forms its own flame when the burner is ignited.
  • This burner is particularly simple and can be manufactured as a sheet metal structure. You can For example, proceed so that the U-shaped distribution channels 11 are bent from sheet metal, wherein each U-leg is connected in one piece with an obliquely angled punched tape. To the insertion of the porous walls 12 through adjacent channels 11, for example Welded together along the free edges of the paper tape. This burner is can be miniaturized in such a way that several thousand combustion zones are reached within one combustion chamber become.
  • the H2 is passed through the distribution chamber or distributed over the distribution channels to thousands of micro-combustion zones, so to speak microdiffusion combustion of the hydrogen takes place.
  • the main advantage of this Inverse hydrogen diffusion combustion consists of good cooling of the structure that H2 is reached.
  • porous metallic ones can also be used instead of the porous sintered metals Materials are used. This is how porous materials based on metallic come Fibers into consideration, such as are known, for example, under the name "felt metal". It is also conceivable that the porous material consists of a ceramic material. To the Limit the effects of inhomogeneities possibly present in a porous material, can be a perforated plate with a defined fine hole pattern of a relatively thin layer of a porous material or used alone.
  • FIGS 8 to 11 show a further embodiment of a burner, but in contrast to the previous one does not work with inverse but with regular diffusion combustion.
  • That burner again consists essentially of two congruent perforated plates, here with the numbers 15 and 16 are designated.
  • the two perforated plates are via guide tubes 17, each of which has an inlet opening and have an outlet opening, firmly connected to each other, so that again Distribution chamber is formed.
  • Several holes 18 in are in the vicinity of the outlet openings the same angular pitch attached to the guide tubes 17.
  • each guide tube 17 is a guide pin 19, consisting of a stop 20, a guide part 21 and a free jet part 22, the free jet part practically having an axial section with a reduced diameter.
  • the stop 20 and the guide part 21 have a Number of axially extending grooves 23, the depth of which extends to the outside diameter of the free jet part 22 can be enough.
  • the number of bores 18 corresponds to that of the grooves 23.
  • a micro-combustion zone is formed downstream of a bore 18, in which there is ignition a flame stabilizes the combustion chamber.
  • the guide tubes 17 in the example embodiment shown each have six bores 18, there are six micro-combustion zones per guide tube. This results in a further increase in the number of firing zones.
  • An application of this principle the number of combustible zones that can be installed would be based on the TRUD combustion chamber mentioned at the beginning increase to about 5000. This in turn causes a very high level even without premixing Degree of mixing is achieved, which has the consequence that the formation of NOx is largely reduced becomes.
  • By rotating and / or axially displacing the guide pins 19 with respect to the guide tubes 17 various burner settings can be made. Here too there is the possibility to omit the stops 20 and the axial position of the air guide bolts based on a appropriate device to adjust.
  • Figures 12 to 15 show different settings of the burner described above.
  • the guide pin with the grooves 23 is set relative to the guide tube 17 with the bores 18, that the injection of hydrogen through the holes 18 into the gaps between the air jets takes place, which arrive through the grooves 23.
  • 13 shows the guide pin in a position in which the guide part 21 reaches close to the holes 18. This allows the hydrogen jet can only be diverted downstream. However, if the guide part 21 is in the guide tube 17 fixes that there is a somewhat greater distance from the bores 18, as shown in FIG. 14, can there is some recirculation.
  • Fig. 15 finally shows a configuration in which the by Grooves 23 incoming air jets exactly on the hydrogen jets entering through the holes to meet.
  • Figures 16 and 17 show a configuration according to which the hydrogen jets and the air jets be kept separate until they enter the combustion chamber.
  • Guide tubes 17 are used with the holes 18. These are back in the perforated plates 15 and 16 are used, of which only the number 16 is shown here.
  • the one used here Guide pin 24 again has the grooves 23, but is otherwise with two major changes Mistake.
  • the bolt with a constant diameter is approximately up to the outlet cross section guided.
  • the respective guide pin 24 is in the relevant Guide tube 17 used that each bore 18 opens into a guide channel 25. hereby is the beginning of the diffusion between hydrogen and air to an area downstream from the perforated plate 16 laid, for example, to avoid excessive thermal structural loads. at In these solutions, the flames stabilize at the mouths of the guide channels 25.
  • FIGs 18 and 19 show an embodiment of a burner according to the invention for regular Diffusion combustion of the two-dimensional type.
  • This burner again consists of individual provided for the H2 elongated distribution channels 26, but in contrast to the Distribution channels 11 according to Figures 6 and 7 have a closed cross section.
  • This Cross-section is essentially determined by a flat rectangular shape, but in its im
  • the right area (FIG. 19) has a roof edge 26a. Are on both sides of the roof edge 26a fine holes 27 attached in a staggered arrangement.
  • the individual distribution channels 26 held by a bracket, not shown, at a mutual distance so that they are a grid form, which can be flowed through from left to right according to FIG. 19 by the air.
  • the burner 18 further comprises a perforated plate 28, which is integrated from strip-shaped gap plates is, in the longitudinal edges gaps 29 are incorporated.
  • the gap plates are between two Distribution channels 26 are fixed in the area of the bores 27 by a bracket, not shown, that each hole 27 is assigned a gap 29.
  • each hole 27 is assigned a gap 29.
  • instead of the one drawn hole 27 also several finer holes can be arranged.
  • Figures 20 and 21 show another burner according to the invention with a one-piece perforated plate 32 with holes 32a, to which a plurality of distribution channels 33 are fastened by means of brackets 34.
  • the distribution channels 33 have a long round cross section and have the perforated plate 32 in their facing area a plurality of holes 35.
  • the brackets 34 can be made of wire or sheet metal. 21, each hole 32a of the perforated plate 32 has two holes 35 assigned, whereby H2 can emerge according to the arrows 37.
  • Figures 22 and 23 show a further embodiment of a burner.
  • the partial view according to Fig. 22 shows curved distribution channels 38, which are part of an annular burner and after 23 have a long round cross section.
  • Each distribution channel forms a closed one Ring, which is connected to the hydrogen line via its own connection.
  • the cohesion of the burner is arranged, for example, between the individual distribution channels 38 Wavy separators 39 are produced, for example, with the distribution channels 38 are connected by welding.
  • the separators 39 are each formed from a sheet metal strip and provide a sufficient distance between the individual distribution channels 38 for the passage of air for sure.
  • a distribution channel 38 with a separator 39 by winding is combined into a disc-shaped or ring-shaped burner, so that the distribution channel 38 gets a spiral shape.
  • Common feature of the annular and of the spiral manifolds is that they have a curved shape.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Gas Burners (AREA)
  • Pre-Mixing And Non-Premixing Gas Burner (AREA)

Claims (4)

  1. Procédé pour la combustion par diffusion d'hydrogène dans un brûleur situé à l'intérieur d'une chambre de combustion d'une turbine à gaz, l'hydrogène et l'air étant introduits dans le brûleur, la direction d'écoulement primaire de l'air dans la chambre de combustion étant définie, l'hydrogène présente dans le canal de distribution s'écoulant de ce canal via une multitude d'alésages de canal et étant insufflée en même temps qu'un écoulement d'air entourant le canal de distribution à travers une ouverture d'une plaque perforée, l'hydrogène étant essentiellement répartie sur plusieurs zones de combustion individuelles, dans un écoulement transversal perpendiculaire à la direction d'écoulement principale,
    et caractérisé en ce que lors de la mise en service du brûleur, l'hydrogène et l'air sont insufflés via les alésages de la plaque perforée dans la chambre de combustion, formant ainsi à l'intérieur de la chambre de combustion, dans les différentes zones des alésages, un environnement d'air tandis qu'après l'allumage de la chambre de combustion, les flammes se stabilisent au niveau des alésages.
  2. Brûleur pour la combustion d'hydrogène présentant au moins un canal de distribution (26, 33) présentant une section transversale fermée de forme rectangulaire plate ou ronde allongée et comprenant une plaque perforée (28, 32) disposée à côté d'une chambre de combustion, le canal de distribution (26, 33) étant doté d'une multitude d'alésages (27, 35) orientés
    vers la chambre de combustion et la plaque perforée (28, 32) étant disposée de telle sorte que chaque alésage (27, 35) de plusieurs canaux de distribution (26, 33) disposés les uns à côté des autres corresponde à au moins un orifice (29, 32a), caractérisé en ce que chaque canal de distribution (26) de forme rectangulaire plate présente, dans la zone dirigée vers la plaque perforée (28) un bord de recouvrement (26a) sur les deux côtés duquel ont été disposés de manière décalée de fins alésages (27), le brûleur comprenant des tôles perforées lamellaires dans les bords longitudinaux desquelles les trous (29) ont été pratiqués de telle sorte que chaque alésage (27) corresponde à un trou (29) via lequel l'hydrogène peut sortir, ou en ce que les canaux de distribution (33) présentant une section transversale ronde allongée sont dotés, dans la zone orientée vers la plaque perforée (32), d'une multitude d'alésage (35), deux alésages (35) via lesquels l'hydrogène peut sortir étant reliés à chaque trou (32a) de la plaque perforée (32).
  3. Brûleur selon la revendication 2, caractérisé en ce que chaque alésage (35) du canal de distribution (33) à section transversale ronde allongée a été raccordée à une ouverture (32a) en forme de trou.
  4. Brûleur selon la revendication 2, caractérisé en ce qu'un environnement d'air avec une multitude de micro-zones de combustion est présent à l'intérieur de la chambre de combustion, dans les différentes zones des alésages (27, 35), l'environnement d'air étant constitué, dans la chambre de combustion et
    lors de la mise en service du brûleur par injection d'air, par l'ouverture (29, 32a) entourant le canal de distribution (26, 33) et lors de la mise en service par injection d'hydrogène, par l'alésage (27, 35) présent dans le canal de distribution (26, 33).
EP96119733A 1995-12-19 1996-12-10 Procédé et brûleur pour la combustion d'hydrogène Expired - Lifetime EP0780631B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19547506A DE19547506B4 (de) 1995-12-19 1995-12-19 Verfahren und Brenner zum Verbrennen von Wasserstoff
DE19547506 1995-12-19

Publications (3)

Publication Number Publication Date
EP0780631A2 EP0780631A2 (fr) 1997-06-25
EP0780631A3 EP0780631A3 (fr) 1998-09-30
EP0780631B1 true EP0780631B1 (fr) 2003-10-29

Family

ID=7780607

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96119733A Expired - Lifetime EP0780631B1 (fr) 1995-12-19 1996-12-10 Procédé et brûleur pour la combustion d'hydrogène

Country Status (4)

Country Link
EP (1) EP0780631B1 (fr)
JP (1) JP3830596B2 (fr)
DE (2) DE19547506B4 (fr)
RU (1) RU2152559C2 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006046053A1 (de) * 2006-09-28 2008-04-03 Green Vision Holding B.V. Nicht vorgemischter Brenner
EP3805107A1 (fr) 2019-10-08 2021-04-14 Airbus SAS Système de propulsion hybride pour aéronefs, procédé de fonctionnement d'un système de propulsion hybride et aéronef hybride
EP4173956A1 (fr) 2021-10-29 2023-05-03 Airbus S.A.S. Système de propulsion hybride pour propulser un aéronef, son procédé de fonctionnement et aéronef hybride

Families Citing this family (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7575715B2 (en) 2003-05-22 2009-08-18 Nanyang Technological University Methods for sterilizing medical devices using a hydrogen surface-mixed diffusion flame
US8261555B2 (en) * 2010-07-08 2012-09-11 General Electric Company Injection nozzle for a turbomachine
UA102400C2 (uk) * 2011-01-24 2013-07-10 Товариство З Обмеженою Відповідальністю "Науково-Проектний Інститут Хімічних Технологій "Хімтехнологія" Пальник реактора одержання ацетилену
US8893501B2 (en) * 2011-03-28 2014-11-25 General Eletric Company Combustor crossfire tube
EP2930430A1 (fr) * 2014-04-07 2015-10-14 Siemens Aktiengesellschaft Bec de brûleur et brûleur d'une turbine à gaz
AU2015265278B2 (en) * 2014-05-30 2018-04-05 B&B Agema Gmbh Combustor for gas turbine engine
WO2015182727A1 (fr) * 2014-05-30 2015-12-03 川崎重工業株式会社 Dispositif de combustion pour turbine à gaz
JP6535525B2 (ja) * 2015-07-01 2019-06-26 三菱日立パワーシステムズ株式会社 ガスタービン燃焼器
FR3095497B1 (fr) 2019-04-24 2021-10-01 Henri Becu Bruleur en nano materiaux frittes pour la combustion par flamme d’un premelange gazeux du type comburant/combustible
JP7222872B2 (ja) * 2019-11-08 2023-02-15 株式会社デンソー ガスタービンの燃焼器
RU2767237C1 (ru) * 2021-05-11 2022-03-17 Федеральное государственное бюджетное учреждение науки Институт теоретической и прикладной механики им. С.А. Христиановича Сибирского отделения Российской академии наук (ИТПМ СО РАН) Способ организации диффузионного горения микроструи газообразного топлива
KR20230091605A (ko) 2021-12-16 2023-06-23 한화에어로스페이스 주식회사 직교 배열되는 채널을 포함하는 연소 장치
DE102022106816A1 (de) * 2022-03-23 2023-09-28 Dürr Systems Ag Brennervorrichtung
CN115355530B (zh) * 2022-08-12 2023-06-20 中国航发沈阳发动机研究所 一种半圆柱型射流孔的氢燃料燃烧室头部结构

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE372932C (de) * 1923-04-05 Karol Hand Gasheizbrennerkopf
US1968395A (en) * 1932-02-03 1934-07-31 Carl L Zeller Gas burner
AT299490B (de) * 1968-10-10 1972-06-26 British Petroleum Co Brenner für flüssige und/oder gasförmige Brennstoffe
GB1263611A (en) * 1969-05-19 1972-02-16 British Petroleum Co Gas burner
GB1343398A (en) * 1969-12-24 1974-01-10 Delaney Gallay Ltd Gas burners
DE2034352C2 (de) * 1970-07-10 1984-02-23 Lanemark Ltd., Coventry Plattenbrenner
JPS5245880Y2 (fr) * 1973-02-08 1977-10-19
FR2226891A5 (fr) * 1973-04-20 1974-11-15 Vitaly Fedorovich Popov
FR2495280A1 (fr) * 1980-12-01 1982-06-04 Deutsche Forsch Luft Raumfahrt Generateur de vapeur
FR2628826B1 (fr) * 1988-03-21 1992-04-24 Chaffoteaux Et Maury Perfectionnements aux bruleurs a gaz
JPH0225612A (ja) * 1988-07-14 1990-01-29 Shoei Seisakusho:Kk 先混合式バーナー
US5083917A (en) * 1990-05-15 1992-01-28 Cat Eye Co., Ltd. Single port inshot target burner
JP2589218Y2 (ja) * 1993-10-07 1999-01-27 株式会社山形信越石英 石英ガラス製バーナ

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006046053A1 (de) * 2006-09-28 2008-04-03 Green Vision Holding B.V. Nicht vorgemischter Brenner
DE102006046053B4 (de) * 2006-09-28 2008-11-20 Green Vision Holding B.V. Nicht vorgemischter Brenner
EP3805107A1 (fr) 2019-10-08 2021-04-14 Airbus SAS Système de propulsion hybride pour aéronefs, procédé de fonctionnement d'un système de propulsion hybride et aéronef hybride
EP4173956A1 (fr) 2021-10-29 2023-05-03 Airbus S.A.S. Système de propulsion hybride pour propulser un aéronef, son procédé de fonctionnement et aéronef hybride

Also Published As

Publication number Publication date
DE19547506B4 (de) 2008-06-05
EP0780631A2 (fr) 1997-06-25
EP0780631A3 (fr) 1998-09-30
DE19547506A1 (de) 1997-07-03
JP3830596B2 (ja) 2006-10-04
RU2152559C2 (ru) 2000-07-10
DE59610797D1 (de) 2003-12-04
JPH09178128A (ja) 1997-07-11

Similar Documents

Publication Publication Date Title
EP0780631B1 (fr) Procédé et brûleur pour la combustion d'hydrogène
DE2838258C2 (de) Ringbrennkammer für ein Strahltriebwerk
DE3217674C2 (de) Brennkammer für eine Gasturbine
EP2156095B1 (fr) Stabilisation sans tourbillonner de la flamme d'un brûleur à prémélange
DE3222347C2 (fr)
EP2115353B1 (fr) Chambre de combustion pour une turbine à gaz
EP1064498B1 (fr) Bruleur pour une turbine a gas
DE10064259B4 (de) Brenner mit hoher Flammenstabilität
EP2423597B1 (fr) Brûleur à prémélange pour une turbine à gaz
DE19510744A1 (de) Brennkammer mit Zweistufenverbrennung
CH698405A2 (de) Einspritzsystem.
EP1356236B1 (fr) Brûleur de prémélange et son mode de fonctionnement
EP1235033B1 (fr) Chambre de combustion annulaire et méthode d'opération de la dite chambre
EP0718550B1 (fr) Gicleur
DE2552374A1 (de) Brenner fuer fluessigen oder gasfoermigen brennstoff
EP1446610A1 (fr) Procede de combustion destine notamment a un procede de production de courant electronique et/ou de chaleur
EP2171354B1 (fr) Brûleur
EP3254027B1 (fr) Dispositif de distribution de gaz pour un brûleur atmosphérique à gaz
EP1130315A2 (fr) Brûleur atmosphérique à gaz
DE2705647A1 (de) Brenner fuer gasfoermigen oder fluessigen brennstoff
EP0961905B1 (fr) Procede et dispositif de combustion d'un combustible
EP0832399B1 (fr) Bruleur d'allumage catalytique pour turbine a gaz
DE19510743A1 (de) Brennkammer mit Zweistufenverbrennung
EP1624252A1 (fr) Brûleur, turbine à gaz et procédé opératoire pour un brûleur
DE3835381A1 (de) Brenner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

K1C1 Correction of patent application (title page) published

Effective date: 19970625

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

RAP3 Party data changed (applicant data changed or rights of an application transferred)

Owner name: DAIMLERCHRYSLER AEROSPACE AIRBUS GESELLSCHAFT MIT

17P Request for examination filed

Effective date: 19980819

17Q First examination report despatched

Effective date: 20000919

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: EADS AIRBUS GMBH

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: AIRBUS DEUTSCHLAND GMBH

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4D

REG Reference to a national code

Ref country code: GB

Ref legal event code: FG4C

Free format text: NOTIFICATION HAS BEEN RECEIVED FROM THE EUROPEAN PATENT OFFICE THAT THE PUBLICATION LANGUAGE IS ACTUALLY GERMAN.

REF Corresponds to:

Ref document number: 59610797

Country of ref document: DE

Date of ref document: 20031204

Kind code of ref document: P

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20040204

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed

Effective date: 20040730

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

Owner name: AIRBUS OPERATIONS GMBH

Effective date: 20111118

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20151221

Year of fee payment: 20

Ref country code: DE

Payment date: 20151210

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20151221

Year of fee payment: 20

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59610797

Country of ref document: DE

REG Reference to a national code

Ref country code: GB

Ref legal event code: PE20

Expiry date: 20161209

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF EXPIRATION OF PROTECTION

Effective date: 20161209