EP0729157B1 - Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung - Google Patents

Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung Download PDF

Info

Publication number
EP0729157B1
EP0729157B1 EP95102703A EP95102703A EP0729157B1 EP 0729157 B1 EP0729157 B1 EP 0729157B1 EP 95102703 A EP95102703 A EP 95102703A EP 95102703 A EP95102703 A EP 95102703A EP 0729157 B1 EP0729157 B1 EP 0729157B1
Authority
EP
European Patent Office
Prior art keywords
oxide layer
coating solution
conductor
oxide
core
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95102703A
Other languages
English (en)
French (fr)
Other versions
EP0729157A1 (de
Inventor
Kazuo C/O Osaka Works Of Sumitomo Sawada
Shinji C/O Osaka Works Of Sumitomo Inazawa
Kouichi C/O Osaka Works Of Sumitomo Yamada
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to EP95102703A priority Critical patent/EP0729157B1/de
Priority to DE1995602270 priority patent/DE69502270T2/de
Publication of EP0729157A1 publication Critical patent/EP0729157A1/de
Application granted granted Critical
Publication of EP0729157B1 publication Critical patent/EP0729157B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/292Protection against damage caused by extremes of temperature or by flame using material resistant to heat
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B3/00Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties
    • H01B3/02Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances
    • H01B3/10Insulators or insulating bodies characterised by the insulating materials; Selection of materials for their insulating or dielectric properties mainly consisting of inorganic substances metallic oxides
    • H01B3/105Wires with oxides
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01BCABLES; CONDUCTORS; INSULATORS; SELECTION OF MATERIALS FOR THEIR CONDUCTIVE, INSULATING OR DIELECTRIC PROPERTIES
    • H01B7/00Insulated conductors or cables characterised by their form
    • H01B7/17Protection against damage caused by external factors, e.g. sheaths or armouring
    • H01B7/29Protection against damage caused by extremes of temperature or by flame
    • H01B7/295Protection against damage caused by extremes of temperature or by flame using material resistant to flame

Definitions

  • the present invention relates to an electrically conducting wire with an insulating coating made of an inorganic material.
  • a wire is used for high temperature operating conditions, e.g. as an insulated lead wire or the like.
  • An insulated conductor such as a wire or a member for a thermocouple is generally used in equipment such as heating equipment or fire alarm devices, which require safe operation at high operating temperatures. Such an insulated wire is also employed in an automobile in an environment which is heated to a high temperature.
  • An insulated wire of this type is generally formed by a conductor which is coated with a heat-resistant organic resin such as polyimide, fluororesin or the like.
  • Such a resin-coated wire can merely withstand a temperature of about 300°C at the most.
  • a wire which is employed in a high vacuum apparatus for example, must have high heat resistance against baking, etc., a small emission characteristic as to absorbed gas and water for achieving and maintaining a high degree of vacuum, and a small emission of gases caused by thermal decomposition. It is impossible to satisfy such requirements for heat resistance and a non-outgassing property with a conventional wire which is coated with an organic material insulation.
  • an insulated wire is comprising a conductor which passes through an insulator tube of ceramics
  • an MI (mineral insulated) cable comprising a conductor which passes through a tube of a heat-resistant alloy, such as stainless steel alloy, that is filled with fine particles of a metal oxide such as magnesium oxide, or the like is generally used.
  • a glass braided tube insulated wire employing an insulating member of glass fiber fabric or the like is known as an insulated, heat resistant, flexible wire.
  • wires coated with in organic materials were studied.
  • wires have been proposed, one of which is obtained by anodizing an aluminum (Al) conductor for forming an Al oxide layer on the outer wire surface, and another wire is obtained by mixing a frit prepared by mixing various metal oxides with each other and melting and pulverizing the as-obtained mixture for forming a slip, applying this slip to a metal conductor and heating and melting the same for forming a homogeneous composite metal oxide layer or coating on the wire surface.
  • the wire with an aluminum oxide layer is not suitable for use as a heat resistant wire since this technique is merely applicable to an aluminum conductor having a low melting point, while the as-formed film is so porous that the wire has an inferior moisture resistance and a low breakdown voltage.
  • the wire with a composite metal oxide coating is applicable to a metal conductor of copper (Cu) or nickel (Ni) having a higher heat resistance.
  • this technique is merely applicable to a metal composite oxide whose melting point is lower by about 300 to 400°C than those of Cu and Ni since the metal composite oxide layer is formed through a melting process, and the heat resistance temperature is restricted below the just mentioned level.
  • the as-formed wire is inferior in flexibility since it is difficult to reduce the thickness of the film.
  • the overall diameter is increased as compared with the conductor diameter, leading to an inferior space factor. Thus, it is impossible to feed a high current.
  • EP-A-0 494 424 discloses Ni or Ni alloy wires having an inner oxide layer of Ni or Ni alloy and an outer insulating inorganic compound layer of SiO 2 , Al 2 O 3 , MgO, ZrO 2 and mixtures thereof.
  • the inorganic insulating member or electrical conductor wire according to the present invention comprises a conductor of Ni or Ni alloy, an oxide layer of an oxide of Ni or Ni alloy on an outer surface of the conductor, said oxide layer being obtained by oxidizing the conductor in a vapor phase containing oxygen, an oxide layer of silicon (Si) on an outer surface of the oxide layer of Ni or Ni alloy, and an oxide layer of aluminum (Al) on an outer surface of the oxide layer of Si.
  • the oxide layers of Al and Si are oxide layers obtained by applying a solution prepared by hydrolyzing and polycondensing alkoxide of Al or Si in a solvent, drying the same for allowing gelation, and thereafter heating the obtained gel.
  • the oxide layers of Al and Si have a melting point exceeding that of Ni or Ni alloy.
  • the inorganic insulated member according to the present invention is applied to or used as a heat resistant wire or an incombustible wire at a high temperature which does not permit using an organic insulating material, for example.
  • the present invention is not restricted to such a wire, but is also applicable to another member such as a thermocouple.
  • Fig. 1 shows an Ni core conductor 1 coated with a Ni oxide layer 2 formed around the core conductor.
  • An Al oxide layer 3 is formed around the Ni oxide layer 2. The formation of these oxide layers will be described in more detail below.
  • Fig. 2 shows a nickel alloy conductor 11 first coated with a Ni alloy oxide layer 12 formed around the Ni alloy conductor 11.
  • a Si oxide layer 13 is formed around the Ni alloy oxide layer 12.
  • the nickel Ni core conductor 21 is first coated with a Ni oxide layer 22 formed around the Ni core conductor 21.
  • a Si oxide layer 23 is formed around the Ni oxide layer 22.
  • an Al oxide layer 24 is formed around the Si oxide layer 23.
  • a nickel alloy core conductor 31 is first coated with an Ni alloy oxide layer 32 formed around the Ni alloy core conductor 31. Then, an Al-Si composite oxide layer 33 is formed around the Ni alloy oxide layer 32.
  • a first oxide layer of Ni or an Ni alloy is first formed on an outer surface of a conductor of Ni or Ni alloy by oxidizing the conductor in a vapor phase containing oxygen. Then, a second oxide layer of Si is formed on the first oxide layer.
  • Ni or Ni alloy is an inactive metal which has an inferior affinity for a metal oxide of Al or Si.
  • a surface of Ni or Ni alloy is directly coated with such an Al or Si oxide, a rather poor adhesion is obtained and the coating is immediately separated from the Ni or Ni alloy.
  • the present invention teaches to first oxidize a core conductor of Ni or Ni alloy in a vapor phase containing oxygen, so as to form an oxide layer of Ni or Ni alloy.
  • the so formed nickel oxide layer or Ni alloy oxide layer very strongly adheres to the surface of the Ni or Ni alloy. This strong bonding is due to the fact that the nickel oxide or the nickel alloy oxide has an excellent affinity for the nickel or nickel alloy.
  • the nickel or nickel alloy oxide has a strong affinity to silicon oxide and hence also strongly bonds to the outer layer of Si oxide and to the conductor core. According to the present invention, therefore, the oxide layer of Si is not separated for all practical purposes from the intermediate oxide layer, whereby an excellent flexibility is obtained when the inorganic insulating coating is applied to a wire forming a core conductor, for example.
  • the oxide layers of Al and Si are obtained by applying a solution prepared by hydrolyzing and polycondensing an alkoxide of Al or Si in a solvent, drying the same for allowing gelation, and thereafter heating the so-obtained gel.
  • the Al and Si oxide layers formed in the aforementioned manner have a melting point exceeding that of the Ni or Ni alloy. Additionally, the Al and Si oxide layers are formed without any melting process.
  • the critical temperature to which conductors or other members of the present invention with their inorganic insulating coatings may be exposed in operation is not restricted by the melting point of the oxide layer. Rather, the present insulating members can be heated to a temperature limited only by the melting point of the Ni core or the Ni alloy core.
  • the oxide layer formed in the aforementioned manner has characteristics such as an extreme denseness, a smooth surface and a small adsorption of gases, e.g. steam or the like.
  • the present members have an excellent insulability and a high moisture resistance.
  • Preferred embodiments have been produced as two conductors C1 and C2 which were oxidized as follows.
  • Reference Example 1 An oxidized nickel conductor C1 was coated with the coating solution L1 and heated at 500°C for 10 minutes. The coating and heating was repeated 10 times, to form an Al oxide layer of 4 ⁇ m thickness on the first nickel oxide layer.
  • Reference Example 2 An oxidized nickel alloy conductor C2 was coated with the coating solution L2 and heated at 500°C for 10 minutes. The coating and heating was repeated 10 times, to form a Si oxide layer of 5 ⁇ m thickness on the first nickel alloy oxide layer.
  • Example 1 An oxidized nickel conductor C1 was coated with the coating solution L2 and heated at 500°C for 10 minutes.
  • the coating and heating was repeated 5 times to form a Si-oxide layer having a thickness of 2.5 ⁇ m. Then, a further coating operation was performed on the first formed Si-oxide layer, with the coating solution L1. The sample was again heated at 500°C for 10 minutes. The coating and heating was repeated 5 times to form an Al oxide layer of 2 ⁇ m thickness on the first formed Si oxide layer of 2.5 ⁇ m thickness.
  • Reference Example 3 An oxidized conductor C2 was coated with the coating solution L3 and heated at 500°C for 10 minutes. The coating and heating was repeated 10 times to form an Al-Si composite oxide layer of 6 ⁇ m in thickness.
  • Comparative Example 1 An aluminum wire was anodized in a bath of sulfuric acid to form an Al oxide layer of 10 ⁇ m thickness on the aluminum surface.
  • Comparative Example 2 An oxidized conductor C2 was coated-with a slip which was prepared by mixing a commercially available frit (composite oxide of Ba, Ca, Ti and Si: GSP220A552 sold by Toshiba Glass Co., Ltd.) with water. The wire coated with the slip was heated to 900°C to form a homogenous metal composite oxide layer of 100 ⁇ m thickness through a melted state.
  • a commercially available frit composite oxide of Ba, Ca, Ti and Si: GSP220A552 sold by Toshiba Glass Co., Ltd.
  • All the coating operations were, for example, performed by dipping the wire into the respective coating solution.
  • the above Table shows the breakdown voltages and the flexibility values of the wires of Example 1 of the invention, of Reference Examples 1 to 3 and of the two Comparative Examples.
  • the flexibility values were evaluated in terms of diameter ratios, by winding the wires on circular cylinders of a prescribed diameter D and measuring the minimum diameters causing no separation of the insulating inorganic compound coatings or layers from the conductor core.
  • the diameter D was 0.5 mm.
  • Example 1 shows that the wire of Example 1 according to the present invention has a higher breakdown voltage than the first Comparative Example and a superior flexibility compared to both Comparative Examples.
  • the second Comparative Example has a substantially higher breakdown voltage at the expense of being very stiff.
  • the inorganic insulating coating on a conductor wire according to the present invention forms an insulating inorganic compound layer which is well bonded to the conductor core and has an excellent heat resistance and insulability.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Ceramic Engineering (AREA)
  • Inorganic Chemistry (AREA)
  • Insulated Conductors (AREA)

Claims (13)

  1. Isolierter elektrischer Leiter, umfassend einen Kernleiter (21), bestehend im wesentlichen aus einem Kernmaterial, ausgewählt aus der Gruppe, bestehend aus Ni und Ni-Legierung, eine erste Oxidschicht (22), bestehend aus einem Oxid des Kernmaterials, die auf einer äußeren Oberfläche das Kernleiters (21) durch Oxidieren des Kernleiters in einer Sauerstoff enthaltenden Dampfphase erzeugt worden ist, und eine zweite Oxidschicht (23), die an eine äußere Oberfläche der ersten Oxidschicht gebunden ist, wobei die zweite Oxidschicht im wesentlichen aus Si-Oxid besteht, dadurch gekennzeichnet, daß er zusätzlich eine dritte Oxidschicht (24) auf einer äußeren Oberfläche der zweiten Oxidschicht (23) umfaßt, wobei die dritte Oxidschicht (24) im wesentlichen aus Al-Oxid besteht.
  2. Isolierter elektrischer Leiter nach Anspruch 1, wobei die zweite Oxidschicht (23) eine Schmelztemperatur besitzt, die höher liegt als diejenige des Kernmaterials (21).
  3. Isolierter elektrischer Leiter nach Anspruch 1, wobei der Kernleiter (21) aus Ni und Spurenmengen von natürlich vorkommenden Verunreinigungen besteht.
  4. Isolierter elektrischer Leiter nach Anspruch 1, wobei der Kernleiter (21) im wesentlichen aus Ni und Cr besteht.
  5. Isolierter elektrischer Leiter nach Anspruch 4, wobei der Kernleiter (21) im wesentlichen aus etwa 85% Ni und etwa 15% Cr besteht.
  6. Verfahren zur Herstellung eines isolierten elektrischen Leiters, umfassend:
    (a) Herstellen eines Kernleiters (21) aus einem Kernmaterial, ausgewählt aus der Gruppe, bestehend aus Ni und Ni-Legierung;
    (b) Erzeugen einer ersten Oxidschicht (22) auf einer äußeren Oberfläche das Kernleiters (21) durch Oxidieren des Kernleiters in einer Sauerstoff enthaltenden Dampfphase;
    (c) Herstellen einer ersten Überzugslösung durch Hydrolysieren und Polykondensieren eines Alkoxids von Si in einem Lösungsmittel;
    (d) Aufbringen der ersten Überzugslösung auf die erste Oxidschicht (22);
    (e) Trocknen der ersten Überzugslösung. um sie zur Gelbildung zu bringen;
    (f) Erhitzen der auf die erste Oxidschicht (22) aufgebrachten ersten Überzugslösung zur Bildung einer zweiten Oxidschicht (23) auf der Oxidschicht,
       dadurch gekennzeichnet, daß es ferner umfaßt:
    (g) Herstellen einer zweiten Überzugslösung durch Hydrolysieren und Polykondensieren eines Alkoxids von Al in einem Lösungsmittel;
    (h) Aufbringen der zweiten Überzugslösung auf die zweite Oxidschicht (23) und
    (i) Erhitzen der zweiten Überzugslösung zur Bildung einer dritten Oxidschicht (24) auf der zweiten Oxidschicht (23).
  7. Verfahren nach Anspruch 6, umfassend ferner das mehrmalige Wiederholen der Stufen (d) bis (f) und/oder (g) bis (i), wodurch aufeinanderfolgende Überzugsfilme aus der Überzugslösung übereinander aufgebracht werden zur Bildung der zweiten und dritten Oxidschichten (23, 24).
  8. Verfahren nach Anspruch 6, wobei die Stufe (f) keinen Schmelzprozeß umfaßt.
  9. Verfahren nach Anspruch 6, wobei die zweite Überzugslösung hergestellt wird durch Bilden eines Gemisches aus Tributoxyaluminium, Triethanolamin, Wasser und Isopropylalkohol und anschließendes Hydrolysieren und Polykondensieren des Gemisches.
  10. Verfahren nach Anspruch 9, wobei das jeweilige Molverhältnis von dem Tributoxyaluminium, Triethanolamin, Wasser und Isopropylalkohol 1:2:1:16 beträgt und das Hydrolysieren und Polykondensieren 1 Stunde bei 50°C unter Rühren des Gemisches durchgeführt wird.
  11. Verfahren nach Anspruch 6, wobei die erste Überzugslösung hergestellt wird durch Bilden eines Gemisches aus Tributylorthosilicat, Wasser und Isopropylalkohol, Zugeben von Salpetersäure zu dem Gemisch und anschließendes Hydrolysieren und Polykondensieren des Gemisches mit der zugesetzten Salpetersäure.
  12. Verfahren nach Anspruch 11, wobei das jeweilige Molverhältnis von dem Tributylorthosilicat, Wasser und Isopropylalkohol 2:8:15 beträgt, die Salpetersäure in einer Menge von 3/100 Mol, bezogen auf das Tributylorthosilicat, zugegeben wird und das Hydrolysieren und Polykondensieren 2 Stunden bei 80°C unter Rühren des Gemisches durchgeführt wird.
  13. Verfahren nach Anspruch 6, wobei die Stufe des Erhitzens bei etwa 500°C durchgeführt wird.
EP95102703A 1995-02-24 1995-02-24 Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung Expired - Lifetime EP0729157B1 (de)

Priority Applications (2)

Application Number Priority Date Filing Date Title
EP95102703A EP0729157B1 (de) 1995-02-24 1995-02-24 Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung
DE1995602270 DE69502270T2 (de) 1995-02-24 1995-02-24 Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
EP95102703A EP0729157B1 (de) 1995-02-24 1995-02-24 Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung

Publications (2)

Publication Number Publication Date
EP0729157A1 EP0729157A1 (de) 1996-08-28
EP0729157B1 true EP0729157B1 (de) 1998-04-29

Family

ID=8219011

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95102703A Expired - Lifetime EP0729157B1 (de) 1995-02-24 1995-02-24 Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung

Country Status (2)

Country Link
EP (1) EP0729157B1 (de)
DE (1) DE69502270T2 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572980B2 (en) 2007-01-26 2009-08-11 Ford Global Technologies, Llc Copper conductor with anodized aluminum dielectric layer

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7935885B2 (en) 2008-07-11 2011-05-03 Ford Global Technologies, Llc Insulated assembly of insulated electric conductors

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188370A2 (de) * 1985-01-14 1986-07-23 Raychem Limited Elektrischer Draht mit feuerfester Beschichtung

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63281313A (ja) * 1987-05-12 1988-11-17 Sumitomo Electric Ind Ltd 耐熱電線
JP2890631B2 (ja) * 1989-03-28 1999-05-17 住友電気工業株式会社 絶縁電線
JPH04242011A (ja) * 1991-01-10 1992-08-28 Sumitomo Electric Ind Ltd 無機絶縁部材

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0188370A2 (de) * 1985-01-14 1986-07-23 Raychem Limited Elektrischer Draht mit feuerfester Beschichtung

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7572980B2 (en) 2007-01-26 2009-08-11 Ford Global Technologies, Llc Copper conductor with anodized aluminum dielectric layer

Also Published As

Publication number Publication date
DE69502270D1 (de) 1998-06-04
EP0729157A1 (de) 1996-08-28
DE69502270T2 (de) 1999-01-07

Similar Documents

Publication Publication Date Title
US5436409A (en) Electrical conductor member such as a wire with an inorganic insulating coating
EP0410003B1 (de) Isolierte drahtlitze
EP0012422B1 (de) Hitzebeständige elektrisch isolierte Leiter und Verfahren zu deren Herstellung
US4429007A (en) Electrical wire insulation and electromagnetic coil
JPH03127809A (ja) 耐熱絶縁コイルの製造方法
CA1295890C (en) Electrical wire with refractory coating
EP0729157B1 (de) Elektrisches Leiterelement wie ein Draht mit anorganischen Isolierbeschichtung
CA2142765C (en) Inorganic insulating member
EP0494424B1 (de) Verfahren zur Herstellung eines elektrischen Leiters mit anorganischer Isolierung
EP0460238B1 (de) Isolierter draht
EP0380318B1 (de) Verfahren zur Herstellung von supraleitenden Drähten
JPH08264028A (ja) 絶縁被覆電気導体およびその製造方法
JPH0125166B2 (de)
JPH02301909A (ja) 無機絶縁電線およびその製造方法
JPH04332405A (ja) 耐熱電気絶縁導体
JPH03105803A (ja) 無機絶縁電線およびその製造方法
JPS639326B2 (de)
JPS6336085B2 (de)
JPH0393107A (ja) 耐熱性絶縁電線およびその製造方法
JPS6362041B2 (de)
KR940001884B1 (ko) 절연 전선
JPH0218810A (ja) 真空用耐熱性導体
JPH02270217A (ja) 絶縁電線
JP2909768B2 (ja) 耐熱絶縁電線及び耐熱絶縁電線の製造方法
JPS63237404A (ja) コイル

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950927

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB

17Q First examination report despatched

Effective date: 19960829

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

REF Corresponds to:

Ref document number: 69502270

Country of ref document: DE

Date of ref document: 19980604

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20010213

Year of fee payment: 7

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010221

Year of fee payment: 7

Ref country code: DE

Payment date: 20010221

Year of fee payment: 7

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20020903

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20020224

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021031

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST