EP0747149A2 - Feingiessverfahren zur Erzeugung von Gegenständen mit sehr präziser Oberfläche - Google Patents
Feingiessverfahren zur Erzeugung von Gegenständen mit sehr präziser Oberfläche Download PDFInfo
- Publication number
- EP0747149A2 EP0747149A2 EP96304194A EP96304194A EP0747149A2 EP 0747149 A2 EP0747149 A2 EP 0747149A2 EP 96304194 A EP96304194 A EP 96304194A EP 96304194 A EP96304194 A EP 96304194A EP 0747149 A2 EP0747149 A2 EP 0747149A2
- Authority
- EP
- European Patent Office
- Prior art keywords
- patterns
- casting
- pattern
- investment
- wax
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
- 238000000034 method Methods 0.000 title claims abstract description 54
- 238000005495 investment casting Methods 0.000 title claims abstract description 13
- 238000005266 casting Methods 0.000 claims abstract description 54
- 229920000642 polymer Polymers 0.000 claims abstract description 37
- 239000000463 material Substances 0.000 claims abstract description 27
- 238000000576 coating method Methods 0.000 claims abstract description 4
- 239000001993 wax Substances 0.000 claims description 37
- 239000000919 ceramic Substances 0.000 claims description 19
- 229920001169 thermoplastic Polymers 0.000 claims description 15
- 239000004416 thermosoftening plastic Substances 0.000 claims description 15
- 239000007787 solid Substances 0.000 claims description 14
- 238000001035 drying Methods 0.000 claims description 5
- 238000002844 melting Methods 0.000 claims description 5
- 230000008018 melting Effects 0.000 claims description 5
- 239000000203 mixture Substances 0.000 claims description 4
- -1 polyethylene Polymers 0.000 claims description 4
- 238000001816 cooling Methods 0.000 claims description 3
- 239000003822 epoxy resin Substances 0.000 claims description 3
- 229920000647 polyepoxide Polymers 0.000 claims description 3
- 239000001856 Ethyl cellulose Substances 0.000 claims description 2
- ZZSNKZQZMQGXPY-UHFFFAOYSA-N Ethyl cellulose Chemical compound CCOCC1OC(OC)C(OCC)C(OCC)C1OC1C(O)C(O)C(OC)C(CO)O1 ZZSNKZQZMQGXPY-UHFFFAOYSA-N 0.000 claims description 2
- 239000004698 Polyethylene Substances 0.000 claims description 2
- 239000004793 Polystyrene Substances 0.000 claims description 2
- 150000001252 acrylic acid derivatives Chemical class 0.000 claims description 2
- 239000012164 animal wax Substances 0.000 claims description 2
- 229920002301 cellulose acetate Polymers 0.000 claims description 2
- 238000007598 dipping method Methods 0.000 claims description 2
- 229920001249 ethyl cellulose Polymers 0.000 claims description 2
- 235000019325 ethyl cellulose Nutrition 0.000 claims description 2
- 229920001778 nylon Polymers 0.000 claims description 2
- 229920000573 polyethylene Polymers 0.000 claims description 2
- 229920002223 polystyrene Polymers 0.000 claims description 2
- 238000005507 spraying Methods 0.000 claims description 2
- LNEPOXFFQSENCJ-UHFFFAOYSA-N haloperidol Chemical compound C1CC(O)(C=2C=CC(Cl)=CC=2)CCN1CCCC(=O)C1=CC=C(F)C=C1 LNEPOXFFQSENCJ-UHFFFAOYSA-N 0.000 claims 2
- 239000012184 mineral wax Substances 0.000 claims 1
- 235000013311 vegetables Nutrition 0.000 claims 1
- 239000007788 liquid Substances 0.000 abstract description 10
- 238000005336 cracking Methods 0.000 abstract description 6
- 239000011248 coating agent Substances 0.000 abstract description 2
- 239000012815 thermoplastic material Substances 0.000 abstract 2
- 238000000465 moulding Methods 0.000 abstract 1
- 244000044283 Toxicodendron succedaneum Species 0.000 description 5
- 238000000605 extraction Methods 0.000 description 5
- 238000004519 manufacturing process Methods 0.000 description 4
- 239000002184 metal Substances 0.000 description 4
- 239000011819 refractory material Substances 0.000 description 4
- 238000010438 heat treatment Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- 239000011230 binding agent Substances 0.000 description 2
- 230000015572 biosynthetic process Effects 0.000 description 2
- 150000001875 compounds Chemical class 0.000 description 2
- 238000001746 injection moulding Methods 0.000 description 2
- 239000002002 slurry Substances 0.000 description 2
- 239000002904 solvent Substances 0.000 description 2
- 239000000853 adhesive Substances 0.000 description 1
- 230000001070 adhesive effect Effects 0.000 description 1
- 230000003466 anti-cipated effect Effects 0.000 description 1
- 238000010276 construction Methods 0.000 description 1
- 238000010304 firing Methods 0.000 description 1
- 229910052500 inorganic mineral Inorganic materials 0.000 description 1
- 238000005058 metal casting Methods 0.000 description 1
- 239000011707 mineral Substances 0.000 description 1
- 230000000704 physical effect Effects 0.000 description 1
- 238000004382 potting Methods 0.000 description 1
- 230000005855 radiation Effects 0.000 description 1
- 238000010107 reaction injection moulding Methods 0.000 description 1
- 238000007711 solidification Methods 0.000 description 1
- 230000008023 solidification Effects 0.000 description 1
- 239000012178 vegetable wax Substances 0.000 description 1
- 239000011800 void material Substances 0.000 description 1
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C9/00—Moulds or cores; Moulding processes
- B22C9/02—Sand moulds or like moulds for shaped castings
- B22C9/04—Use of lost patterns
- B22C9/043—Removing the consumable pattern
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B22—CASTING; POWDER METALLURGY
- B22C—FOUNDRY MOULDING
- B22C7/00—Patterns; Manufacture thereof so far as not provided for in other classes
- B22C7/02—Lost patterns
- B22C7/023—Patterns made from expanded plastic materials
Definitions
- the invention relates to methods for obtaining an improved surface finish on cast articles.
- the invention is particularly applicable to investment casting processes that use patterns formed of photocurable polymers and moldable thermoplastics.
- the wax tree is a solid wax tube that has side walls upon which a stem of the wax patterns is joined to form a cluster.
- the cluster is coated with one or more coats of a refractory to form an investment assembly. After drying, the assembly is heated and fired and the solid wax patterns and the wax tree are extracted, yielding a shell. Molten metal is then pored into the shell so that it fills each of the cavities formerly occupied by the wax patterns and the wax tree. Upon cooling, the shell is fractured and removed, and the cast metal parts are severed from the metal tree.
- Stereolithography involves the application of energy, such as UV radiation, to a photocurable liquid polymer. Exposure of selected regions of the polymer to the energy source causes curing and solidification of the polymer. Through these techniques, three dimensional parts can be constructed in a stepwise process.
- Polymeric patterns prepared by a stereolithography process do not have as fine a surface finish as do wax patterns that are typically employed in investment casting processes.
- Stereolithography-produced patterns are prone to surface imperfections, particularly on angular surfaces, when compared to conventional wax pattern materials used in precision investment casting.
- the surface irregularities in the pattern may also be incorporated into the resulting ceramic mold. This will cause the surface irregularities present in the pattern to be carried over to the resulting cast articles.
- Investment casting processes all require the application of some degree of heat to extract the heat disposable patterns from within the ceramic mold. In some instances the thermal expansion of the polymer can cause the ceramic mold to fracture.
- Patterns formed by stereolithography may include hollow regions. It is possible for the refractory to seep into the hollow regions within a pattern and result in ceramic inclusions and/or voids being formed within the casting.
- the use of photocurable polymers and moldable thermoplastics to form casting patterns provides certain advantages, such as by enabling relatively easy and time efficient manufacture of patterns.
- the use of such materials to form casting patterns also presents drawbacks, such as a less fine surface finish on cast articles, the potential of mold cracking due to the higher thermal expansion of the polymeric patterns, and the possibility of introducing ceramic inclusions and/or voids in the casting due to the seepage of ceramic slurry into an interior, hollow portion of a pattern.
- new techniques are necessary to enable the use of patterns formed by photocurable polymers and other polymers, while eliminating the drawbacks of using such materials to form casting patterns.
- the present invention is directed to a casting method which utilizes casting patterns formed of a photocurable polymer or a moldable thermoplastic, while still obtaining cast articles having a smooth surface finish.
- the casting process of the invention comprises the steps of first forming from a photocurable polymer or moldable thermoplastic one or more solid, heat disposable patterns of an article to be cast. Thereafter, a layer of a casting wax material, or a similar low melting compound, is applied to the patterns to coat the exterior surface of the patterns, thus yielding coated patterns. A ceramic shell is then built up around the coated patterns by applying one or more coatings of a refractory material to the patterns which, upon drying, forms an investment assembly.
- the investment assembly is then subjected to heat at a first temperature range that is sufficient to melt and extract the layer of casting wax, but which is insufficient to melt or distort the patterns.
- the investment assembly is then subjected to heating at a second temperature range that is sufficient to melt and extract the patterns, leaving a shell having one or more cavities.
- the shell can then be fired to strengthen the shell and to burn off any residue remaining from the patterns or the layer of casting wax.
- the shell is then filled with a molten casting material such that the molten casting material fills the cavities in the shell, forming, upon cooling, one or more cast articles.
- the shell is then fractured and the cast articles are removed.
- the casting process of the invention is advantageous because the resulting cast articles have an improved surface finish as compared to cast articles prepared by typically known processes using a casting pattern formed of a photocurable polymer or a moldable thermoplastic.
- the present invention also enables hollow, or partially hollow, patterns to be used with a reduced risk that the refractory material will seep into interior portions of the pattern, thus creating ceramic inclusions and/or voids in the resulting cast article.
- Figure 1 is a schematic view of a casting pattern.
- Figure 2 is a schematic view of a casting pattern having a wax coating applied thereto according to the present invention.
- Figure 3 is a schematic view of a cluster in which a plurality of casting patterns of the type shown in Figure 2 are assembled to a riser system.
- Figure 4 is a schematic view of the cluster assembly of Figure 3, encased in a ceramic shell, forming an investment assembly.
- FIG 5 is a schematic view of the investment assembly of Figure 4 in which the wax layer has been extracted from the investment assembly.
- Figure 6 is a schematic view of a ceramic shell formed by extracting the casting patterns from the investment assembly shown in Figure 5.
- Figure 7 is a flow chart illustrating the overall process of the present invention.
- the invention provides a casting process that is better able to accommodate the use of casting patterns formed of photocurable polymers or moldable thermoplastics.
- cast patterns formed of photocurable polymers and moldable thermoplastics offer many advantages, however, their use can also be disadvantageous as resulting cast articles may often have a lower quality surface finish. Mold cracking is possible due to higher thermal expansion of these polymeric materials, and the use of hollow patterns can result in seepage of refractory slurry into the pattern, generating ceramic inclusions and/or voids in the resulting cast articles.
- the cast articles that result in the method of the present invention have a smooth surface finish, and the possibility of mold cracking, ceramic inclusion, and void formation in the cast article is minimized.
- the present invention involves a casting process, such as known investment casting processes, modified to take advantage of and enhance the use of photocurable polymers and moldable thermoplastics used as casting patterns.
- one or more casting patterns 10 are fabricated in a desired shape that corresponds to the shape desired of an article to be cast.
- the exterior surfaces 12 of casting patterns 10 are then coated with a layer 14 of a wax material, such as a casting wax or a similar low melting material, to form a coated pattern 15.
- typical casting procedures are followed. That is, a plurality of casting patterns 10 are assembled by their gate areas 16 to a riser system 18 to form a cluster 20, as shown in Figure 3.
- the cluster is then coated with one or more layers 22 of a refractory material, while allowing drying between the sequential applications of the refractory. Following drying, an investment assembly 22 is formed which comprises cluster 20 encased in a ceramic shell 24.
- the layer 14 of wax material is extracted without affecting patterns 10.
- This procedure can be accomplished by subjecting the investment assembly to an elevated temperature at a first temperature range that is sufficient to melt the wax layer 12, but which is insufficient to melt or cause any significant thermal expansion of patterns 10.
- the first temperature range preferably is about 70 to 220°F, and more preferably about 75 to 130°F.
- This step can be conducted using procedures well known in the art to extract solid, heat disposable patterns from an investment assembly during an investment casting process.
- Expansion gap 26 accommodates the thermal expansion of patterns 10 during subsequent heat extraction of these patterns.
- the investment assembly 22 is subjected to an elevated temperature at a second temperature range that is sufficient to melt and extract casting patterns 10.
- a second temperature range that is sufficient to melt and extract casting patterns 10.
- the second temperature range should be sufficiently high to melt and extract the casting patterns 10, and thus the temperature range will depend to a large extent upon the physical properties of the polymer that is used to form pattern 10. Nevertheless, the second temperature range typically is from about 135 to 2000°F, and more preferably from about 1100 to 2000°F.
- this heat extraction step can be conducted using procedures well known in the art to extract solid, heat disposable patterns during an investment casting process.
- a ceramic mold 28, having a plurality of cavities 30, remains as shown in Figure 6. Mold 28 can then be heated and fired to impart increased strength to the mold, and to remove any residual polymeric matter used to form casting patterns 10. Mold 28 preferably is fired at a temperature in the range of about 1200°F to 2000°F for approximately 1/2 hour or more. The mold 28 is then ready to accept molten casting material, which is poured into the mold by techniques known in the art, to form solid, cast articles. After the cast articles solidify and cool, the ceramic shell 24, which forms mold 28, can be fractured and removed, by known techniques to recover the solid, cast articles.
- the patterns used in the process of the invention can be formed by a variety of known photocurable polymers or moldable thermoplastics.
- photocurable polymers can be used to form casting patterns through known stereolithography techniques in which a reservoir of a liquid, photocurable polymer is exposed, in selected regions, to an energy source, e.g., ultraviolet light, to cure (solidify) the polymer. Successive exposures of the polymer to the energy source in a defined pattern achieves a solid, three dimensional object of a desired shape.
- Casting patterns can also be manufactured using moldable thermoplastics by a variety of known procedures, including injection molding and reaction injection molding.
- photocurable chemicals are those that possess rapid curing properties when subjected to energy sources such as ultraviolet light.
- energy sources such as ultraviolet light.
- suitable liquid, photocurable polymers are that they be somewhat adhesive so that successive layers of a pattern to be formed will adhere to one another.
- the viscosity of these materials should be low enough so that additional reactive photocurable polymer will flow across the surface of the partially formed object upon movement of the part being formed.
- the liquid, photocurable polymer will absorb light (e.g., UV light) so that a reasonably thin layer of material is formed.
- the polymer should also be soluble in a suitable solvent in its liquid state while being insoluble in the same solvent in its solid state. This enables the object to be washed free of remaining liquid, photocurable polymer once the object has been formed.
- Useful reactive chemicals must also be heat destructible in their solid state.
- Preferred materials are those that melt or destruct in the range of about 135 to 600°F or higher. This heat destructibility is essential as the objects formed through the stereolithography process are positive models of articles to be cast.
- the models are encased in a ceramic forming binder material and once the binder solidifies, heat is applied to melt and extract the models leaving behind cavities that represent negative images of the articles to be cast.
- An exemplary reactive chemical useful as a liquid, photocurable polymer to form a cast article is Potting Compound 363, a modified acrylate made by Locktite Corporation of Newington, Connecticut.
- a process useful to make a typical UV curable material is described in U.S. Patent No. 4,100,141, which is hereby incorporated by reference.
- Other examples of useful liquid, photocurable polymers are blends of epoxy resin and acrylate ester such as CIBATOOL ® SL5081-1, SL5131, SL5139, SL5149, SL5154, SL5170, SL5170, SL5177, SL5180, all of which are available from Ciba-Geigy Corporation, Tooling Systems, East Lansing, Michigan.
- Other suitable photocurable polymers will be readily apparent to those of ordinary skill in the art.
- thermoplastics can also be used to form the casting patterns. These materials include those that melt (and/or expand) in the range of about 175 to 625°F, or higher. Examples of such materials include polystyrene, polyethylene, nylons, ethyl cellulose, and cellulose acetate. These and other moldable thermoplastics are well known to those of ordinary skill in the art and are available from a variety of manufacturers.
- Suitable photocurable polymers and moldable thermoplastics should also be able to be extracted from the mold by heating and/or flash firing in the range of about 1100°F to 2000°F to rapidly vaporize the solid polymer.
- wax materials that are well known in the art and which are typically used in investment casting processes may be used to form the wax layer 14.
- Suitable casting waxes tend to melt in the range of about 75 to 260°F, and more preferably from about 100 to about 175°F.
- These waxes can include a variety of vegetable waxes, animal waxes, mineral and synthetic waxes, or mixtures thereof.
- a variety of useful materials are well known in the art and are readily available from a variety of sources, including CERITA waxes available for Argueso & Company, Mamaroneck, New York.
- the wax layer 14 can be applied to the casting patterns by a number of techniques, including spraying and dipping.
- the wax layer 14 can also be formed by injecting the layer around the pattern.
- the thickness of the wax layer 12 is slightly greater than the maximum anticipated expansion of the cast pattern.
- the thickness of this wax layer is in the range of about 0.003 to 0.5 inch.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- Molds, Cores, And Manufacturing Methods Thereof (AREA)
- Macromonomer-Based Addition Polymer (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US48104995A | 1995-06-07 | 1995-06-07 | |
US481049 | 1995-06-07 |
Publications (3)
Publication Number | Publication Date |
---|---|
EP0747149A2 true EP0747149A2 (de) | 1996-12-11 |
EP0747149A3 EP0747149A3 (de) | 1998-04-08 |
EP0747149B1 EP0747149B1 (de) | 2000-08-23 |
Family
ID=23910378
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP19960304194 Expired - Lifetime EP0747149B1 (de) | 1995-06-07 | 1996-06-06 | Feingiessverfahren zur Erzeugung von Gegenständen mit sehr präziser Oberfläche |
Country Status (4)
Country | Link |
---|---|
EP (1) | EP0747149B1 (de) |
JP (1) | JP4059937B2 (de) |
AU (1) | AU708428B2 (de) |
DE (1) | DE69609898T2 (de) |
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102151790A (zh) * | 2010-02-11 | 2011-08-17 | 上海中洲特种合金材料有限公司 | 大铸件的熔模铸造方法 |
CN107685133A (zh) * | 2017-09-12 | 2018-02-13 | 东方电气集团东方汽轮机有限公司 | 一种精密铸造用陶瓷型壳制备方法 |
CN110560636A (zh) * | 2019-10-09 | 2019-12-13 | 西安皓森精铸有限公司 | 一种降低熔模铸造过程中型壳开裂的方法 |
CN110978874A (zh) * | 2019-12-31 | 2020-04-10 | 中国美术学院 | 一种金属工艺品表面加工金属图文的工艺 |
CN112743043A (zh) * | 2019-10-31 | 2021-05-04 | 波音公司 | 用于改进熔模铸件的表面光洁度的方法和系统 |
CN113102688A (zh) * | 2021-03-29 | 2021-07-13 | 上海联泰科技股份有限公司 | 一种改善3d打印光敏树脂模在熔模铸造中胀壳的方法 |
Families Citing this family (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP1381481B1 (de) * | 1999-10-26 | 2007-01-03 | Howmet Research Corporation | Mehrwandiger kern und verfahren |
DE10260535A1 (de) * | 2002-12-21 | 2004-07-08 | Mtu Aero Engines Gmbh | Verfahren zur Herstellung von aus Halbrohren oder Rohren bestehenden Wärmetauscherrohren für Rekuperativ-Abgaswärmetauscher |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3225980A1 (de) * | 1982-07-10 | 1984-01-12 | Fichtel & Sachs Ag, 8720 Schweinfurt | Eingusssystem fuer wachs aus schmelz-verfahren |
US4556528A (en) * | 1983-06-16 | 1985-12-03 | The Garrett Corporation | Mold and method for casting of fragile and complex shapes |
JPS6418546A (en) * | 1987-07-10 | 1989-01-23 | Morikawa Sangyo | Sublimation pattern for producing casting |
EP0649691A1 (de) * | 1993-09-24 | 1995-04-26 | Texas Instruments Incorporated | Verfahren zur Herstellung eines Feingussmodells |
Family Cites Families (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US3426834A (en) * | 1967-03-16 | 1969-02-11 | Obermayer Co The S | Expendable pattern for precision investment casting |
DE3619170A1 (de) * | 1986-06-06 | 1987-12-10 | Basf Ag | Verwendung von polystyrolschaumstoff als verlorenes modell bei der herstellung von metallgussteilen |
JPS6422447A (en) * | 1987-07-15 | 1989-01-25 | Morikawa Sangyo | Casting method for casting |
-
1996
- 1996-05-29 AU AU54594/96A patent/AU708428B2/en not_active Ceased
- 1996-06-06 EP EP19960304194 patent/EP0747149B1/de not_active Expired - Lifetime
- 1996-06-06 DE DE1996609898 patent/DE69609898T2/de not_active Expired - Lifetime
- 1996-06-06 JP JP18261696A patent/JP4059937B2/ja not_active Expired - Fee Related
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE3225980A1 (de) * | 1982-07-10 | 1984-01-12 | Fichtel & Sachs Ag, 8720 Schweinfurt | Eingusssystem fuer wachs aus schmelz-verfahren |
US4556528A (en) * | 1983-06-16 | 1985-12-03 | The Garrett Corporation | Mold and method for casting of fragile and complex shapes |
JPS6418546A (en) * | 1987-07-10 | 1989-01-23 | Morikawa Sangyo | Sublimation pattern for producing casting |
EP0649691A1 (de) * | 1993-09-24 | 1995-04-26 | Texas Instruments Incorporated | Verfahren zur Herstellung eines Feingussmodells |
Non-Patent Citations (1)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 013, no. 193 (M-822), 9 May 1989 & JP 01 018546 A (MORIKAWA SANGYO KK), 23 January 1989, * |
Cited By (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
CN102151790A (zh) * | 2010-02-11 | 2011-08-17 | 上海中洲特种合金材料有限公司 | 大铸件的熔模铸造方法 |
CN102151790B (zh) * | 2010-02-11 | 2013-09-11 | 上海中洲特种合金材料有限公司 | 大铸件的熔模铸造方法 |
CN107685133A (zh) * | 2017-09-12 | 2018-02-13 | 东方电气集团东方汽轮机有限公司 | 一种精密铸造用陶瓷型壳制备方法 |
CN110560636A (zh) * | 2019-10-09 | 2019-12-13 | 西安皓森精铸有限公司 | 一种降低熔模铸造过程中型壳开裂的方法 |
CN112743043A (zh) * | 2019-10-31 | 2021-05-04 | 波音公司 | 用于改进熔模铸件的表面光洁度的方法和系统 |
CN112743043B (zh) * | 2019-10-31 | 2024-06-04 | 波音公司 | 用于改进熔模铸件的表面光洁度的方法和系统 |
CN110978874A (zh) * | 2019-12-31 | 2020-04-10 | 中国美术学院 | 一种金属工艺品表面加工金属图文的工艺 |
CN113102688A (zh) * | 2021-03-29 | 2021-07-13 | 上海联泰科技股份有限公司 | 一种改善3d打印光敏树脂模在熔模铸造中胀壳的方法 |
Also Published As
Publication number | Publication date |
---|---|
DE69609898D1 (de) | 2000-09-28 |
EP0747149B1 (de) | 2000-08-23 |
JP4059937B2 (ja) | 2008-03-12 |
AU5459496A (en) | 1996-12-19 |
DE69609898T2 (de) | 2001-02-22 |
JPH09136140A (ja) | 1997-05-27 |
AU708428B2 (en) | 1999-08-05 |
EP0747149A3 (de) | 1998-04-08 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5735336A (en) | Investment casting method utilizing polymeric casting patterns | |
US5176864A (en) | Lost wax process utilizing a high temperature wax-based material | |
JP4219278B2 (ja) | 迅速プロトタイプ射出成型 | |
US6827988B2 (en) | Process and a device for producing ceramic molds | |
CN110573273B (zh) | 部件的增材制造方法和增材制造的部件 | |
US5749041A (en) | Method of forming three-dimensional articles using thermosetting materials | |
AU2017338667A1 (en) | Composition and method for producing a molded body from a highly pure, transparent quartz glass by means of additive manufacturing | |
CN106132654A (zh) | 用于成型和复制对象的基于熔融沉积成型的模具、用于其制造的方法以及熔融沉积成型3d打印机 | |
EP1753561B1 (de) | Verbesserungen beim feingiessen | |
JPH08509666A (ja) | 鋳込み技術に使用される方法 | |
EP0747149B1 (de) | Feingiessverfahren zur Erzeugung von Gegenständen mit sehr präziser Oberfläche | |
US5297609A (en) | Investment casting of metal matrix composites | |
US5079974A (en) | Sprayed metal dies | |
CN109128020A (zh) | 用于制造多孔陶瓷立体光刻的树脂及其使用方法 | |
US4682643A (en) | Method of producing molded parts and casting pattern therefor | |
WO1997017150A3 (en) | Making a metal shape by casting | |
US3393263A (en) | Method for forming musical instrument bodies | |
JP2521600B2 (ja) | 高耐久性、高精度溶射金型の製造方法 | |
EP1361942B1 (de) | Verfahren zur herstellung von modellen | |
CA2142637A1 (en) | Investment casting method and apparatus | |
JP2585492B2 (ja) | 外皮樹脂成形型を用いる焼結品製造方法 | |
DE102017111846A1 (de) | Verfahren zur Herstellung von lokal modifizierten Gussformteilen | |
SU1637946A1 (ru) | Способ получени металлооболочковых стержней | |
Yeung | Rapid tooling: a step change in mold manufacturing | |
DE2752037A1 (de) | Verfahren zum herstellen von giessformen |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A2 Designated state(s): DE FR GB IT |
|
PUAL | Search report despatched |
Free format text: ORIGINAL CODE: 0009013 |
|
AK | Designated contracting states |
Kind code of ref document: A3 Designated state(s): DE FR GB IT |
|
17P | Request for examination filed |
Effective date: 19980911 |
|
17Q | First examination report despatched |
Effective date: 19990323 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB IT |
|
REF | Corresponds to: |
Ref document number: 69609898 Country of ref document: DE Date of ref document: 20000928 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: DE Payment date: 20120530 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GB Payment date: 20120606 Year of fee payment: 17 Ref country code: FR Payment date: 20120619 Year of fee payment: 17 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120618 Year of fee payment: 17 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20130606 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 69609898 Country of ref document: DE Effective date: 20140101 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST Effective date: 20140228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130606 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140101 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130701 Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20130606 |