EP0757168B1 - Méthode et dispositif pour la commande d'un moteur à combustion interne - Google Patents

Méthode et dispositif pour la commande d'un moteur à combustion interne Download PDF

Info

Publication number
EP0757168B1
EP0757168B1 EP96106814A EP96106814A EP0757168B1 EP 0757168 B1 EP0757168 B1 EP 0757168B1 EP 96106814 A EP96106814 A EP 96106814A EP 96106814 A EP96106814 A EP 96106814A EP 0757168 B1 EP0757168 B1 EP 0757168B1
Authority
EP
European Patent Office
Prior art keywords
correction
operating
signal
characteristic diagram
points
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP96106814A
Other languages
German (de)
English (en)
Other versions
EP0757168A2 (fr
EP0757168A3 (fr
Inventor
Gerhard Dipl.-Ing. Engel
Manfred Dipl.-Ing. Birk
Peter Dipl.-Ing. Rupp
Christopher Dipl.-Ing. Huber
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Robert Bosch GmbH
Original Assignee
Robert Bosch GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Robert Bosch GmbH filed Critical Robert Bosch GmbH
Publication of EP0757168A2 publication Critical patent/EP0757168A2/fr
Publication of EP0757168A3 publication Critical patent/EP0757168A3/fr
Application granted granted Critical
Publication of EP0757168B1 publication Critical patent/EP0757168B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2409Addressing techniques specially adapted therefor
    • F02D41/2416Interpolation techniques
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2441Methods of calibrating or learning characterised by the learning conditions
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02DCONTROLLING COMBUSTION ENGINES
    • F02D41/00Electrical control of supply of combustible mixture or its constituents
    • F02D41/24Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means
    • F02D41/2406Electrical control of supply of combustible mixture or its constituents characterised by the use of digital means using essentially read only memories
    • F02D41/2425Particular ways of programming the data
    • F02D41/2429Methods of calibrating or learning
    • F02D41/2477Methods of calibrating or learning characterised by the method used for learning

Definitions

  • the invention relates to a method and a device for controlling an internal combustion engine according to the generic terms of independent claims.
  • Such a method and such a device for control an internal combustion engine is, for example, from the DE-OS 41 05 740 (US 315,976) known.
  • a first deviation signal represents an additive and a second deviation signal one multiplicative error.
  • These additive and multiplicative Errors are caused by additive and multiplicative correction factors taken into account in the entire map area.
  • the invention has for its object in a method and a device for controlling an internal combustion engine of the type mentioned at the beginning, as simple as possible and to achieve exact adaptation of a map.
  • the procedure according to the invention has the advantage that a simple adaptation of the map is possible there is very precise where it is needed for functionality.
  • FIG. 1 shows 2 shows a block diagram of the device according to the invention, FIG. 2 the correction map and Figure 3 different work areas.
  • the quantity-determining actuator 100 is operated by a so-called Pump map 105 is supplied with the signal US.
  • the pump characteristic map 105 receives the output signal as an input variable of node 110 forwarded. At first The entry of node 110 stands with a positive sign an output signal MKS of a minimum selection 120.
  • the minimum selection 120 becomes the output signal MKW a quantity specification 142, which for example a signal FP an accelerator pedal position sensor 144 evaluates, supplied.
  • the second selection becomes the minimum selection 120 the output signal a smoke control 122 and the output signal of a Torque limit 124 supplied.
  • the smoke control 122 evaluates, for example, the output signal ⁇ of a lambda sensor 130, which detects the oxygen concentration of the exhaust gas, and / or the output signal ML of an air quantity sensor 133 out.
  • the torque limit 124 is particularly one Speed signal N 136 supplied.
  • the output signal of the minimum selection 120 can be still further Control loops are fed. For example, it becomes one Injection start regulator 140, which depends on this Quantity signal MKS sets the desired start of injection. Furthermore, it can be an exhaust gas recirculation controller 145 or an air flow regulator. This regulator also includes a map in which depending on operating parameters a control signal for controlling a second Stellers 148 is stored. This second actuator influences for example the amount of air sucked in via an exhaust gas recirculation flap.
  • the exhaust gas recirculation controller 145 processes the output signal of the speed sensor 136 and the lambda sensor 130 and / or an air mass meter. Such an arrangement is essentially known.
  • the second input of node 110 is negative Sign the output signal K of an adaptation 115 fed.
  • the adaptation processes the output signal of a Junction point 155 and the speed signal N des Speed sensor 136 and a fuel quantity signal MK, the is provided by a block 157.
  • the addition point 155 becomes the output signal with a negative sign MCS of the minimum selection and with a positive sign a signal MKI fed to a quantity calculation 150.
  • the Quantity calculation 150 are the lambda signal as input variables ⁇ of the lambda sensor 130 and an air quantity signal MLV an air quantity specification 152 or the air mass sensor 133 fed.
  • the output signal K of the adaptation 115 is from a correction map 180 provided.
  • the correction map 180 the output signal of a first controller 170, one second controller 172 and a third controller 174 fed.
  • the first controller 170 is above a first switching means 160, the second controller 172 via a second switching means 162 and the third controller 174 via a third switching means 164 with connection point 155 in connection.
  • the switching means 160, 162 and 164 are controlled by an adaptation controller 166 controlled depending on operating parameters. As operating parameters for example, the speed signal N and a quantity signal MK is used.
  • block 142 specifies a desired quantity MKW that corresponds to the driver request.
  • This desired quantity is limited to the maximum permissible values depending on the output signal of the smoke limitation 122 and the torque limitation 124.
  • the smoke limitation 122 depends, for example, on the air quantity ML supplied to the internal combustion engine and the lambda value ⁇ , that is to say the oxygen concentration of the exhaust gas.
  • the torque limit 124 is essentially dependent on the speed.
  • the setpoint MKS for the fuel quantity MKS to be injected on This variable can be fed to various controllers depending on this size, for example the start of spraying or set the exhaust gas recirculation rate.
  • this variable MKS fed to the so-called pump map 105.
  • the pump map sets the MKS signal with respect to amount of fuel to be injected into a control signal US for the actuator 100 ⁇ m, the amount of fuel to be injected sets.
  • Fuel metering in particular of the actuator, can be the case occur that the amount of fuel actually injected deviates from the desired amount of MKS. Is the actual quantity less than the setpoint MKS, so delivers the internal combustion engine does not have the desired torque. is the amount too large, there may be impermissible exhaust gas emissions on.
  • a quantity calculation is used 150 the amount of fuel actually injected MKI determines and in comparison point 155 with the target quantity FMD compared. Depending on this comparison result then a correction quantity K is determined, which is also a correction quantity K is called. With this correction variable in Addition point 110 corrected the target value for the quantity MKS.
  • the intake air quantity MLV and the lambda value ⁇ I of the exhaust gas are used to calculate the quantity 150.
  • the air volume signal MLV can be an air volume that corresponds to a Sensor is detected immediately, are used, or that Air volume signal MLV can be based on various operating parameters such as temperature and Pressure of the intake air volume can be calculated.
  • the lambda signal can also have other quantities or quantity replacement signals are used.
  • the needle stroke, or the spray duration the pressure in the Fuel line, torque, exhaust gas temperature or the output signal of a NOX or HC sensor is used become.
  • the lambda value ⁇ I of the exhaust gas is usually measured directly with a lambda probe.
  • the adaptation controller 166 ensures that the controllers 170, 172 and 174 only get a signal when certain Operating parameters are available. As an operating parameter the speed N and the fuel quantity MK are taken into account.
  • the fuel quantity MK is an in the fuel quantity value present to the control device, such as for example the target fuel quantity MKS. Alternatively, you can other quantity signals, such as the quantity MKI, can be used.
  • switches 160, 162 and 164 closed and the deviation signal DMK the corresponding controller 170, 172 or 174 fed.
  • controllers are preferably integral controllers realized. This is a slow one Control loop, which is the determined difference in quantity between the target quantity MKS and the calculated actual quantity MKI regulates to 0 at a certain operating point.
  • the deviation signal DMK only in the vicinity of three operating points are defined by the speed and fuel quantity MK become. Based on these three deviation values three correction values are determined for these three operating points. These three correction values at three operating points define a so-called correction level. This correction level assigns each operating point by a fuel quantity value MK a speed value N is defined, a correction amount K to.
  • these three points are chosen so that in every functionally important work area of the internal combustion engine an operating point comes to rest.
  • a first area of work is at low speeds and small amounts of fuel given. Exhaust gas recirculation is in this operating range active.
  • a second work area at low speeds and large amounts of fuel Smoke control active.
  • a third work area at high speeds and large amounts of fuel Torque limitation.
  • Figure 2 are the three operating points at which the correction values be identified, marked with crosses.
  • the speed N is plotted on a first axis.
  • about the fuel quantity MK is plotted on a second axis and
  • the correction quantity K is plotted on a third axis.
  • the speed N1 takes for example a value of 1000 min -1 and the speed N2 a value of 4000 min -1 .
  • the controllers 170, 172 and 174 set the correction values K1, K2 and K3 available. Based on these correction values and the known operating points assigned to these values there is a correction level in the correction map 180 is filed. From this correction map 180 can be a correction amount K for each operating point be read out.
  • a correction value is learned in each of the work areas. This is preferably the mean over several measurements of the deviation signal DMK. Starting from The three correction values K1, K2 and K3 then become a correction plane over which a global correction of the Pump map is done. The high accuracy of the global Correction is right there for functionality is needed.
  • the selected valid deviation signals DMK are from the controller responsible for the respective work area 170, 172 and 174 averaged continuously. As long as no usable There is a signal for the adaptation, i.e. the corresponding one Operating point has not yet been reached, that takes Output signal of the corresponding controller has the value 0. All Deviation signals, which at an operating point within of a work area and considered valid are reached via the switching means 160, 162 or 164 the associated controller 170, 172 or 174, which has a large integration time has.
  • the continuously averaged quantity errors can be as Display the correction map for the pump map.
  • the Support points at which the correction values are calculated are preferably in the middle of the work area or in placed the area of the work area whose values are most common occur.
  • the between these three correction values spanned level approaches globally after a relatively short time Measurement time on a completely measured correction map. Since only three correction values are used to calculate the level are necessary, all intermediate values are sufficient Accuracy available very quickly.
  • the learning area is based on the immediate vicinity of the bases limited. This takes place against the background that operating points, which are relatively far from the base and be driven stationary for a long time, based on the base can be learned incorrectly.
  • the narrowed down Learning areas need for quick learning too functionally important points that are driven as often as possible will be laid.
  • the correction level is limited becomes. This means that there is a threshold for the amount the correction values K1, K2, K3 can be predetermined. Furthermore can be provided that the gradient, that is the Slope of the plane is limited. This means that the Difference between two correction values a threshold must not exceed. This limitation protects against incorrect ones Extrapolations e.g. after the start.
  • a particularly advantageous embodiment results if several correction levels can be specified. Particularly advantageous it is when for the three functional areas (Exhaust gas recirculation, full load and torque limitation) each a partial correction level can be specified.
  • the number of levels can take any value. Due to the increased number of Sub-levels result in more bases and thus a larger one Flexibility, especially in the peripheral areas. Both No jumps may occur between the sub-levels.
  • a line of intersection is preferably between the planes defined or there is a minimum and / or Maximum selection between two levels, or it is done an averaging of the level points at the operating point.
  • a Possible to reduce the influence of sensor errors. at the lambda probe is more accurate and at low lambda values
  • the air mass meter is more accurate for large lambda values. from that is closed, for example, when the lambda full load is regulated, that an existing averaged difference between the two Air signals for the most part on a sensor error of the Air mass meter is based.
  • the mean of this deviation when the full load is adjusted, global correction is possible of the air mass sensor.
  • the mean of the deviation at regulated exhaust gas recirculation, for example when idling enables global correction of the lambda probe.
  • the work areas 1, 2 and 3 are for the different Sub-levels by means of a solid or a dash-dotted line separated. With crosses are the points at which the correction values Kn be determined.
  • a smooth transition between work areas 2 and 3 and between work areas To achieve 2 and 1 will be one Straight line defined.
  • the transition from sub-level 3 to sub-level 1 takes place in the area of the dash-dotted line Line through a minimal selection. There will be the correction amounts of the two levels and the smaller of the two Correction quantity is used.
  • the bases of the second Work area on the intersection line between the second and third correction plane and the intersection line between the second and first correction levels lies a base on the intersection of the two intersection lines.
  • correction levels 1 and 2 as well as correction levels have 2 and 3 each have two common bases of the respective intersection line.
  • Within the 1 and 3 Correction level is another base

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Electrical Control Of Air Or Fuel Supplied To Internal-Combustion Engine (AREA)
  • Electrical Control Of Ignition Timing (AREA)

Claims (10)

  1. Procédé de commande d'un moteur thermique selon lequel dans un champ de caractéristiques, on a un signal de commande selon au moins deux paramètres de fonctionnement, et on peut déterminer en au moins trois points de fonctionnement des valeurs de correction pour corriger le champ de caractéristiques, les valeurs de correction, partant de la déviation entre une valeur souhaitée et une valeur effective permettant de définir une grandeur caractéristique,
    caractérisé en ce qu'
    avec au moins trois points de fonctionnement et les valeurs de correction associées, on définit au moins un plan de correction et on utilise ces points de correction de ce plan de correction comme valeurs de correction pour les signaux de commande extraits de ce champ de caractéristiques.
  2. Procédé selon la revendication 1,
    caractérisé en ce qu'
    un paramètre de fonctionnement est un signal de quantité de carburant et la quantité de carburant effective se détermine à partir du signal de quantité d'air et d'un signal Lambda (λ).
  3. Procédé selon la revendication 1 ou 2,
    caractérisé en ce que
    le champ de caractéristiques est le champ de caractéristiques de pompe d'un moteur thermique à allumage non commandé, dans lequel on enregistre un signal de commande pour un actionneur définissant la quantité selon un signal de vitesse de rotation et un signal de quantité de carburant.
  4. Procédé selon l'une des revendications précédentes,
    caractérisé en ce qu'
    il est prévu au moins trois zones de travail et dans chaque zone de travail, on a un point de fonctionnement pour lequel on détermine une valeur de correction.
  5. Procédé selon la revendication 4,
    caractérisé en ce que
    pour chaque zone de travail, on prédétermine un plan de correction.
  6. Procédé selon les revendications 4 ou 5,
    caractérisé en ce qu'
    une première plage de travail correspond aux faibles régimes et faibles quantités de carburant.
  7. Procédé selon l'une quelconque des revendications 4 à 6,
    caractérisé en ce qu'
    une seconde plage de travail est définie par les faibles vitesses de rotation et les quantités de carburant importantes.
  8. Procédé selon l'une quelconque des revendications 4 à 7,
    caractérisé en ce qu'
    une troisième plage de travail est définie par les vitesses de rotation élevées et les fortes quantités de carburant.
  9. Procédé selon l'une quelconque des revendications précédentes,
    caractérisé en ce que
    les valeurs de correction et/ou les grandeurs de correction sont limitées.
  10. Dispositif de commande d'un moteur thermique dans lequel, dans un champ de caractéristiques, on enregistre un signal de commande selon au moins deux paramètres de fonctionnement, et comprenant des moyens permettant de déterminer sur au moins trois points de fonctionnement, des valeurs de correction pour corriger le champ de caractéristiques,
    les valeurs de correction étant définies à partir de la déviation entre une valeur souhaitée et une valeur effective d'un paramètre de fonctionnement,
    caractérisé par
    des moyens qui définissent par au moins trois points de fonctionnement et les valeurs de correction correspondantes, au moins un plan de correction et les points de ce plan de correction sont utilisés comme grandeurs de correction pour les signaux de commande lus dans le champ de caractéristiques.
EP96106814A 1995-08-04 1996-04-30 Méthode et dispositif pour la commande d'un moteur à combustion interne Expired - Lifetime EP0757168B1 (fr)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE19528696 1995-08-04
DE19528696A DE19528696A1 (de) 1995-08-04 1995-08-04 Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine

Publications (3)

Publication Number Publication Date
EP0757168A2 EP0757168A2 (fr) 1997-02-05
EP0757168A3 EP0757168A3 (fr) 1999-02-03
EP0757168B1 true EP0757168B1 (fr) 2002-01-02

Family

ID=7768706

Family Applications (1)

Application Number Title Priority Date Filing Date
EP96106814A Expired - Lifetime EP0757168B1 (fr) 1995-08-04 1996-04-30 Méthode et dispositif pour la commande d'un moteur à combustion interne

Country Status (3)

Country Link
EP (1) EP0757168B1 (fr)
JP (1) JPH09105352A (fr)
DE (2) DE19528696A1 (fr)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6253748B1 (en) 1998-05-09 2001-07-03 Robert Bosch Gmbh Method and device for controlling an internal combustion engine
DE10003548A1 (de) 1999-02-05 2000-08-10 Denso Corp Vorrichtung und Verfahren zur Berechnung einer von einem Klimaanlagensystem gesteuerten Variablen
JP3775942B2 (ja) * 1999-04-20 2006-05-17 本田技研工業株式会社 内燃機関の燃料噴射制御装置
DE10044412A1 (de) * 2000-09-08 2002-03-21 Bayerische Motoren Werke Ag Vorrichtung und Verfahren zur Adaption von Kennfeldwerten in Steuergeräten
DE10146317A1 (de) 2001-09-20 2003-04-10 Bosch Gmbh Robert Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10202156B4 (de) * 2002-01-22 2010-08-26 Volkswagen Ag Verfahren zum Betreiben einer Brennkraftmaschine
EP1363008B1 (fr) * 2002-05-14 2007-01-10 Robert Bosch Gmbh Procédé et dispositif de contrôle d'injection du carburant pour un moteur à auto-allumage
DE102004044463B4 (de) 2004-03-05 2020-08-06 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE102005012950B4 (de) 2005-03-21 2019-03-21 Robert Bosch Gmbh Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
FR2917459A3 (fr) * 2007-06-12 2008-12-19 Renault Sas Procede de correction des derives d'un dispositif de mesure de debit d'air
JP5218536B2 (ja) 2010-12-10 2013-06-26 株式会社デンソー 制御装置

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6187941A (ja) * 1984-10-05 1986-05-06 Nippon Denso Co Ltd デイ−ゼル機関用燃料噴射時期制御装置
DE3438781A1 (de) * 1984-10-23 1986-04-24 Robert Bosch Gmbh, 7000 Stuttgart Elektronische steuereinrichtung fuer eine kraftstoffeinspritzanlage
DE3603137C2 (de) * 1986-02-01 1994-06-01 Bosch Gmbh Robert Verfahren und Einrichtung zur Steuerung/Regelung von Betriebskenngrößen einer Brennkraftmaschine
DE3825749A1 (de) * 1988-07-29 1990-03-08 Daimler Benz Ag Verfahren zur adaptiven steuerung einer brennkraftmaschine und/oder einer anderen antriebskomponente eines kraftfahrzeuges
DE4304441B4 (de) * 1993-02-13 2012-02-16 Robert Bosch Gmbh Verfahren zum Betreiben eines Prozesses mit Hilfe eines Kennfeldes

Also Published As

Publication number Publication date
JPH09105352A (ja) 1997-04-22
DE19528696A1 (de) 1997-02-06
EP0757168A2 (fr) 1997-02-05
EP0757168A3 (fr) 1999-02-03
DE59608534D1 (de) 2002-02-07

Similar Documents

Publication Publication Date Title
DE4208002B4 (de) System zur Steuerung einer Brennkraftmaschine
DE2633617C2 (de) Verfahren und Vorrichtung zur Bestimmung von Einstellgrößen bei einer Brennkraftmaschine, insbesondere der Dauer von Kraftstoffeinspritzimpulsen, des Zündwinkels, der Abgasrückführrate
DE3408215C2 (fr)
DE4039876B4 (de) Vorrichtung zum Regeln des Luft-Kraftstoff-Verhältnisses für einen Motor
DE19606652B4 (de) Verfahren der Einstellung des Kraftstoff-Luftverhältnisses für eine Brennkraftmaschine mit nachgeschaltetem Katalysator
DE3408223C2 (fr)
DE3500594A1 (de) Zumesssystem fuer eine brennkraftmaschine zur beeinflussung des betriebsgemisches
DE69918914T2 (de) Verfahren und Vorrichtung zur Steuerung des Luft-Kraftstoffverhältnisses in einer Brennkraftmaschine
EP0210177B1 (fr) Dispositif et procede pour varier les parametres de marche de machines a combustion interne
EP2148070A2 (fr) Procédé destiné à la détermination de la masse de carburant injectée lors d'une injection unique et dispositif destiné à la réalisation du procédé
EP0151768B1 (fr) Système de dosage du mélange air-carburant pour un moteur à combustion
EP0757168B1 (fr) Méthode et dispositif pour la commande d'un moteur à combustion interne
DE19501150C2 (de) Verfahren zum Steuern des Luft-Kraftstoffverhältnisses bei einem Verbrennungsmotor und Steuerungsvorrichtung hierzu
DE19545924B4 (de) Verfahren und Vorrichtungen zum Steuern des Luft/Kraftstoffverhältnis-Lernens eines Motors mit innerer Verbrennung
DE19831748A1 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE10329328B4 (de) Verfahren zur Steuerung einer Brennkraftmaschine
WO2009095333A1 (fr) Procédé pour la commande d'un moteur à combustion interne
DE10209870A1 (de) Verfahren zum Erkennen einer Leckage im Einlasskanal eines Verbrennungsmotors und zur Durchführung des Verfahrens eingerichteter Verbrennungsmotor
DE4322319C2 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
DE19945396B4 (de) Brennkraftmaschinen-Steuervorrichtung mit Interpolationssteuereinrichtung
DE4322270B4 (de) Verfahren und Vorrichtung zur Steuerung einer Brennkraftmaschine
EP2019195B1 (fr) Procédé de détermination de la quantité de carburant injectée
EP1045235A2 (fr) Procédé de contrôle de couple pour moteurs à allumage par étincelle dans les véhicules automobiles
DE19522659A1 (de) Kraftstoffzufuhrsystem und Kraftstoffzufuhrverfahren für eine Verbrennungskraftmaschine
DE4323244B4 (de) Elektronisches Steuersystem für die Kraftstoffzumessung bei einer Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): CH DE FR GB IT LI SE

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): CH DE FR GB IT LI SE

17P Request for examination filed

Effective date: 19990803

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 20010411

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: SCINTILLA AG, DIREKTION

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59608534

Country of ref document: DE

Date of ref document: 20020207

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20020328

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20030424

Year of fee payment: 8

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030425

Year of fee payment: 8

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040501

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

EUG Se: european patent has lapsed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 15

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110430

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20130627

Year of fee payment: 18

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20140416

Year of fee payment: 19

Ref country code: IT

Payment date: 20140424

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59608534

Country of ref document: DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59608534

Country of ref document: DE

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20141101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20151231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20150430