EP0752062A1 - Einspritzventil für brennkraftmaschinen - Google Patents
Einspritzventil für brennkraftmaschinenInfo
- Publication number
- EP0752062A1 EP0752062A1 EP95913848A EP95913848A EP0752062A1 EP 0752062 A1 EP0752062 A1 EP 0752062A1 EP 95913848 A EP95913848 A EP 95913848A EP 95913848 A EP95913848 A EP 95913848A EP 0752062 A1 EP0752062 A1 EP 0752062A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- valve
- seat
- injection
- double
- chamber
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Withdrawn
Links
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M55/00—Fuel-injection apparatus characterised by their fuel conduits or their venting means; Arrangements of conduits between fuel tank and pump F02M37/00
- F02M55/02—Conduits between injection pumps and injectors, e.g. conduits between pump and common-rail or conduits between common-rail and injectors
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M47/00—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure
- F02M47/02—Fuel-injection apparatus operated cyclically with fuel-injection valves actuated by fluid pressure of accumulator-injector type, i.e. having fuel pressure of accumulator tending to open, and fuel pressure in other chamber tending to close, injection valves and having means for periodically releasing that closing pressure
- F02M47/027—Electrically actuated valves draining the chamber to release the closing pressure
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0014—Valves characterised by the valve actuating means
- F02M63/0015—Valves characterised by the valve actuating means electrical, e.g. using solenoid
- F02M63/0017—Valves characterised by the valve actuating means electrical, e.g. using solenoid using electromagnetic operating means
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02M—SUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
- F02M63/00—Other fuel-injection apparatus having pertinent characteristics not provided for in groups F02M39/00 - F02M57/00 or F02M67/00; Details, component parts, or accessories of fuel-injection apparatus, not provided for in, or of interest apart from, the apparatus of groups F02M39/00 - F02M61/00 or F02M67/00; Combination of fuel pump with other devices, e.g. lubricating oil pump
- F02M63/0012—Valves
- F02M63/0031—Valves characterized by the type of valves, e.g. special valve member details, valve seat details, valve housing details
- F02M63/0045—Three-way valves
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F02—COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
- F02B—INTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
- F02B3/00—Engines characterised by air compression and subsequent fuel addition
- F02B3/06—Engines characterised by air compression and subsequent fuel addition with compression ignition
Definitions
- the invention relates to an injection valve according to the preamble of claim 1.
- Such an injection valve is known for example from EP-A 0 531 533.
- This publication deals with a diesel injector with a high-pressure system (common rail system), in which the fuel is supplied to a high-pressure accumulator via a high-pressure pump. This fuel, which is under high pressure, is then fed to the individual cylinders of a diesel engine via injection valves in accordance with a control.
- the injection valves are each controlled by a solenoid valve, for example to enable individual injection times.
- the injection valves In order to obtain in particular injection valves with which a pre-injection is also possible in order to improve consumption, exhaust gas values, noise, etc., the injection valves should be able to be switched quickly at high injection pressures.
- this requirement requires solenoids, which require a relatively large amount of space, since they require a large current consumption to deliver the required power.
- the usual injection valves are only suitable for pre-injection to a limited extent, since they generally switch relatively slowly, because they e.g. large forces or large strokes must overcome.
- DE-OS 41 18 236 shows a way in which two solenoids are used, the fuel supply holes of which are connected to a high-pressure system.
- lenoids provide pre-injection and main injection via a bore and valve system, whereby pre-injection and main injection can take place without interrupting the injection process.
- the object of the invention is to provide fast-switching injection valves in order to reduce the exhaust gas and noise emissions, in particular in the case of diesel and lean-burn engines, which are also suitable for a pre-injection.
- the invention makes it possible to obtain injection valves in which the double seat valve, which can be moved back and forth in the valve chamber, is completely pressure-balanced in both switching positions.
- no forces act on the double seat valve in its two end positions; who try to drive the seat valve into a different position, so that no special measures have to be taken in the drive device when switching or holding the seat valve.
- the seat valve can thus be adjusted more quickly by the drive device, so that the injection valve is also suitable for a pre-injection.
- the switching movement of the double seat valve is supported in both directions.
- an additional cross section is released under the seat and the pressure still present in the room accelerates the valve in addition to the driving force.
- the pressure in the inlet chamber acts on the larger diameter of the valve, the pressure in the valve chamber is still low and the valve is accelerated again.
- Figure 1 is a cross-sectional view of an injection valve
- FIG. 2 shows an enlarged section of the area of the double seat valve in cross section
- Figure 3 is a partial cross-sectional view of the double seat valve on its lower seat
- Figure 4 is a partial cross-sectional view of the double seat valve on its upper seat.
- the injection valve shown in Figure 1 consists of an elongated housing 1, on the lower end of which a nut 2 is screwed. With this cap nut 2, an intermediate plate 3 and an injection nozzle housing 29, in which an injection needle 6 is guided, are held from the lower end of the housing 1. Both the intermediate disk 3 and the injection housing 29 have a central bore 5 in which the nozzle needle 6 is arranged to be axially displaceable. At one end lies the in the drawn state
- Nozzle needle 6 on an annular nozzle seat 7, so that the nozzle needle 6 closes the nozzle holes 8, 9.
- the nozzle needle 6 is provided with a pressure pin 10, which is arranged in a spring chamber 11 formed in the housing 1 and arranged in the spring chamber 11
- Nozzle spring 12 is acted on, so that the nozzle needle 6 rests on the nozzle seal 7 and closes it. The other The end of the nozzle spring 12 abuts the end of the spring chamber 11 opposite the pressure pin 10.
- the housing 1 has in the upper region a valve chamber 13 which extends in the axial direction of the housing 1 and in which a double-seat valve 14 which can be displaced in the axial direction is arranged.
- the double-seat valve 14 is connected via a plunger 16 to a magnet armature 17 which is arranged in a chamber 20 of the housing 1 and which is acted upon by a compression spring 21 which is mounted in a recess 23 of the coil housing 22.
- a part 18 of the plunger 16 is axially slidably guided in the housing 1.
- a coil 24 is also arranged in the coil housing 22 and is connected to the outside with coil connections 25, 26.
- a connection CR is provided in the housing 1 at the top left in FIG.
- a first feed bore 27 provided in the interior of the housing 1 is guided to the connection CR and opens at its other end into a pressure chamber 28 formed in the injector housing 29.
- This pressure chamber 28 is connected to the nozzle seat by an axially extending intermediate space 30.
- the intermediate space 30 is formed in 'that the lower part of the nozzle needle is dropped 6, ie, that the lower part of the nozzle needle 6 having a smaller diameter than the upper part of the nozzle needle 6, the housing in Einspritzdüsen ⁇ is guided 29th
- An annular extension 35 of the offset nozzle needle 6 is formed by it.
- connection CR is also connected to a second supply bore 31 which opens into the valve chamber 13.
- a return connection RL can be seen in the housing 1 at the top right, which is used both with the valve chamber 13 and a return connection. bore 32 as well as with the chamber 20 for the magnet armature 17 via a relief bore 33 in connection.
- the device works as follows:
- the double-seat valve 14 is moved into its upper position via the magnet armature 17 and the tappet 18, as a result of which the inlet is closed via the second feed bore 31 into the valve chamber 13 for the high-pressure fuel.
- the double seat valve 14 is released from the lower valve sitr 36, whereby the spring chamber 11 comes into connection with the return RL via the bore 15, the valve chamber 13 and the return bore 32 , which has a low pressure.
- the pressure in the pressure chamber 28 is relatively greater than the pressure in the spring chamber 11, so that the force of the spring 12 can be overcome and the nozzle needle 6 moves upward, so that an injection takes place via the nozzle holes 8, 9 .
- the injection process is ended when the power supply to
- Solenoid 34 is interrupted so that the double seat valve 14 is moved back to the lower valve seat 36 and the The return line closes. This immediately builds up a high pressure again in the spring chamber 11, as a result of which the injection is ended by lowering the nozzle needle 6 onto its nozzle seat 7 due to the force relationships that arise. This is a safety-relevant function because no injection should take place without a current supply.
- FIG 2 shows a section in the area of the seat valve 14 of Figure 1 to explain the essence of the invention.
- the double-seat valve 14 is located on its lower valve seat 36 and thus closes the return RL. Fuel is under high pressure in the valve chamber 13 and in the adjacent bore 15 and the inlet chamber 19. Since the double-seat valve 14 is surrounded on all sides by high pressure, no resultant force acts on the double-seat valve 14 in the valve chamber 13, so that the double-seat valve 14 is pressure-balanced in this position.
- the pressure prevailing in the low pressure range i.e.
- the pressure acting on the lower valve seat 36 via the return bore 32 and the pressure acting on the tappet surface of the tappet 16 in the chamber 20 are also the same, so that it has no influence on the balance of the forces acting on the double-seat valve 14, especially since the pressure is extremely low.
- the area F1 of the nozzle needle 14 is equal to the area F2 of the tappet 18, both of which adjoin the low-pressure system, so that the seat valve 14 is pressure-balanced.
- the double seat valve 14 In the upper position of the double seat valve 14, the double seat valve 14 bears against the valve seat 37. Thus, the double-seat valve 14 is simultaneously released from its valve seat 36, so that there is a low pressure in the valve chamber 13. There is therefore a high pressure in the inlet chamber 19, which acts on the cross-sectional area F3 of the tappet 18 and on the effective cross-sectional area F4 of the double-seat valve 14. Since the areas F3 and F4 should be the same, acts in the inlet chamber 19, no differential pressure on the two surfaces F3 and F4, so that the double-seat valve 14 is pressure balanced in this position.
- FIGS. 3 and 4 show the two positions of the double seat valve 14 large in FIGS. 3 and 4. 3 shows the position where the double seat valve is located on the lower valve seat 36, and FIG. 4 shows the position where the double seat valve 14 is located on the upper valve seat 37.
- the double-seat valve 14 rests on its upper valve seat 37.
- the double-seat valve 14 has an inclination angle ⁇ 3 in this area, and the valve seat 37 of the housing 1 has an inclination angle ⁇ 4. It must apply that the angle of inclination ⁇ 3 is greater than the angle of inclination ⁇ 4 of the valve seat, so that it can be achieved that the area F3 is equal to the area F4 in order to obtain a pressure-balanced double seat valve 14 in this position.
- the switching movement of the double seat valve is supported in both directions due to the geometry of the double seat valve.
- the valve 14 is lifted, the additional cross section F1 is released under the seat 36, and the pressure still present in the valve chamber 13 accelerates the valve in addition to the magnetic force.
- the pressure present in the inlet chamber 19 acts on the surface F4 in addition to the larger diameter of the double-seat valve 14, there is still a low pressure in the valve chamber 13, and the double-seat valve 14 is thus accelerated again.
Landscapes
- Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Electromagnetism (AREA)
- Fluid Mechanics (AREA)
- Fuel-Injection Apparatus (AREA)
Abstract
Eine Kraftstoffeinspritzeinrichtung für ein Common-Rail-System weist ein Einspritzventil auf, das über einen Antriebsmechanismus (18, 34) durch ein Doppelsitzventil (14) gesteuert wird. Dabei ist das Sitzventil gemeinsam mit den Ventilsitzen (36, 37) sowie dem Antriebsmechanismus so ausgebildet, dass es in beiden Stellungen druckausgeglichen ist. Anwendbar bei Dieseleinspritztechnik.
Description
Beschreibung
Einspritzventil für Brennkraftmaschinen
Die Erfindung betrifft ein Einspritzventil nach dem Oberbe¬ griff von Patentanspruch 1.
Eine solches Einspritzventil ist beispielsweise durch die EP- A 0 531 533 bekannt. Diese Veröffentlichung behandelt eine Dieseleinspritzeinrichtung mit einem Hochdrucksystem (Common Rail-System) , bei dem der Kraftstoff einem Hochdruckspeicher über eine Hochdruckpumpe zugeführt wird. Dieser unter hohem Druck stehende Kraftstoff wird dann entsprechend einer Steue¬ rung den einzelnen Zylindern eines Dieselmotors über Ein- spritzventile zugeführt. Dabei werden die Einspritzventile jeweils über ein Magnetventil angesteuert, um beispielsweise auch individuelle Einspritzzeiten zu ermöglichen.
Um insbesondere Einspritzventile zu erhalten, mit denen auch eine Voreinspritzung möglich ist, um damit Verbrauch, Abgas¬ werte, Geräusch usw. zu verbessern, sollen die Einspritzven¬ tile bei hohen Einspritzdrücken schnell schaltbar sein. Dieses Erfordernis benötigt jedoch Solenoide, die einen relativ großen Platzbedarf erfordern, da sie eine große Stromaufnahme zur Abgabe der benötigten Leistung erfordern. Die üblichen Einspritzventile sind für eine Voreinspritzung nur bedingt tauglich, da sie im allgemeinen relativ langsam schalten, weil sie z.B. große Kräfte oder große Hübe überwin¬ den müssen.
Um die gewünschten Einspritzkennlinien, insbesondere für die Zeitdauer der Voreinspritzung und Haupteinspritzung zu bekom¬ men, weist die DE-OS 41 18 236 einen Weg, bei dem zwei So¬ lenoide verwendet werden, deren KraftstoffZuführungsbohrungen an ein Hochdrucksy≤tem angeschlossen sind. Die beiden So
lenoide sorgen dabei je nach Strombeaufschlagung über ein Bohrungs- und Ventilsystem für eine-Voreinspritzung und eine Haupteinspritzung, wobei eine Vor- und Haupteinspritzung ohne Unterbrechung des Einspritzvorgangs vor sich gehen kann.
Durch diese Vorrichtung sind in großem Umfang beliebige Einspritzkennlinien erhältlich. Die Vorrichtung ist jedoch wegen der Notwendigkeit von zwei Solenoiden und der entspre¬ chend notwendigen Steuereinrichtung aufwendig.
Aufgabe der Erfindung ist es, schnell schaltende Einspritz¬ ventile vorzusehen, um die Abgas- und Geräuscheinission insbe¬ sondere bei Diesel- und Magermotoren zu reduzieren, die sich darüberhinaus auch für eine Voreinspritzung eignen.
Die Aufgabe wird erfindungsgemäß durch den Patentanspruch 1 gelöst. Vorteilhafte Weiterbildungen sind in den Unteransprü¬ chen gekennzeichnet.
Durch die Erfindung ist sind Einspritzventile erhältlich, bei denen das in der Ventilkammer hin- und herbewegbare Doppel- sitzventil in beiden Schaltstellungen völlig druckausgegli¬ chen ist. Anders ausgedrückt wirken auf das Doppelsitzventil in seinen beiden Endlagen keine Kräfte ein; die versuchen, das Sitzventil in eine andere Stellung zu treiben, so daß beim Schalten bzw. Halten des Sitzventils keine besonderen Maßnahmen bei der Antriebseinrichtung getroffen werden müs¬ sen. Damit kann das Sitzventil schneller durch die Antriebs¬ einrichtung verstellt werden, so daß das Einspritzventil auch für eine Voreinspritzung geeignet ist.
Aufgrund der Goemetrie der Neigungswinkel des Doppelsitzven¬ tils wird die Schaltbewegung des Doppelsitzventils in beiden Richtungen unterstützt. Beim Abheben des Ventils wird unter dem Sitz ein zusätzlicher Querschnitt freigegeben und der noch anstehende Druck im Raum beschleunigt das Ventil zusätz¬ lich zur Antriebskraft. Beim Abheben des Ventils vom oberen
Sitz wirkt der in der Zulaufkammer anstehende Druck außer auf eine obere Fläche auf den größeren Durchmesser des Ventils, in der Ventilkammer herrscht noch ein niedriger Druck und damit wird das Ventil wieder beschleunigt.
Im Folgenden sei die Erfindung anhand von vier Figuren näher erläutert.
Es zeigen:
Figur 1 eine Querschnittsansicht eines Einspritzventils;
Figur 2 einen vergrößerten Ausschnitt des Bereichs des Dop- pelsitzventils im Querschnitt;
Figur 3 eine Teilquerschnittsansicht des Doppelsitzventils auf seinem unteren Sitz, und
Figur 4 eine Teilquerschnittsansicht des Doppelsitzventils auf seinem oberen Sitz.
Das in Figur 1 gezeigte Einspritzventil besteht aus einem langgestreckten Gehäuse 1, auf dessen unterem Ende eine Überwurfmutter 2 aufgeschraubt ist. Mit dieser Oberwurfmutter 2 wird vom unteren Ende des Gehäuses 1 aus eine Zwischenplat¬ te 3 und ein Einspritzdüsengehäuse 29, in dem eine Einspritz¬ nadel 6 geführt ist, gehalten. Sowohl die Zwischenscheibe 3 als auch das Einspritzgehäuse 29 weisen eine Mittelbohrung 5 auf, in der die Düsennadel 6 axial verschiebbar angeordnet ist. An ihrem einen Ende liegt im gezeichneten Zustand die
Düsennadel 6 an einem ringförmigen Düsensitz 7 an, so daß die Düsennadel 6 die Düsenlöcher 8, 9 verschließt. Am anderen Ende ist die Düsennadel 6 mit einem Druckbolzen 10 versehen, der in einer im Gehäuse 1 gebildeten Federkammer 11 angeord- net ist und von einer in der Federkammer 11 angeordneten
Düsenfeder 12 beaufschlagt wird, so daß die Düsennadel 6 auf dem Düsensicz 7 anliegt und diesen verschließt. Das andere
Ende der Düsenfeder 12 liegt an dem dem Druckbolzen 10 gegen¬ überliegenden Ende der Federkammer 11 an.
Das Gehäuse 1 weist im oberen Bereich eine in axialer Rich- tung des Gehäuses 1 sich erstreckende Ventilkammer 13 auf, in der ein in axialer Richtung verschiebbares Doppelsitzventil 14 angeordnet ist. Das Doppelsitzventil 14 ist über einen Stößel 16 mit einem in einer Kammer 20 des Gehäuses 1 ange¬ ordneten Magnetanker 17 verbunden, der von einer Druckfeder 21 beaufschlagt wird, die in einer Ausnehmung 23 des Spulen¬ gehäuses 22 gelagert ist. Ein Teil 18 des Stößels 16 ist axial gleitend im Gehäuse 1 geführt. Im Spulengehäuse 22 ist weiterhin eine Spule 24 angeordnet, die mit Spulenanschlüssen 25,26 nach außen hin verbunden ist.
Im Gehäuse 1 links oben in der Figur 1 ist ein Anschluß CR vorgesehen, der mit einem Hochdruckspeicher (nicht gezeigt) für den zu liefernden Kraftstoff verbunden ist. An den An¬ schluß CR ist eine im Innern des Gehäuses 1 vorgesehene erste Zuführungsbohrung 27 geführt, die an ihrem anderen Ende in einen im Einspritzdüsengehäuse 29 gebildeten Druckraum 28 mündet. Dieser Druckraum 28 steht mit einem axial sich er¬ streckenden Zwischenraum 30 mit dem Düsensitz in Verbindung. Der Zwischenraum 30 wird dadurch gebildet,' daß der untere Teil der Düsennadel 6 abgesetzt ist, d.h., daß der untere Teil der Düsennadel 6 einen kleineren Durchmesser als der obere Teil der Düsennadel 6 aufweist, der im Einspritzdüsen¬ gehäuse 29 geführt ist. Der Bereich des Obergangs vom kleinen zum großen Durchmesser endet im oberen Teil des Druckraums 28. Durch ihn wird ein ringförmiger Ansatz 35 der abgesetzten Düsennadel 6 gebildet.
Der Anschluß CR steht weiter mit einer zweiten Zuführungsboh¬ rung 31 in Verbindung, die in die Ventilkammer 13 mündet.
Im Gehäuse 1 ist rechts oben ein Rücklaufanschluß RL erkenn¬ bar, der sowohl mit der Ventilkammer 13 übe., eine Rücklauf-
bohrung 32 als auch mit der Kammer 20 für den Magnetanker 17 über eine Entlastungsbohrung 33 in Verbindung steht.
Die Vorrichtung arbeitet wie folgt:
In der in Figur 1 gezeigten Stellung ist das Einspritzventil geschlossen. In diesem Zustand liegt unter hohem Druck ste¬ hender Kraftstoff über den Anschluß CR vom Hochdruckspeicher und der ersten Zuführungsbohrung 27 im Druckraum 28 an dem ringförmigen Ansatz 35 der Düsennadel 6 an. Der unter hohem Druck stehende Kraftstoff befindet sich weiter über die zweite Zuführungsbohrung 31 in der Ventilkammer 13, der Bohrung 15 und der Federkammer 11. Da das Solenoid in diesem Zustand stromlos ist, wird das Sitzventil 14 aufgrund der Kraft der Druckfeder 21 auf einen Ventilsitz 36 (Figur 2, 3) der Rücklaufbohrung 32 in seine untere Stellung gedrückt, wodurch die Verbindung zum Rücklauf RL verschlossen ist.
Wird nun das Solenoid 34 bestromt, so wird über den Magnetan- ker 17 und den Stößel 18 das Doppelsitzventil 14 in seine obere Stellung bewegt, wodurch der Zulauf über die zweite Zuführungsbohrung 31 in die Ventilkammer 13 für den unter Hochdruck stehenden Kraftstoff verschlossen wird. Gleichzei¬ tig mit der Bewegung des Doppelsitzventils 14 in seine obere Stellung löst sich das Doppelsitzventil 14 vom unteren Ven- tilsitr 36, wodurch die Federkammer 11 über die Bohrung 15, die Ventilkammer 13 und die Rücklaufbohrung 32 mit dem Rück¬ lauf RL in Verbindung kommt, der einen niedrigen Druck auf¬ weist. Damit wird der Druck in der Druckkammer 28 relativ größer als der Druck in der Federkammer 11, so daß die Kraft der Feder 12 überwunden werden kann und sich die Düsennadel 6 nach oben bewegt, so daß eine Einspritzung über die Düsenlö¬ cher 8, 9 erfolgt.
Der Einspritzvorgang wird beendet, wenn die Stromzufuhr zum
Solenoid 34 unterbrochen wird, so daß das Doppelsitzventil 14 wieder auf den unteren Ventilsitz 36 bewegt wird und den
Rücklauf verschließt. Damit baut sich sofort wieder ein Hochdruck in der Federkammer 11 auf, wodurch aufgrund der sich einstellenden Kraftverhältnisse die Einspritzung durch Absenken der Düsennadel 6 auf ihren Düsensitz 7 beendet wird. Dies ist eine sicherheitsrelevante Funktion, weil ohne Strom¬ zuführung keine Einspritzung erfolgen soll.
Figur 2 zeigt einen Ausschnitt im Bereich des Sitzventils 14 von Figur 1, um das wesentliche der Erfindung zu erklären.
In der gezeigten Stellung befindet sich das Doppelsitzventil 14 auf seinem unteren Ventilsitz 36 und verschließt somit den Rücklauf RL. In der Ventilkammer 13 sowie in der angrenzenden Bohrung 15 und der Zulaufkammer 19 befindet sich Kraftstoff unter hohem Druck. Da das Doppelsitzventil 14 allseitig von hohem Druck umgeben ist, wirkt keine resultierende Kraft auf das Doppelsitzventil 14 in der Ventilkammer 13, so daß das Doppelsitzventil 14 in dieser Stellung druckausgeglichen ist. Der im Niederdruckbereich herrschende Druck, d.h. der auf den unteren Ventilsitz 36 über die Rücklaufbohrung 32 wirkende Druck sowie der auf die Stößelfläche des Stößels 16 in der Kammer 20 wirkende Druck ist ebenfalls gleich, so daß er auf das Gleichgewicht der auf das Doppelsitzventil 14 einwirken¬ den Kräfte keinen Einfluß hat, zumal der Druck äußerst gering ist. Anders ausgedrückt ist bei geeigneter Dimensionierung in dieser Stellung die Fläche Fl der Düsennadel 14 gleich der Fläche F2 des Stößels 18, die beide an das Niederdrucksystem angrenzen, so daß das Sitzventil 14 druckausgeglichen ist.
In der oberen Stellung des Doppelsitzventils 14 liegt das Doppelsitzventil 14 am Ventilsitz 37 an. Damit wird das Doppelsitzventil 14 gleichzeitig von seinem Ventilsitz 36 gelöst, so daß in der Ventilkammer 13 ein niedriger Druck herrscht. Damit befindet sich ein hoher Druck in der Zulauf- kammer 19, der auf die Querschnittsfläche F3 des Stößels 18 und auf die wirksame Querschnittsfläche F4 des Doppelsitzven¬ tils 14 wirkt. Da die Flächen F3 und F4 gleich sein sollen,
wirkt in der Zulaufkammer 19 kein Differenzdruck auf die beiden Flächen F3 und F4 ein, so daß das Doppelsitzventil 14 auch in dieser Stellung druckausgeglichen ist.
In den Figuren 3 und 4 sind die beiden Stellungen des Doppel¬ sitzventils 14 nochmals groß dargestellt. Dabei zeigt die Figur 3 die Stellung, wo das Doppelsitzventil auf dem unteren Ventilsitz 36 sich befindet, und die Figur 4 die Stellung, wo das Doppelsitzventil 14 auf dem oberen Ventilsitz 37 sich befindet.
In Figur 3 ist die Neigung der Ventilsitzfläche des Doppel¬ sitzventils 14 in bezug auf eine Achse A senkrecht zur Achse A des Doppelsitzventils 14 mit αl bezeichnet, die Neigung der Ventilsitzfläche im Gehäuse 1 mit α2. Damit wird eine wirksame Fläche Fl gebildet, die gleich der Fläche F2 (Figur 2) sein muß, damit das Doppelsitzventil druckausgeglichen ist. In dieser Stellung sind weiter F3 und F4 flächengleich. Außerdem ist α2 > αl.
In Figur 4 liegt das Doppelsitzventil 14 an seinem oberen Ventilsitz 37 an. Dabei weist das Doppelsitzventil 14 einen Neigungswinkel α3 in diesem Bereich auf, und der Ventilsitz 37 des Gehäuses 1 einen Neigungswinkel α4. Dabei muß gelten, daß der Neigungswinkel α3 größer als der Neigungswinkel α4 des Ventilsitzes ist, damit erreicht werden kann, daß die Fläche F3 gleich der Fläche F4 ist, um ein druckausgegliche¬ nes Doppelsitzventil 14 in dieser Stellung zu erhalten.
Wie eingangs bereits erwähnt, wird aufgrund der Geometrie des Doppelsitzventils die Schaltbewegung des Doppelsitzventils in beiden Richtungen unterstützt. Beim Abheben des Ventils 14 wird unter dem Sitz 36 der zusätzliche Querschnitt Fl freige¬ geben, und der noch anstehende Druck in der Ventilkammer 13 beschleunigt das Ventil zusätzlich zur Magnetkraft. Beim • Abheben des Ventils vom Ventilsitz 37 wirkt der in der Zu¬ laufkammer 19 anstehende Druck außer auf die Fläche F4 auf
den größeren Durchmesser des Doppelsitzventils 14, in der Ventilkammer 13 herrscht noch ein niedriger Druck, und damit wird das Doppelsitzventil 14 wieder beschleunigt.
Claims
1. Einspritzventil für Brennkraftmaschinen, wobei in einem Einspritzventilgehäuse angeordnet sind:
- ein Antriebsmechanismus (34,18), der ein Steuerventil steuert;
- ein unter Hochdruck stehender Kraftstoff-Zulauf (CR) und ein unter Niederdruck stehender Kraftstoff-Rücklauf (RL) , die mit einer Ventilkammer (13) in Verbindung stehen;
- eine im Einspritzventilgehäuse angeordnete in axialer Richtung des Einεpritzventilgehäuses verschiebbare Düsenna¬ del (6), die in Abhängigkeit von der Schaltstellung des Steuerventils Düsenaustrittsöffnungen (8,9) des Einspritz- ventils öffnen und verschließen kann;
- ein Druckraum (28) im Bereich der Düsennadel (6) , der mit dem Kraftstoff-Zulauf in Verbindung steht, wobei ein Rück¬ raum hinter der Düsennadel mit der Ventilkammer (13) in Verbindung steht; dadurch gekennzeichnet, daß
- das Steuerventil in einer Ventilkammer (13) angeordnet ist und als Doppelsitzventil (14) ausgebildet ist, das aufgrund der Steuerung des Antriebsmechanismus in einer obe¬ ren/unteren Schaltstellung einen von zwei Ventilsitzen öff- nen kann, während der andere Ventilsitz verschlossen wird, wodurch ein Einspritzen von Kraftstoff eingeleitet/unter¬ brochen wird,
- wobei die für den Kraftstoff wirksamen Flächen (F1,F4) des Doppelsitzventils (14) und die wirksamen Flächen (F2,F3) des mit diesem in Verbindung stehenden Antriebsmechanismus in sowohl einer ersten Schaltstellung des Doppelsitzventils (14) als auch in einer zweiten Schaltstellung des Dop¬ pelsitzventils (14) in etwa gleich groß sind.
2. Einspritzventil nach Anspruch 1, dadurch gekennzeichnet, daß die Sitzflächen des Doppelsitzventils (14) wie auch die entsprechenden Ventilsitze der Ventilkammer (13) Neigungswin¬ kel aufweisen, die die Bewegung des Doppelsitzventils (14) beim Schalten unterstützen.
3. Eiήspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß in einer unteren Stellung des Doppelsitzventils (14) der Neigungswinkel (αl) senkrecht zu einer Achse (A) des Doppelsitzventils (14) kleiner als der Neigungswinkel (α2) des zugehörigen Ventilsitzes (36) ist (Figur 2,3) .
4. Einspritzventil nach Anspruch 2, dadurch gekennzeichnet, daß in einer oberen Stellung des Doppelsitzventils (14) der Neigungswinkel (α3) senkrecht zur Achse (A) des Doppelsitzventils (14) größer als der Neigungs¬ winkel (α4) des zugehörigen Ventilsitzes (37) ist (Figur 4) .
Applications Claiming Priority (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
DE4410282 | 1994-03-24 | ||
DE4410282 | 1994-03-24 | ||
PCT/DE1995/000368 WO1995025888A1 (de) | 1994-03-24 | 1995-03-16 | Einspritzventil für brennkraftmaschinen |
Publications (1)
Publication Number | Publication Date |
---|---|
EP0752062A1 true EP0752062A1 (de) | 1997-01-08 |
Family
ID=6513770
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95913848A Withdrawn EP0752062A1 (de) | 1994-03-24 | 1995-03-16 | Einspritzventil für brennkraftmaschinen |
Country Status (3)
Country | Link |
---|---|
EP (1) | EP0752062A1 (de) |
JP (1) | JPH09510525A (de) |
WO (1) | WO1995025888A1 (de) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US5893516A (en) * | 1996-08-06 | 1999-04-13 | Lucas Industries Plc | Injector |
DE19744723A1 (de) * | 1997-10-10 | 1999-04-15 | Bosch Gmbh Robert | Kraftstoffeinspritzeinrichtung |
US6059203A (en) * | 1998-09-03 | 2000-05-09 | Caterpillar Inc. | Valve assembly with concentrically linked components and fuel injector using same |
DE19939453A1 (de) * | 1999-08-20 | 2001-03-01 | Bosch Gmbh Robert | Ventileinrichtung |
DE10200531A1 (de) | 2002-01-09 | 2003-07-24 | Bosch Gmbh Robert | Steuerteil für Injektoren mit schaltbarer Düsennadel |
DE10254300A1 (de) * | 2002-11-21 | 2004-06-03 | Robert Bosch Gmbh | Kraftstoffeinspritzventil einer Kraftstoffeinspritzeinrichtung für eine Brennkraftmaschine |
US6955114B2 (en) * | 2003-12-05 | 2005-10-18 | Caterpillar Inc | Three way valve and electro-hydraulic actuator using same |
DE102007035698A1 (de) * | 2007-07-30 | 2009-02-05 | Robert Bosch Gmbh | Kraftstoffeinspritzventil mit verbesserter Dichtheit am Dichtsitz eines druckausgeglichenen Steuerventils |
JP5126079B2 (ja) * | 2009-01-12 | 2013-01-23 | 株式会社デンソー | 燃料噴射弁 |
JP6073490B2 (ja) * | 2012-11-05 | 2017-02-01 | デルファイ・インターナショナル・オペレーションズ・ルクセンブルク・エス・アー・エール・エル | 三方向弁組立体 |
Family Cites Families (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
FR2145080A5 (de) * | 1971-07-08 | 1973-02-16 | Peugeot & Renault | |
FR2145081A5 (de) * | 1971-07-08 | 1973-02-16 | Peugeot & Renault | |
ATE59434T1 (de) * | 1984-09-14 | 1991-01-15 | Bosch Gmbh Robert | Elektrisch gesteuerte kraftstoffeinspritzpumpe fuer brennkraftmaschinen. |
DE4236882C1 (de) * | 1992-10-31 | 1994-04-21 | Daimler Benz Ag | Kraftstoffeinspritzanlage mit einer Hochdruckpumpe und einer gemeinsamen Versorgungsleitung für alle Einspritzdüsen mit Magnetventilsteuerung |
-
1995
- 1995-03-16 WO PCT/DE1995/000368 patent/WO1995025888A1/de not_active Application Discontinuation
- 1995-03-16 JP JP7524294A patent/JPH09510525A/ja active Pending
- 1995-03-16 EP EP95913848A patent/EP0752062A1/de not_active Withdrawn
Non-Patent Citations (1)
Title |
---|
See references of WO9525888A1 * |
Also Published As
Publication number | Publication date |
---|---|
JPH09510525A (ja) | 1997-10-21 |
WO1995025888A1 (de) | 1995-09-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP1252432B1 (de) | Direktgesteuerte kraftstoffeinspritzeinrichtung für eine kolbenbrennkraftmaschine | |
DE4332119B4 (de) | Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen | |
EP0828935B1 (de) | Einspritzventil | |
EP0828936A1 (de) | Einspritzventil | |
EP0939857A1 (de) | Kraftstoffeinspritzventil | |
EP1387939A1 (de) | Kraftstoffeinspritzventil für brennkraftmaschinen | |
EP0657643A2 (de) | Kraftstoffeinspritzeinrichtung für Brennkraftmaschinen | |
DE4115457A1 (de) | Einspritzduese fuer eine brennkraftmaschine | |
EP0976924A2 (de) | Servoventil für ein Einspritzventil und Einspritzventil | |
WO2008061844A1 (de) | Kraftstoffinjektor | |
EP0752062A1 (de) | Einspritzventil für brennkraftmaschinen | |
DE602005005982T2 (de) | Einspritzdüse | |
WO1996010129A1 (de) | Einspritzventil | |
DE10210927A1 (de) | Kraftstoffeinspritzventil für Brennkraftmaschinen | |
DE10040526A1 (de) | Kraftstoffeinspritzeinrichtung | |
DE602004005052T2 (de) | Einspritzventil für Brennkraftmaschine | |
WO2002053958A1 (de) | Ventil zum steuern von flüssigkeiten | |
EP0752060B1 (de) | Einspritzventil | |
EP1346149A1 (de) | Brennstoffeinspritzventil | |
DE60216075T2 (de) | Kraftstoffeinspritzanordnung | |
DE10357769A1 (de) | Kraftstoffeinspritzventil | |
DE10042309A1 (de) | Zumessventil | |
DE10100512A1 (de) | Einspritzdüse | |
WO2003054379A1 (de) | Pumpe-düse-einheit | |
DE102005046667A1 (de) | Kraftstoffeinspritzventil |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
17P | Request for examination filed |
Effective date: 19960917 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB IT |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN |
|
17Q | First examination report despatched |
Effective date: 19971204 |
|
18W | Application withdrawn |
Withdrawal date: 19971212 |