EP0726830B1 - Procede et dispositif pour determiner la profondeur de penetration momentanee et maintenir la profondeur de penetration souhaitee d'un faisceau laser d'usinage dans une piece - Google Patents

Procede et dispositif pour determiner la profondeur de penetration momentanee et maintenir la profondeur de penetration souhaitee d'un faisceau laser d'usinage dans une piece Download PDF

Info

Publication number
EP0726830B1
EP0726830B1 EP94927646A EP94927646A EP0726830B1 EP 0726830 B1 EP0726830 B1 EP 0726830B1 EP 94927646 A EP94927646 A EP 94927646A EP 94927646 A EP94927646 A EP 94927646A EP 0726830 B1 EP0726830 B1 EP 0726830B1
Authority
EP
European Patent Office
Prior art keywords
laser beam
workpiece
working
reflected
depth
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94927646A
Other languages
German (de)
English (en)
Other versions
EP0726830A1 (fr
Inventor
Friedrich Dausinger
Jürgen GRIEBSCH
Rüdiger HACK
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Institut fuer Strahlwerkzeuge Universitaet Stuttgart
Original Assignee
Institut fuer Strahlwerkzeuge Universitaet Stuttgart
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Institut fuer Strahlwerkzeuge Universitaet Stuttgart filed Critical Institut fuer Strahlwerkzeuge Universitaet Stuttgart
Publication of EP0726830A1 publication Critical patent/EP0726830A1/fr
Application granted granted Critical
Publication of EP0726830B1 publication Critical patent/EP0726830B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/064Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms
    • B23K26/0648Shaping the laser beam, e.g. by masks or multi-focusing by means of optical elements, e.g. lenses, mirrors or prisms comprising lenses
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/0665Shaping the laser beam, e.g. by masks or multi-focusing by beam condensation on the workpiece, e.g. for focusing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/20Bonding
    • B23K26/21Bonding by welding
    • B23K26/24Seam welding
    • B23K26/244Overlap seam welding
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting
    • B23K26/382Removing material by boring or cutting by boring
    • B23K26/389Removing material by boring or cutting by boring of fluid openings, e.g. nozzles, jets
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/40Removing material taking account of the properties of the material involved
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K2103/00Materials to be soldered, welded or cut
    • B23K2103/16Composite materials, e.g. fibre reinforced

Definitions

  • the invention relates to a method for determining the momentary and achieving a desired depth of penetration of a processing laser beam in a workpiece and an apparatus for performing this method
  • Laser beams are used in many different ways Machining of workpieces, e.g. to the superficial Remelting, for the production of connection welds or for drilling holes. In all In these cases it is of great importance the depth of penetration of the laser beam in the workpiece and ensure that it reaches the desired value and keep it constant if necessary. In connection welds this is important, for example, because on the one hand the meltdown deep enough into each other parts to be connected must reach so that a reliable Union of parts is achieved because of on the other hand, the weld does not come from the one below Part should leak, causing damage to Visible surfaces could result. This applies, for example in the welded connection of sheet metal used as body parts find use in automobile construction.
  • a method is known from DE-OS 37 10 816, at which is the quality of a laser machining process on a workpiece by observing the on the workpiece reflected laser light is monitored. Between the Penetration depth of the laser beam and the reflected However, laser beam portion is not related here; irregular changes in intensity of the reflected laser light are simply called deviations of the desired operating conditions of the processing laser beam interpreted.
  • EP-A-0 299 702 describes a process in which which is the depth of one created by a laser beam Drilling in a laminate structure through that in the drilling reflected laser radiation is monitored.
  • the depth of one created by a laser beam Drilling in a laminate structure is monitored.
  • the different reflectivity of the various materials contained in the laminate structure exploited; the sudden change in the reflected Laser light share is achieved when a identified new boundary layer within the laminate.
  • This known method is not suitable for monitoring the penetration depth of a laser beam in a homogeneous Material.
  • DE-A-2538660 discloses a method for controlling engraving using a laser beam. This will change the Reflection behavior when engraving a gravure cylinder determined: at the moment when the removal of Material begins, the reflection of the laser changes at the Surface of the impression cylinder.
  • WO-A-92 14 578 describes a method for monitoring described the laser processing of workpieces at which is from the plasma generated by the laser or Optical and / or acoustic signals originating from steam be recorded and from this conclusions on the process of the machining process.
  • the object of the present invention is a method of the type mentioned in such a way that also the penetration depth in homogeneous materials continuously monitored during the machining process and sent to the desired value can be introduced.
  • the method according to the invention is based on the knowledge that that there is a clear functional relationship between the percentage of one directed at the steam capillary Laser beam that is reflected and the depth of penetration of the laser beam, i.e. the depth of the steam capillary, gives.
  • This functional relationship is most likely based on the mechanism of multiple reflections inside the vapor capillary; leave after this model calculate curves that show the relationship between the percentage reflected portion of the laser beam and the aspect, i.e. the relationship between depth and area the hole.
  • Such curves can be also determine experimentally through appropriate tests, in each case point by point with a certain aspect the reflected laser beam component is determined.
  • the processing laser beam is generated and the measuring laser beam the same laser used. It goes without saying that here the apparatus structure least expensive and the cost are the smallest.
  • the sensitivity is therefore sufficient in certain applications the measurement method using a single Lasers can not, so from the physical phenomenon Use that characteristic curves the slower the transition to a flat area, the more larger the wavelength of the laser beam used for the measurement is. Then a process variant is recommended in which to generate the processing laser beam and the measuring laser beam two different ones Lasers are used, the wavelength of the measuring laser beam larger than that of the machining laser beam is.
  • the measuring laser beam can thus be independent of that Machining lasers set to the highest possible efficiency be operated in a way that the Measurement sensitivity is high.
  • the reflected one decreases Share of the measuring laser beam until it is reached the target depth corresponds to the previously determined target value.
  • the Regulation by changing the average power of the Machining laser beam.
  • the object of the present invention is also a Device for carrying out the methods described above to create with which the depth of penetration continuously of the laser beam is detected and sent to a desired one Value can be introduced.
  • the device according to the invention is based on the same physical principles already above for the invention Procedures have been explained.
  • the device according to the invention is the one in which a single laser is provided whose beam serves as both a processing and measuring laser beam.
  • the measuring accuracy can be taken from those already explained above Reasons can be improved by a device which two different lasers are provided by which the first the processing laser beam and the second generates the measuring laser beam, the wavelength of the Measuring laser beam larger than that of the processing laser beam is.
  • the reference signal comes from if it is only able to derive a setpoint to represent for the depth of penetration.
  • the reference signal source act a voltage source, its output voltage is empirically set to the desired value.
  • the reference signal source has a memory in which a the value determined in a preliminary test can be stored, which the reflected percentage of the measuring laser beam at one desired penetration depth of the processing laser beam corresponds.
  • This design principle can be extended that a curve is stored in the memory, which the functional relationship between the penetration depth of the machining laser beam and the reflected percentage of the Measuring laser beam reproduces. It is then according to Calibration by preliminary tests possible from the memory retrieve the point of the curve that one corresponds to the desired penetration depth of the laser in individual cases.
  • the change in the average coupled energy can done in three different ways:
  • control unit affects the speed the relative movement between the workpiece and the machining beam or the control unit influences the performance of the Machining laser beam.
  • control unit focuses the machining laser beam influenced.
  • FIG. 1 there are two sheets 1, 2 lying one above the other shown in section.
  • By an essentially vertical on the upper sheet 1 striking processing laser beam 3 forms a in the material of the sheets 1, 2 Steam capillary 4 with a certain diameter df.
  • the Steam capillary 4 extends completely through the sheet 1, only partially through the sheet 2. she is surrounded by a melt 5.
  • the superimposed sheets 1 and 2 are in the sense arrow 6 moves under the processing laser beam 3.
  • the depth s of the melt 5, measured from the Top of the upper plate 1 is only slight greater than the depth of the steam capillary 4; she can this be roughly equated.
  • the energy coupling of the processing laser beam 3 into the material of the sheets 1 and 2 is a function of the aspect, i.e. the ratio s / df, of the steam capillary 4. Assuming that the dependence of the energy coupling on the aspect depends on a multiple reflection of the laser beam 3 in the steam capillary 4, the energy coupling can be calculated as a function of the aspect; there are curves as shown qualitatively in FIG. 2 for two different wavelengths ⁇ 1 and ⁇ 2 > 1 . These curves are all characterized in that the energy coupled into the material of the workpiece initially rises sharply with increasing aspect, but then bends and approaches the 100 percent line essentially asymptotically. The steepness of this increase (with the parameters unchanged otherwise) depends on the degree of absorption, that is, inter alia, on the wavelength of the laser light: at longer wavelengths, the curve increases and the approach to the horizontal asymptote is slower.
  • the curves for energy coupling shown in FIG. 2 can also be read as curves, which each reflected portion of laser energy show: Coupled and reflected energy complement each other 100%. This makes it clear that by measuring the percentage Proportion of the laser energy reflected on the workpiece Statements about the depth of the steam capillary 4 and thus gain essentially over the depth s of the melt 5 to let.
  • FIG 3 is a first embodiment of a device shown with which a regulated welding depth can be achieved.
  • the device comprises one Laser 8, the laser beam 9 via a beam splitter 10 (partially transparent mirror) and a focusing optics 11 onto the workpiece comprising the two sheets 1 and 2 is judged.
  • the focused laser beam 9 generates in the sheets 1, 2 one surrounded by a melt 5 Steam capillary 4, as shown in Figure 1 and was explained above.
  • the solidified material 7 Welding whose depth is s.
  • the percentage energy coupling of the laser beam 9 in the sheets 1 and 2 a function the welding depth s is as previously determined experimentally and as a curve according to FIG. 2 in one Memory 18 was filed. That of the respective percentage Energy coupling corresponding reflected intensity the laser beam is determined by a sensor 12, the one behind the partially transparent mirror 10 in the rear Extension of what is striking on the workpiece Laser beam 9 is arranged. The output signal of the Sensor 12, which is proportional to the reflected laser intensity is fed to a comparator 17 and there with the value of that stored in the memory 18 Curve compared which of the desired welding depth s corresponds.
  • the output signal of the comparator 17 becomes the control unit of the laser 8 supplied with which the laser output power can change.
  • the output signal of the sensor 12 is smaller than the value of the curve stored in the memory 18 is which corresponds to the desired welding depth s, so this means that too much energy of the laser beam 9 is coupled into the workpiece, that is, the welding depth s is too big.
  • the energy coupling in the time unit the laser beam 9 now reduces for example by lowering the laser power or by increasing the feed speed of the workpiece, until the reduction in energy coupling caused in this way the output signal of the sensor 12 back to the setpoint corresponds to the curve stored in the memory 18.
  • a first laser 108 hereinafter “processing laser” sends a first laser beam 109, hereinafter referred to as "processing laser beam”.
  • processing laser beam Of the Machining laser beam 109 is through a first Beam splitter (semi-transparent mirror) 110 by 90 ° deflected so that it is approximately perpendicular to the upper plate 101 hits.
  • first Beam splitter semi-transparent mirror
  • Focusing optics 111 Between the first beam splitter 110 and the workpiece surface is in turn one Focusing optics 111.
  • the machining laser beam 109 generates in the sheets 101 and 102 a vapor capillary 104 which is from a melt 105 is surrounded, and leaves when moving the workpiece a weld seam formed from solidified material 107, just like this in the embodiment of figure 3 was the case.
  • a second laser 113 is arranged vertically above the workpiece formed from the sheets 101 and 102, hereinafter referred to as the "measuring laser".
  • the measuring laser 113 emits a second laser beam 114, hereinafter referred to as the “measuring laser beam", the wavelength ⁇ 2 of which is greater than the wavelength ⁇ 1 of the processing laser beam 109.
  • the measuring laser beam 114 passes through a second beam splitter 115 set at an angle of approximately 45 °, the first beam splitter 110 and is imaged by the focusing optics 111 onto the steam capillary 104 in the same way as the processing laser beam 109. That is, the measuring laser beam 114 "sees" the same geometric conditions on the workpiece as the processing laser beam 109.
  • the percentage energy coupling of the measuring laser beam 114 into the workpiece consisting of the sheets 101 and 102 now applies a characteristic curve that is significant rises more slowly than that of the processing laser beam 109, as is qualitatively the figure 2 can be seen.
  • the measuring laser 113 its performance very be much less than that of the welding laser 108 can, therefore, be in a range of characteristic Operate curve in which the change in Energy coupling with the welding depth s is still proportionate is strong, the percentage of reflected Measuring laser beam 114 is therefore a sensitive measuring instrument for the welding depth is s.
  • the sensor 112 is a filter 116 upstream, which for the wavelength of the welding laser 108 is impermeable, so that the sensor 112 on reflected radiation components of the processing laser beam 109 does not respond.
  • the sensor 112 generates an output signal, which the percentage of that reflected on the upper sheet 101 Measuring laser beam 114 corresponds. This output signal is fed to a comparator 117.
  • a comparator 117 In one Memory 118 is the one previously determined experimentally characteristic curve for the measuring laser 113 (corresponding of Figure 2) stored. He is with the second entrance of the comparator 117, the output signal of which Control unit of the processing laser 109 is supplied.
  • the manually adjustable voltage as a reference signal with the output signal of the sensor 12 or 112 is compared and its value is not necessarily quantitative needs to be correlated with the welding depth s.
  • suitable value of the preselectable Voltage is simply determined experimentally by the this preselectable value belonging to the correct welding depth s Reference signal is determined. The device is then based on this preset value and keeps the welding depth s constant accordingly.
  • the devices according to Figures 3 and 4 also for drilling holes with a certain depth s.
  • the workpiece is compared to the Device not moved.
  • the depth of the laser beam 9 or 109 evoked steam capillary still low the percentage energy coupling is small and the reflected Energy portion of the measuring laser beam 9 or 114 relatively high.
  • the output signal from sensor 12 or 112 of the devices of Figures 3 and 4 is thus higher than one stored in the memory 18 or 118 Value that corresponds to the nominal value of the drilling depth.

Landscapes

  • Physics & Mathematics (AREA)
  • Engineering & Computer Science (AREA)
  • Optics & Photonics (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Claims (18)

  1. Procédé pour déterminer la profondeur de pénétration momentanée et produire une profondeur de pénétration souhaitée d'un faisceau laser d'usinage (9 ; 109) dans une pièce (1, 2 ; 101, 102), selon lequel
    a) un faisceau laser (9 ; 114) jouant le rôle de faisceau laser de mesure est dirigé dans le capillaire de vapeur (4 ; 104) formé dans la pièce (1, 2 ; 101, 102) par le faisceau laser (9 ; 109) jouant le rôle de faisceau laser d'usinage ;
    b) on détermine la part, en pourcentage, du faisceau laser (9 ; 114) jouant le rôle de faisceau laser de mesure qui est réfléchie à l'intérieur du capillaire de vapeur (4 ; 104) sur la pièce (1, 2 ; 101, 102) et ressort du capillaire de vapeur (4 ; 104) ;
    c) on modifie l'énergie incorporée par unité de temps et de surface dans la pièce (1, 2 ; 101, 102) par le faisceau laser (9 ; 109) jouant le rôle de faisceau laser d'usinage, en fonction de la part déterminée à l'étape b) du faisceau laser (9 ; 114) jouant le rôle de faisceau laser de mesure.
  2. Procédé selon la revendication 1, caractérisé en ce qu'on utilise le même laser (8) pour produire le faisceau laser d'usinage (9) et le faisceau laser de mesure (9).
  3. Procédé selon la revendication 1, caractérisé en ce qu'on utilise deux lasers différents (108, 113) pour produire le faisceau laser d'usinage (109) et le faisceau laser de mesure (114), la longueur d'onde du faisceau laser de mesure (114) étant supérieure à celle du faisceau laser d'usinage (109).
  4. Procédé selon une des revendications 1 à 3, selon lequel on réalise dans une pièce un perçage de profondeur déterminée, caractérisé en ce que
    a) au cours d'un essai préliminaire, on détermine quel pourcentage du faisceau laser de mesure (9 ; 114) est réfléchi sur la pièce (1, 2 ; 101, 102) pour la profondeur souhaitée du perçage ;
    b) pendant la réalisation du perçage par le faisceau laser d'usinage (9 ; 109), la pièce (1, 2 ; 101, 102) étant alors immobile, on surveille en continu le pourcentage réfléchi du faisceau laser de mesure (9 ; 114), et le faisceau laser d'usinage (9 ; 109) est interrompu lorsque le pourcentage réfléchi du faisceau laser de mesure (9 ; 114) a atteint la valeur déterminée au cours de l'essai préliminaire.
  5. Procédé selon une des revendications 1 à 4, selon lequel une pièce est fondue jusqu'à une profondeur déterminée, ou bien on réalise une soudure dans une pièce jusqu'à une profondeur déterminée, caractérisé en ce que
    a) au cours d'un essai préliminaire, on détermine quel pourcentage du faisceau laser de mesure (9 ; 114) est réfléchi sur la pièce (1, 2 ; 101, 102) pour la profondeur souhaitée (5) de la masse fondue (5; 105);
    b) pendant la réalisation de la masse fondue (5 ; 105) par le faisceau laser d'usinage (9 ; 109) avec un mouvement relatif entre le faisceau laser d'usinage (9 ; 109) et la pièce (1, 2 ; 101, 102), on surveille en continu le pourcentage réfléchi du faisceau laser de mesure (9 ; 114), et des écarts entre le pourcentage réfléchi momentané du faisceau laser de mesure (9 ; 114) et la valeur déterminée au cours de l'essai préliminaire sont régulés en ajustant l'énergie incorporée par unité de temps et de surface dans la pièce (1, 2 ; 101, 102) par le faisceau laser d'usinage (9 ; 109).
  6. Procédé selon la revendication 5, caractérisé en ce que la régulation s'effectue en modifiant la puissance du faisceau laser d'usinage (9 ; 109).
  7. Procédé selon la revendication 5, caractérisé en ce que la régulation s'effectue en modifiant la vitesse relative entre le faisceau laser d'usinage (9 ; 109) et la pièce (1, 2 ; 101, 102).
  8. Procédé selon la revendication 5, caractérisé en ce que la régulation s'effectue en défocalisant le faisceau laser d'usinage (9 ; 109).
  9. Dispositif pour la mise en oeuvre du procédé selon une des revendications précédentes, comprenant
    a) un laser (8 ; 108) jouant le rôle de laser d'usinage, dont le faisceau laser (9 ; 109) produit un capillaire de vapeur (4 ; 104) dans la pièce (1, 2 ; 101, 102) à usiner ;
    b) une unité de commande (8 ; 108), qui permet de modifier l'énergie incorporée par unité de temps et de surface dans la pièce (1, 2 ; 101, 102) par le faisceau laser (9 ; 109) jouant le rôle de faisceau laser d'usinage ;
    c) un capteur (12 ; 112), qui détecte la part d'un faisceau laser (9 ; 114) jouant le rôle de faisceau laser de mesure qui est réfléchie à l'intérieur du capillaire de vapeur (4 ; 104) sur la pièce (1, 2 ; 101, 102) et ressort du capillaire de vapeur (4 ; 104), et qui produit un signal de sortie qui correspond à la part, en pourcentage, du faisceau laser jouant le rôle de faisceau laser de mesure qui est réfléchie et ressort du capillaire de vapeur ;
    d) une source (18 ; 118) de signal de référence, qui produit un signal de référence qui correspond à la part, en pourcentage, du faisceau laser (9 ; 114) jouant le rôle de faisceau laser de mesure qui ressort du capillaire de vapeur (4 ; 104) pour une profondeur (s) souhaitée de pénétration du faisceau laser (9 ; 109) jouant le rôle de faisceau laser d'usinage ;
    e) un comparateur (17 ; 117), qui compare le signal de sortie du capteur (12 ; 112) au signal de référence et délivre un signal de sortie sollicitant l'unité de commande (8 ; 108).
  10. Dispositif selon la revendication 9, caractérisé en ce qu'un seul laser (8) est prévu, dont le faisceau (9) sert à la fois de faisceau laser d'usinage et de faisceau laser de mesure.
  11. Dispositif selon la revendication 9, caractérisé en ce que deux lasers différents (108, 113) sont prévus, dont le premier (108) produit le faisceau laser d'usinage (109) et le deuxième (113) le faisceau laser de mesure (114), la longueur d'onde du faisceau laser de mesure (114) étant supérieure à celle du faisceau laser d'usinage (109).
  12. Dispositif selon une des revendications 9 à 11, caractérisé en ce que la source (18 ; 118) de signal de référence comprend une mémoire dans laquelle peut être déposée une valeur, déterminée au cours d'un essai préliminaire, qui correspond au pourcentage du faisceau laser de mesure (9 ; 114) qui est réfléchi pour une profondeur de pénétration souhaitée du faisceau laser d'usinage (9 ; 109).
  13. Dispositif selon la revendication 12, caractérisé en ce qu'une courbe est déposée dans la mémoire (18 ; 118), qui reproduit la relation fonctionnelle entre la profondeur de pénétration (s) du faisceau laser d'usinage (9 ; 109) et le pourcentage réfléchi du faisceau laser de mesure (9 ; 114).
  14. Dispositif selon une des revendications 9 à 13 pour réaliser des perçages, caractérisé en ce que
    a) la pièce (1, 2 ; 101, 102) est positionnée en position fixe par rapport au faisceau laser d'usinage (9 ; 109) ;
    b) le comparateur (17 ; 117) délivre un signal de sortie lorsque le signal de sortie du capteur (12 ; 112) correspond au signal de référence ;
    c) l'unité de commande (8 ; 108) interrompt le faisceau laser d'usinage (9 ; 109) à la réception du signal de sortie du comparateur (17 ; 117).
  15. Dispositif selon une des revendications 9 à 13 avec lequel la pièce peut être fondue jusqu'à une profondeur déterminée ou bien une soudure peut être réalisée dans une pièce jusqu'à une profondeur déterminée, caractérisé en ce que
    a) un organe est prévu, qui produit un mouvement relatif entre la pièce (1, 2 ; 101, 102) et le faisceau laser d'usinage (9 ; 109) ;
    b) le comparateur (17 ; 117) délivre un signal de sortie qui est représentatif de l'écart entre le signal de sortie du capteur (12 ; 112) et le signal de référence ;
    c) l'unité de commande (8 ; 108) comprend un organe de régulation qui ramène le signal de sortie du comparateur (17 ; 117) à zéro en modifiant l'énergie incorporée par unité de temps et de surface dans la pièce (1, 2 ; 101, 102) par le faisceau laser d'usinage (9 ; 109).
  16. Dispositif selon la revendication 15, caractérisé en ce que l'unité de commande (8 ; 108) agit sur la vitesse du mouvement relatif entre la pièce (1, 2 ; 101, 102) et le faisceau laser d'usinage (9 ; 109).
  17. Dispositif selon la revendication 15, caractérisé en ce que l'unité de commande (8 ; 108) agit sur la puissance du faisceau laser d'usinage (9 ; 109).
  18. Dispositif selon la revendication 15, caractérisé en ce que l'unité de commande (8 ; 108) agit sur la focalisation du faisceau laser d'usinage (9 ; 109).
EP94927646A 1993-10-01 1994-09-24 Procede et dispositif pour determiner la profondeur de penetration momentanee et maintenir la profondeur de penetration souhaitee d'un faisceau laser d'usinage dans une piece Expired - Lifetime EP0726830B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4333501A DE4333501C2 (de) 1993-10-01 1993-10-01 Verfahren zur Bestimmung der momentanen und Herbeiführung einer gewünschten Eindringtiefe eines Bearbeitungslaserstrahles in ein Werkstück sowie Vorrichtung zur Durchführung dieses Verfahrens
DE4333501 1993-10-01
PCT/EP1994/003190 WO1995009713A1 (fr) 1993-10-01 1994-09-24 Procede et dispositif pour determiner la profondeur de penetration momentanee et maintenir la profondeur de penetration souhaitee d'un faisceau laser d'usinage dans une piece

Publications (2)

Publication Number Publication Date
EP0726830A1 EP0726830A1 (fr) 1996-08-21
EP0726830B1 true EP0726830B1 (fr) 1999-02-17

Family

ID=6499171

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94927646A Expired - Lifetime EP0726830B1 (fr) 1993-10-01 1994-09-24 Procede et dispositif pour determiner la profondeur de penetration momentanee et maintenir la profondeur de penetration souhaitee d'un faisceau laser d'usinage dans une piece

Country Status (5)

Country Link
US (1) US6215094B1 (fr)
EP (1) EP0726830B1 (fr)
AT (1) ATE176767T1 (fr)
DE (1) DE4333501C2 (fr)
WO (1) WO1995009713A1 (fr)

Families Citing this family (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE29505985U1 (de) * 1995-04-06 1995-07-20 Bestenlehrer, Alexander, 91074 Herzogenaurach Vorrichtung zum Bearbeiten, insbesondere zum Polieren und Strukturieren von beliebigen 3D-Formflächen mittels eines Laserstrahls
DE19522493C2 (de) * 1995-06-25 1998-11-26 Jurca Optoelektronik Gmbh Verfahren zur Bestimmung der momentanen und Herbeiführung einer gewünschten Eindringtiefe eines Bearbeitungslaserstrahles in ein Werkstück sowie Vorrichtung zur Durchführung dieses Verfahrens
US5674415A (en) * 1996-01-22 1997-10-07 The University Of Chicago Method and apparatus for real time weld monitoring
JP4488142B2 (ja) * 1998-09-30 2010-06-23 レーザーテク ゲーエムベーハー レーザ加工装置により形成される凹部の深さ測定および深さ制御または自動深さ制御
US6476353B2 (en) * 2000-01-26 2002-11-05 Js Chamberlain & Assoc. Laser surface finishing apparatus and method
US6696008B2 (en) * 2000-05-25 2004-02-24 Westar Photonics Inc. Maskless laser beam patterning ablation of multilayered structures with continuous monitoring of ablation
DE10128746B4 (de) * 2001-06-13 2012-01-26 Volkswagen Ag Verfahren und Vorrichtung zur Ausbildung einer Reissnaht als Sollbruchstelle in einem Fahrzeug-Verkleidungsteil
NL1018861C2 (nl) * 2001-08-31 2003-03-03 Netherlands Inst For Metals Re Werkwijze en een inrichting voor het meten en regelen van een laser-lasproces.
US7767928B2 (en) * 2001-09-05 2010-08-03 Lasertec Gmbh Depth measurement and depth control or automatic depth control for a hollow to be produced by a laser processing device
US6713718B1 (en) * 2001-11-27 2004-03-30 Vi Engineering, Inc. Scoring process and apparatus with confocal optical measurement
DE10222117B4 (de) * 2002-05-17 2004-09-16 W&H Dentalwerk Bürmoos Gesellschaft m.b.H. Dentalmedizinisches Laserbearbeitungsgerät zur plasmainduzierten Ablation
US7060932B2 (en) * 2003-03-18 2006-06-13 Loma Linda University Medical Center Method and apparatus for material processing
US7379483B2 (en) * 2003-03-18 2008-05-27 Loma Linda University Medical Center Method and apparatus for material processing
US7880116B2 (en) * 2003-03-18 2011-02-01 Loma Linda University Medical Center Laser head for irradiation and removal of material from a surface of a structure
US7057134B2 (en) * 2003-03-18 2006-06-06 Loma Linda University Medical Center Laser manipulation system for controllably moving a laser head for irradiation and removal of material from a surface of a structure
US7038166B2 (en) * 2003-03-18 2006-05-02 Loma Linda University Medical Center Containment plenum for laser irradiation and removal of material from a surface of a structure
US7286223B2 (en) 2003-03-18 2007-10-23 Loma Linda University Medical Center Method and apparatus for detecting embedded rebar within an interaction region of a structure irradiated with laser light
DE10355051B4 (de) * 2003-11-25 2007-03-15 Daimlerchrysler Ag Verfahren und Vorrichtung zum Laserstrahlschweißen mit verringerter Abzeichnung
US7633033B2 (en) 2004-01-09 2009-12-15 General Lasertronics Corporation Color sensing for laser decoating
US7820936B2 (en) * 2004-07-02 2010-10-26 Boston Scientific Scimed, Inc. Method and apparatus for controlling and adjusting the intensity profile of a laser beam employed in a laser welder for welding polymeric and metallic components
JP4473715B2 (ja) * 2004-11-29 2010-06-02 富士通株式会社 積層体切断方法及び積層体
JP2006303428A (ja) * 2005-03-25 2006-11-02 Sony Corp レーザ駆動装置、レーザ発光装置およびレーザ駆動方法
US8253062B2 (en) * 2005-06-10 2012-08-28 Chrysler Group Llc System and methodology for zero-gap welding
WO2008118365A1 (fr) 2007-03-22 2008-10-02 General Lasertronics Corporation Procédés de décapage et de modification de surfaces par ablation induite par laser
US10112257B1 (en) * 2010-07-09 2018-10-30 General Lasertronics Corporation Coating ablating apparatus with coating removal detection
DE102010063037A1 (de) * 2010-12-14 2012-06-14 Robert Bosch Gmbh Verfahren zum Abtragen von Material mittels einer Laserstrahlquelle
US20130153552A1 (en) * 2011-12-14 2013-06-20 Gwangju Institute Of Science And Technology Scribing apparatus and method for having analysis function of material distribution
JP5969767B2 (ja) * 2012-01-27 2016-08-17 株式会社ディスコ レーザー加工装置
US9895771B2 (en) 2012-02-28 2018-02-20 General Lasertronics Corporation Laser ablation for the environmentally beneficial removal of surface coatings
EP2869962A1 (fr) * 2012-07-03 2015-05-13 Baden-Württemberg Stiftung gGmbH Procédé de fonctionnement d'un dispositif de soudage par laser et dispositif
CN104619453B (zh) * 2012-08-09 2016-08-24 罗芬-拉萨格股份公司 用于利用激光束加工工件的系统
DE102012216928A1 (de) 2012-09-20 2014-03-20 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zum Ermitteln von Laserbearbeitungskenngrößen
US10086597B2 (en) 2014-01-21 2018-10-02 General Lasertronics Corporation Laser film debonding method
DE102014007074B3 (de) * 2014-05-14 2015-10-01 Audi Ag Verfahren zum Bestimmen einer Bearbeitungstiefe einer lasergestützten Materialbearbeitung
DE102014015094A1 (de) 2014-10-10 2016-04-14 Audi Ag Verfahren zum Laserstrahlschweißen
DE102015224963B3 (de) * 2015-12-11 2017-04-13 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zur Bestimmung der Referenz-Fokuslage eines Laserstrahls
DE102016223875A1 (de) * 2016-11-30 2018-05-30 Volkswagen Aktiengesellschaft Verfahren zum Verbinden von Bauteilen aus unterschiedlichen Werkstoffen
DE102017117413B4 (de) * 2017-08-01 2019-11-28 Precitec Gmbh & Co. Kg Verfahren zur optischen Messung der Einschweißtiefe

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE2538660A1 (de) * 1974-09-03 1976-03-11 Crosfield Electronics Ltd Verfahren zum steuern des gravierens mittels eines laserstrahls und vorrichtung zur durchfuehrung des verfahrens
US4121087A (en) * 1977-11-18 1978-10-17 Rockwell International Corporation Method and apparatus for controlling laser welding
KR960005213B1 (ko) 1986-12-01 1996-04-23 가부시끼가이샤 고마쯔 세이사꾸쇼 레이저 비임에 의한 가공방법 및 장치
DE3710816A1 (de) * 1987-03-31 1988-10-20 Focus Control Gmbh Fc Vorrichtung zur bearbeitung eines werkstuecks mittels eines laserstrahls
US4789770A (en) * 1987-07-15 1988-12-06 Westinghouse Electric Corp. Controlled depth laser drilling system
US4777341A (en) * 1987-08-18 1988-10-11 Quantum Laser Corporation Back reflection monitor and method
US4845354A (en) * 1988-03-08 1989-07-04 International Business Machines Corporation Process control for laser wire bonding
JPH0292482A (ja) * 1988-09-30 1990-04-03 Hitachi Ltd レーザ穿孔装置
DE3835980A1 (de) * 1988-10-21 1990-04-26 Mtu Muenchen Gmbh Verfahren zur ermittlung eines durchschusszeitpunktes
US4865683A (en) * 1988-11-03 1989-09-12 Lasa Industries, Inc. Method and apparatus for laser process control
JP2694929B2 (ja) * 1989-10-04 1997-12-24 石川島播磨重工業株式会社 レーザービーム加工用加工孔貫通検知装置
DE4039303A1 (de) * 1990-12-10 1992-06-11 Egbert U Dipl Ing Beske Verfahren und vorrichtung zur prozessueberwachung von laserstrahl-materialbearbeitungen
DE4106007A1 (de) * 1991-02-26 1992-09-03 Fraunhofer Ges Forschung Verfahren und vorrichtung zum bearbeiten von werkstuecken mit laserstrahlung
JPH05335735A (ja) * 1992-06-03 1993-12-17 Mitsubishi Electric Corp レーザolb装置及び半導体装置の実装方法

Also Published As

Publication number Publication date
WO1995009713A1 (fr) 1995-04-13
EP0726830A1 (fr) 1996-08-21
DE4333501A1 (de) 1995-04-06
ATE176767T1 (de) 1999-03-15
DE4333501C2 (de) 1998-04-09
US6215094B1 (en) 2001-04-10

Similar Documents

Publication Publication Date Title
EP0726830B1 (fr) Procede et dispositif pour determiner la profondeur de penetration momentanee et maintenir la profondeur de penetration souhaitee d'un faisceau laser d'usinage dans une piece
DE3926859C2 (fr)
EP3150328B1 (fr) Methode et machine d'usinage pour perforer, percer ou decouper une tôle metallique, avec emission d'un faisceau de gas secondaire quand une ablation spontanee se deroule
DE3212589C2 (fr)
EP2691206B1 (fr) Procédé d'usinage par faisceau laser d'une pièce
DE4434409C1 (de) Verfahren und Vorrichtung zum Materialbearbeiten mit Plasma induzierender Laserstrahlung
DE102006058536B4 (de) Laserstrahlbearbeitungsmaschine
DE10045191A1 (de) Verfahren und Vorrichtung zur Echtzeitsteuerung der Strahlcharakteristiken bei einer mit einem Laser ausgerüsteten Werkzeugmaschine
WO2007022948A2 (fr) Dispositif et procede de separation d'un materiau par des impulsions laser
WO2013113479A1 (fr) Procédé permettant de réguler un processus de coupe au laser et machine de coupe au laser
DE102017106241B4 (de) Laserbearbeitungsvorrichtung mit vorbearbeitungssteuerung und laserbearbeitungsverfahren
DE4228740C2 (de) Laserbearbeitungsvorrichtung
EP4200101A1 (fr) Procédé de production d'au moins une partie de pièce à usiner et d'une pièce à usiner résiduelle à partir d'une pièce à usiner
DE60312962T2 (de) Laser Punktschweissverfahren und -vorrichtung zum wirksamen Prüfen der Schweissqualität
DE102015216858A1 (de) Laserbearbeitungsvorrichtung
EP3386675B1 (fr) Procédé pour déterminer la position focale de référence d'un faisceau laser
WO2005032756A1 (fr) Procede de lissage et de polissage ou de structuration de surfaces au moyen d'un rayonnement laser module
DE102012007304B4 (de) Verfahren zum Regeln einer Einschweißtiefe
DE102010013914B4 (de) Verfahren zum Betrieb einer Vorrichtung zur Materialbearbeitung und Vorrichtung
DE19608074C2 (de) Verfahren zum Schweißen von relativbewegten Werkstücken
DE102020110087A1 (de) Verfahren zur prozesskontrolle bei der lasermaterialbearbeitung
EP0822027B1 (fr) Procédé de durcissement de la surface d'une pièce à travailler au moyen d'un faisceau, en particulier un faisceau laser et dispositif de réalisation de ce procédé
DE102005017294A1 (de) Laserstrahlbearbeitungseinrichtung und Verfahren zum Bearbeiten mittels Laserstrahl
DE19607376C2 (de) Verfahren zum Laserstrahlschneiden von Werkstücken
DE3943523C2 (en) Cutting, boring etc. of metallic workpieces using laser beam

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960314

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT FR GB IT

17Q First examination report despatched

Effective date: 19961024

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT FR GB IT

REF Corresponds to:

Ref document number: 176767

Country of ref document: AT

Date of ref document: 19990315

Kind code of ref document: T

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990217

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20020927

Year of fee payment: 9

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20020930

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030924

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030924

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20030924

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20050924

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20130927

Year of fee payment: 20