WO2013113479A1 - Procédé permettant de réguler un processus de coupe au laser et machine de coupe au laser - Google Patents

Procédé permettant de réguler un processus de coupe au laser et machine de coupe au laser Download PDF

Info

Publication number
WO2013113479A1
WO2013113479A1 PCT/EP2013/000193 EP2013000193W WO2013113479A1 WO 2013113479 A1 WO2013113479 A1 WO 2013113479A1 EP 2013000193 W EP2013000193 W EP 2013000193W WO 2013113479 A1 WO2013113479 A1 WO 2013113479A1
Authority
WO
WIPO (PCT)
Prior art keywords
laser
workpiece
laser beam
cutting
laser cutting
Prior art date
Application number
PCT/EP2013/000193
Other languages
German (de)
English (en)
Inventor
Tim Hesse
David Schindhelm
Original Assignee
Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Werkzeugmaschinen Gmbh + Co. Kg filed Critical Trumpf Werkzeugmaschinen Gmbh + Co. Kg
Priority to CN201380007392.8A priority Critical patent/CN104271307B/zh
Publication of WO2013113479A1 publication Critical patent/WO2013113479A1/fr

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Definitions

  • the present invention relates to a method for controlling a
  • the focal position of the laser beam has a great influence on the machining quality of the workpiece.
  • the position of the focus position of the laser beam in particular the position of the beam waist on the workpiece to be machined, usually determined offline.
  • lines can be cut into a test workpiece before the actual laser cutting task.
  • the focus position is varied in discrete steps, so that a comb with different kerf widths is created.
  • the smallest kerf width is determined either manually by the machine operator or by means of an optical sensor. The smallest kerf width is formed where the
  • Focus position on the workpiece top or possibly in the middle of the workpiece is.
  • a method for focus position control is known in which it is determined offline for different focal positions of the laser beam, whether the edge region of the laser beam comes into contact with the workpiece. For this purpose, a cutting gap is first cut into a workpiece, where appropriate, the focus position is tuned. Then, the focus adjustment is changed and the beam is redirected (at the same location) into the kerf, and the focus position can also be tuned. In order to detect whether the laser beam comes into contact with the workpiece, radiation emitted by the workpiece or a plasma or process light can be detected.
  • DE102009059245B4 From DE102009059245B4 it is known to determine the focus position during laser processing by the detection of laser radiation reflected and / or scattered on the workpiece around a processing point and by radiation emitted by at least two alignment light sources and reflected back at the workpiece to be machined.
  • DE102009059245B4 reference is made inter alia to DE10248458B4, which discloses a method in which a focusing optics arranged in a machining head is displaced such that a portion of radiation coming from the region of the interaction zone between the laser beam and the workpiece assumes a maximum value. This maximum value is reached when the focus position of the laser beam is optimal relative to the workpiece for processing.
  • the object of the present invention is to provide a method for controlling a laser cutting process and a laser cutting machine, in which the cutting quality can be optimized during a laser cutting process.
  • this object is achieved by a method comprising the following steps: laser cutting a workpiece by means of a focused laser beam, forming a cutting gap on the workpiece, detecting the power of laser cutting from the surface of the workpiece
  • Workpiece top is usually larger than the resulting kerf width.
  • the inventors have recognized that in (particularly coaxial) detection of the workpiece top side adjacent to the kerf, i. In the region of the flanks of the laser beam, back-reflected laser radiation is then measured a minimum of laser power, if the laser beam cuts the workpiece with a minimum kerf width. The more defocused the laser beam the
  • the regulation of the detected laser power can be carried out to a desired value at which the kerf width is minimal. This is typically equivalent to the fact that the focal position (in beam propagation direction) at the top of the Workpiece is located. Depending on the application but may also be cut defocused in order to obtain an optimum cutting result, ie it may be beneficial if the target value of the laser power does not match the minimum value, so that the focus position of the laser beam at the
  • Workpiece top is located. This is for example when burning or
  • a relationship between the detected laser power and the distance of the focus position of the laser beam to the top of the workpiece is determined in a preliminary step, and the reference is set based on the relationship that the focal position of the laser beam is a desired distance to the top of the workpiece having.
  • based on test measurements e.g. can be performed on a test workpiece, determines a relationship (characteristic) between the measured laser power and the focal position of the laser cutting beam. For this purpose, for example, the distance between a focusing optics for focusing the laser beam and the workpiece and / or the radius of curvature of a possibly
  • the relationship for different feed rates of a relative movement between the laser beam and the workpiece in the formation of the cutting gap is determined on the workpiece.
  • the intensity of the laser power reflected back on the workpiece depends on the feed rate during laser cutting.
  • Feed dependency can be determined during calibration of the laser cutting machine and taken into account during process control. For this purpose, for example, a plurality of characteristic curves can be measured on a test workpiece, which at each different feed rate the
  • a further variant takes place in a previous step Laser cutting of a workpiece (test cut) to form a cutting gap, wherein the distance of the focal position of the laser beam to the top of the workpiece varies and the intensity of the reflected laser power is continuously measured or detected. Subsequently, the burr formation at the kerf or along the cut edges is examined to a range of values of the detected
  • the cut quality or burr formation can be assessed automatically by means of a suitable optics and evaluation or, if necessary, manually by a machine operator.
  • the setpoint for the reflected laser power is a value that lies within a range of values at which the kerf has a burr-free cut edge (more precisely burr-free cut edges) in the test cut.
  • the test cut (for example in the form of a line as a cut contour) can be made on the workpiece on which the subsequent laser cutting process also takes place. Alternatively, the test cut can be made on another workpiece (test piece) which is the same
  • the setpoint value is preferably the mean value of the value range of the reflected
  • the cut quality is good in a certain range of laser power (corresponding to a range of values of the distance between focus position and workpiece top), i. the cut is (essentially) burr-free.
  • a desired value of the laser power which forms the mean value of this power range, enables process-reliable control of the laser cutting process, in which any overshoot that may occur does not lead to negative cutting results.
  • At least one parameter of the laser cutting process which influences the focal position of the laser beam, is changed to regulate the detected laser power to the target value.
  • the distance between a focusing optic and the workpiece, or the optical properties (e.g., focal length) of an adaptive focusing optic may be appropriately adjusted. Additionally or alternatively, other
  • Process parameters of the laser cutting process eg the feed rate or the beam source power of the laser source, used as manipulated variables and adapted appropriately.
  • Laser radiation for the purpose of detection by means of a decoupling element coupled out of the beam path of the laser beam.
  • a decoupling element coupled out of the beam path of the laser beam.
  • the portion of the laser radiation power reflected back from the workpiece into the beam path of the laser beam is detected by decoupling it from the beam path.
  • a partially transmissive mirror serving only as an outcoupling element in an area at the edge of the
  • Beam path transmits a portion of the incident laser radiation.
  • a deflecting mirror can be dimensioned so small that the back-reflected laser radiation is not deflected by this and hits a arranged behind the deflection mirror detector surface.
  • the scraper mirror is a hole mirror whose centric
  • Passage opening is typically arranged centrally on the optical axis of the laser beam. If the diameter of the passage opening is greater than the maximum diameter of the machining beam (with an arrangement at about 45 ° to the beam axis, the diameter is typically more than 1.5 times the maximum diameter of the machining beam), the laser beam can pass through unhindered propagate the hole in the scraper mirror. The reflected back laser radiation hits the reflective surface of the scraper mirror outside the passage opening and is reflected by this to the detector.
  • the angle at which the scraper mirror is aligned to the laser beam axis for example, be at 45 °, so that the back-reflected laser radiation is coupled out at an angle of 90 ° from the beam path.
  • the regulation of the laser cutting process can be done with a high time resolution, since it is sufficient for the power measurement, a single integral reading for the incident on the detector surface laser power capture, ie there is usually no spatially resolved detection of the laser power necessary.
  • a high time resolution can in this case with a fast
  • thermoelectric effect Seebeck effect
  • Power measuring head which is designed as an atomic layer detector, for example, for the laser wavelength of a C0 2 laser from the company HTS ForTech GmbH offered (see www.fortech-hts.com).
  • a laser cutting machine for laser cutting workpieces comprising: a laser cutting head for laser cutting workpieces; a laser cutting head for laser cutting workpieces; a laser cutting head for laser cutting workpieces; a laser cutting head for laser cutting workpieces; a laser cutting head for laser cutting workpieces; a laser cutting head for laser cutting workpieces;
  • a focusing device for focusing the laser beam at a focus position at a distance from
  • At least one drive means for generating a relative movement between the laser cutting head and the workpiece for
  • a detector for detecting the power of laser radiation when laser cutting from the surface of the workpiece adjacent to the cutting gap back reflected laser radiation
  • a control device which is configured to control the detected laser power to a desired value or programmed, wherein the Setpoint the laser power takes a minimum value or has a predetermined difference to the minimum value.
  • the cutting quality of the laser cutting process can be optimized.
  • the desired value of the detected laser power (and thus the focus position) can be set or regulated in such a way that a (substantially) burr-free cut takes place.
  • the control device is designed or programmed, based on a predetermined relationship between the detected laser power and the distance between the focus position of the laser beam to the top of the workpiece set the desired value so that the focal position of the laser beam has a desired, predetermined distance from the top of the workpiece ,
  • the optimum focus position ie the optimum distance of the focus position from the top of the workpiece
  • the predetermined relationship is typically stored in a memory device associated with the control device (eg in the form of a table or the like).
  • control device can select a suitable characteristic curve for the relationship between the detected laser power and the focus position on the basis of the cutting parameters assigned to a respective laser cutting process.
  • control device is designed or programmed, the desired value as a function of a speed of the means of
  • the Drive device defined relative movement between the laser cutting head and the workpiece set.
  • the proportion of the laser power reflected back depends on the feed rate in the laser cutting, so that it is favorable for the relationship between the detected laser power and the
  • Feed rates are determined and stored in the control device or at another point at which access can be made by the control device.
  • control device is designed or
  • the focus position can be changed, for example, by changing the distance between the laser cutting head or the focusing optics in the cutting head and the workpiece.
  • other parameters of the laser cutting process can be used as manipulated variables, for example, the feed rate or the beam source power.
  • the laser cutting machine additionally comprises a decoupling device for decoupling the back-reflected laser radiation from the beam path of the laser beam.
  • a decoupling device for decoupling the back-reflected laser radiation from the beam path of the laser beam.
  • coaxial detection can take place, ie, the laser radiation reflected back into the beam path of the laser beam can be decoupled and detected.
  • the radiation power reflected back can also be detected in another way, for example by observing the instantaneous machining location at which the laser beam strikes the workpiece by means of a detector arranged coaxially annularly around the machining head.
  • the decoupling device is designed as a scraper mirror aligned at an angle to the laser beam axis.
  • Scraper mirror allows in a particularly advantageous manner a decoupling of the workpiece adjacent to the cutting gap back reflected laser radiation, since the reflected back laser radiation from the edges or from the edge of the
  • Beam axis is spaced and can be coupled out of the beam path in a simple manner by means of a suitably positioned scraper mirror.
  • the (power) detector is on
  • thermoelectric detector i. a detector which uses the thermoelectric effect (Seebeck effect) to measure power.
  • fast power detectors can be realized by the use of thin layers, e.g. in the form of nuclear detectors. Such detectors enable a detection of the detected laser power with a high time resolution and thus a particularly fast control of the laser cutting process.
  • FIG. 2a, b are schematic representations of a beam profile and a
  • FIG. 1 shows a machine tool in the form of a laser cutting machine 1 for laser cutting with a CCV laser or a solid-state laser as a beam generator 2, a laser processing head 4 and a workpiece support 5.
  • a beam path 3 of the laser cutting beam 6 via a beam guide by means of (not shown) deflection of the C0 2 laser or guided by a light guide cable from the solid-state laser to the laser processing head 4.
  • Cutting beam 6 is arranged by means of a machining head 4
  • the workpiece 8 For laser cutting of the workpiece 8 is first pierced with the laser beam 6, ie, the workpiece 8 is melted point-shaped or oxidized at one point and the resulting melt is blown out. following the laser beam 6 and the workpiece 8 are moved relative to each other, so that a two-dimensional processing path is formed in the form of a continuous cutting gap 9, along which the laser beam 6, the workpiece 8 is severed. Both grooving and laser cutting can be assisted by adding a gas. As cutting gases 10 oxygen, nitrogen, compressed air and / or application-specific gases can be used. Which gas is ultimately used depends on which materials are cut and what quality requirements are placed on the workpiece 8. Resulting particles and gases can be sucked by means of a suction device 11, which is connected to a suction chamber, which is located below the workpiece support 5.
  • the machining head 4 is at a in the Y direction
  • portal 12 by means of a conventional drive unit 7b guided linearly displaceable, wherein the machining head 4 typically over the entire width of the workpiece support 5 and the workpiece 8 can be moved.
  • the portal 12 is displaceable in the X direction by means of a conventional drive unit 7a (for example a linear drive), so that the laser processing head 4 can also be moved over the entire length of the workpiece support 5.
  • a conventional drive unit 7a for example a linear drive
  • Processing head 4 is in the present example additionally by means of another drive unit 7c in the Z direction, i. perpendicular to the workpiece 8 movable to change the iage of the focused laser beam 6 during laser cutting can.
  • Fig. 2a, b show a detail of the laser processing head 4 and the workpiece 8 at two different focus positions of the laser beam 6.
  • the focus position is defined here by the minimum extent (beam waist) of the laser beam in a plane perpendicular to the beam propagation direction.
  • the laser beam 6 has a (for example Gaussian) intensity distribution, l 2, on the upper side 8 a of the workpiece 8, the geometric extent of which is greater than the respective kerf width ai, a 2 ,
  • the laser radiation or laser power at the edge of the intensity distribution ⁇ , l 2 thus does not contribute to the formation of the
  • Cutting gap 9 at is at least partially reflected back into the beam path of the laser beam 6 and can be used to determine the focus position of the laser beam 6.
  • the laser cutting head 4 has a deflection mirror 15 for deflecting the laser beam 6 fed from the beam source 2 along a beam axis 20 in the direction of the workpiece 8.
  • a focusing lens 16 arranged downstream of the deflecting mirror 15 serves to focus the laser beam 6 on the workpiece 8.
  • the focusing can not be seen in FIG. 3, since only the beam axis 20 is shown.
  • a conventional driving device 17 (for example, a linear motor or the like) allows the focusing lens 16 to be displaced and thus a change in the focal position ZF of the laser beam 6 in the Z direction.
  • the laser radiation 13a, 13b reflected back from the two edges of the cutting gap 9 passes through the focusing lens 16 and the deflecting mirror 15 and impinges on a plane scraper mirror 19 arranged in the beam path 3 which is aligned (tilted) at an angle ⁇ of 45 ° to the laser beam axis 20 ).
  • the scraper Mirror 19 has a centric passage opening whose diameter in the present example is dimensioned such that it is at least approximately 1.5 times the maximum diameter of the laser beam 6. In this way it is ensured that the laser beam 6 can propagate unhindered through the passage opening of the scraper mirror 19 therethrough.
  • the detector 18 in the present example is a fast power detector (power Measuring head, eg in the form of an atomic layer detector), which detects the laser power P L , R with high temporal resolution.
  • FIG. 4 shows the dependence of the laser power P L , R (integrally) measured by the detector 18 as a function of the focal position Z.
  • both the kerf width ai and the back surface 8a of the workpiece 8 are reflected
  • the relationship between the back-reflected laser power P L , R and the focus position Z shown in FIG. 4 can be determined before carrying out the laser cutting process on the basis of test measurements in which the focus position Z F is shifted by moving the focusing lens 16 in the Z direction by means of this associated drive means 17 and / or by displacement of the laser cutting head 4 in the Z direction by means of the associated drive 7c is varied.
  • the respective characteristic curves can be stored in a memory device which is part of a control device 14 shown in FIG. 1, which performs control and control tasks for the laser cutting machine 1.
  • Control device 14 can be embodied as a hardware component (computer) with suitably adapted software or in another manner (for example as a programmable hardware component in the form of a "Field Programmable Gate Array", FPGA, etc.) Execution of a machining program designed which the movement of
  • Laser processing head 4 for forming a desired cutting contour (a cutting gap 9 with desired geometry) on the workpiece 8 controls or regulates.
  • the regulating device 14 can also be used to control the laser cutting process to achieve an improved cutting result (eg to obtain burr-free cut edges at the kerf 9), as will be described below with reference to a control loop shown in FIG. 5 whose components form parts of the laser cutting machine 1 ,
  • the control variable used is the laser power P L , R reflected back (see FIG. 4).
  • the instantaneously reflected back laser power P LI R, IST is detected and fed to a controller 21, which may be implemented in the control device 14, for example.
  • a controller 21 is designed to minimize the control difference, ie the deviation PL, R, IST - PL,, SOLL.
  • different manipulated variables of the laser cutting process can be changed, in particular those manipulated variables which have a (direct or indirect) influence on the focal position Z F of the laser beam 6.
  • the controller 21 can drive the drive device 17 of the focusing lens 16 or the drive device 7c for moving the laser cutting head 4 in the Z direction in order to influence the laser cutting process P (as a controlled system) such that the control deviation, ie the difference between measured back reflected laser power P L , R, IST and the setpoint PL.R.SOLL is changed towards a minimum.
  • the control deviation ie the difference between measured back reflected laser power P L , R, IST and the setpoint PL.R.SOLL is changed towards a minimum.
  • Laser cutting process which affect the focus position Z F only indirectly, for example, the feed rate v and the power P L , Q of the radiation source (see Fig. 1) can be included in the scheme.
  • the setpoint PL.R.SOLL may vary depending on the application
  • Laser power PL.R.MIN must be done: If defined defocused cut should be able to control to a defined setpoint of the back-reflected
  • Laser power PL.R.SOLL be greater than the minimum value PL.R.MIN by a predetermined amount AP L , R is greater. If the focal position Z F required for a burr-free cut or a high quality of cut is known in a particular application, then the definition of the desired value PL, R.SOLL can take place based on the relationship shown in FIG.
  • Laser power P L , R is known.
  • the controller 21 does not specify the desired value PL, R, SOLL from the outside but the controller 21, the setpoint specification can be made that the actual value of the reflected laser power PL, R.IST should be minimized.
  • Cutting gap can be determined for example by an operator or an (optical) sensor.
  • the mean value of the value determined during the test cut can be used as desired value PL, R, SET for the reflected laser power P L , R
  • control of the laser cutting process in the above-described manner can not be performed only on a laser cutting machine as shown in FIG. 1. Rather, the control described above can also be carried out on a laser cutting machine in which the
  • Workpiece does not rest, but is moved in at least one spatial direction. Also, the control process described above is not limited to laser cutting machines for machining substantially plate-shaped workpieces.
  • a detection of the laser radiation reflected at the top of a substantially tubular or a three-dimensionally variably shaped workpiece can also be carried out.

Landscapes

  • Physics & Mathematics (AREA)
  • Optics & Photonics (AREA)
  • Engineering & Computer Science (AREA)
  • Plasma & Fusion (AREA)
  • Mechanical Engineering (AREA)
  • Laser Beam Processing (AREA)

Abstract

L'invention concerne un procédé permettant de réguler un processus de coupe au laser, comprenant les étapes suivantes : la coupe au laser d'une pièce au moyen d'un faisceau laser focalisé, en formant sur la pièce une fente de coupe; la détection de la puissance laser du rayonnement laser réfléchi par la surface de la pièce adjacente à la fente de coupe pendant la coupe au laser; ainsi que la régulation de la puissance laser détectée (PL,R) à une valeur théorique (PL,R,SOLL), à laquelle la puissance laser (PL,R) adopte une valeur minimale (PL,R,MIN) ou présente une différence prédéterminée (ΔPL,R) par rapport à la valeur minimale (PL,R,MIN). L'invention concerne également une machine de coupe au laser, qui est configurée pour la mise en œuvre du procédé.
PCT/EP2013/000193 2012-01-30 2013-01-23 Procédé permettant de réguler un processus de coupe au laser et machine de coupe au laser WO2013113479A1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
CN201380007392.8A CN104271307B (zh) 2012-01-30 2013-01-23 用于调节激光切割过程的方法和激光切割机

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102012100721.7 2012-01-30
DE201210100721 DE102012100721B3 (de) 2012-01-30 2012-01-30 Verfahren zum Regeln eines Laserschneidprozesses und Laserschneidmaschine

Publications (1)

Publication Number Publication Date
WO2013113479A1 true WO2013113479A1 (fr) 2013-08-08

Family

ID=47714004

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/EP2013/000193 WO2013113479A1 (fr) 2012-01-30 2013-01-23 Procédé permettant de réguler un processus de coupe au laser et machine de coupe au laser

Country Status (3)

Country Link
CN (1) CN104271307B (fr)
DE (1) DE102012100721B3 (fr)
WO (1) WO2013113479A1 (fr)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252144A (zh) * 2014-07-17 2016-01-20 大族激光科技产业集团股份有限公司 一种高精度激光随动切割头及其监测和自动寻焦方法
CN112867580A (zh) * 2018-10-01 2021-05-28 通快机床两合公司 用于加工工件的方法和设备
CN113365774A (zh) * 2019-01-28 2021-09-07 通快激光与系统工程有限公司 用于自动化地求取激光加工参数对激光加工的影响的方法以及激光加工机和计算机程序产品

Families Citing this family (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104999184A (zh) * 2015-06-05 2015-10-28 柳州弘天科技有限公司 一种可减少崩刃的刀具刃口加工方法
JP6392804B2 (ja) * 2016-03-29 2018-09-19 ファナック株式会社 ギャップセンサ補正と反射光プロファイル測定を同時に行うレーザ加工装置及びレーザ加工装置の相関テーブル生成方法
CN106064279A (zh) * 2016-07-27 2016-11-02 深圳英诺激光科技有限公司 一种激光打标、漂白装置及其加工方法
DE102016215019C5 (de) 2016-08-11 2023-04-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserschneiden mit optimierter Gasdynamik
DE102016219928A1 (de) * 2016-10-13 2018-04-19 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zur Bestimmung und zur Regelung einer Fokusposition eines Bearbeitungsstrahls
DE102016219927B4 (de) 2016-10-13 2018-08-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung und Verfahren zur Überwachung eines thermischen Schneidprozesses
DE102016222186B3 (de) * 2016-11-11 2018-04-12 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Kalibrieren zweier Scannereinrichtungen jeweils zur Positionierung eines Laserstrahls in einem Bearbeitungsfeld und Bearbeitungsmaschine zum Herstellen von dreidimensionalen Bauteilen durch Bestrahlen von Pulverschichten
DE102016222187A1 (de) 2016-11-11 2018-05-17 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Bestimmen eines Strahlprofils eines Laserstrahls und Bearbeitungsmaschine
DE102017002922B4 (de) * 2017-03-27 2019-11-28 Lessmüller Lasertechnik GmbH Überwachungsvorrichtung für ein Bearbeitungssystem, Bearbeitungssystem und Verfahren zur Überwachung eines Bearbeitungssystems
DE102018002420B4 (de) 2018-03-23 2020-03-12 A.L.L. Lasersysteme GmbH Verfahren zum Bestimmen der Bearbeitungsqualität einer lasergestützten Materialbearbeitung
DE112019004004T5 (de) * 2018-08-09 2021-05-20 Corning Incorporated Systeme, verfahren und geräte zum maschinengebundenen profilieren eines laserstrahls
CN109405767B (zh) * 2018-12-25 2020-09-22 威海军之翼智能科技有限公司 基于激光轮廓测量仪的铸造件浇冒口切割轨迹确定方法
JP6968126B2 (ja) * 2019-06-26 2021-11-17 株式会社アマダ レーザ加工機の設定方法及びレーザ加工機
CN110524108B (zh) * 2019-09-12 2021-11-30 中南大学 基于二次谐波的定位激光聚焦点的方法和光路系统
CN112834032A (zh) * 2020-12-30 2021-05-25 湖南华曙高科技有限责任公司 一种用于制造三维物体的激光功率实时检测方法和系统
DE102021206302A1 (de) 2021-06-18 2022-12-22 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zur Laserbearbeitung und Laserbearbeitungsanlage sowie Steuereinrichtung hierfür

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811453A2 (fr) * 1996-06-07 1997-12-10 Lumonics Ltd. Commande de la focalisation de lasers dans des opérations de traitement des matériaux
JPH11129084A (ja) * 1997-10-30 1999-05-18 Sumitomo Heavy Ind Ltd レーザ溶接機の焦点位置制御装置
JP2002346783A (ja) * 2001-05-30 2002-12-04 Denso Corp レーザ溶接制御方法及びその装置
DE10248458B4 (de) 2002-10-17 2006-10-19 Precitec Kg Verfahren und Vorrichtung zum Einstellen der Fokuslage eines auf ein Werkstück gerichteten Laserstrahls
EP1750891B1 (fr) 2005-06-23 2007-10-24 Trumpf Werkzeugmaschinen GmbH + Co. KG Procede de determination de la position focale d'un faisceau laser
US20090200279A1 (en) * 2008-02-11 2009-08-13 Jiping Li Automatic focus and emissivity measurements for a substrate system
DE102009059245B4 (de) 2009-12-21 2011-09-22 Lt Ultra-Precision-Technology Gmbh Verfahren und Vorrichtung zur Erfassung und Justierung des Fokus eines Laserstrahls bei der Laserbearbeitung von Werkstücken

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623409A1 (de) * 1986-07-11 1988-01-21 Bias Forschung & Entwicklung Verfahren zur ueberwachung des bearbeitungsprozesses mit einer hochleistungsenergiequelle, insbesondere einem laser, und bearbeitungsoptik zur durchfuehrung desselben
CN201076969Y (zh) * 2007-09-28 2008-06-25 北京工业大学 紫外激光微加工精确定位系统
JP5117920B2 (ja) * 2008-04-28 2013-01-16 株式会社ディスコ レーザー加工装置

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811453A2 (fr) * 1996-06-07 1997-12-10 Lumonics Ltd. Commande de la focalisation de lasers dans des opérations de traitement des matériaux
JPH11129084A (ja) * 1997-10-30 1999-05-18 Sumitomo Heavy Ind Ltd レーザ溶接機の焦点位置制御装置
JP2002346783A (ja) * 2001-05-30 2002-12-04 Denso Corp レーザ溶接制御方法及びその装置
DE10248458B4 (de) 2002-10-17 2006-10-19 Precitec Kg Verfahren und Vorrichtung zum Einstellen der Fokuslage eines auf ein Werkstück gerichteten Laserstrahls
EP1750891B1 (fr) 2005-06-23 2007-10-24 Trumpf Werkzeugmaschinen GmbH + Co. KG Procede de determination de la position focale d'un faisceau laser
US20090200279A1 (en) * 2008-02-11 2009-08-13 Jiping Li Automatic focus and emissivity measurements for a substrate system
DE102009059245B4 (de) 2009-12-21 2011-09-22 Lt Ultra-Precision-Technology Gmbh Verfahren und Vorrichtung zur Erfassung und Justierung des Fokus eines Laserstrahls bei der Laserbearbeitung von Werkstücken

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252144A (zh) * 2014-07-17 2016-01-20 大族激光科技产业集团股份有限公司 一种高精度激光随动切割头及其监测和自动寻焦方法
CN105252144B (zh) * 2014-07-17 2017-11-03 大族激光科技产业集团股份有限公司 一种高精度激光随动切割头及其监测和自动寻焦方法
CN112867580A (zh) * 2018-10-01 2021-05-28 通快机床两合公司 用于加工工件的方法和设备
CN112867580B (zh) * 2018-10-01 2024-01-12 通快机床欧洲股份公司 用于加工工件的方法和设备
CN113365774A (zh) * 2019-01-28 2021-09-07 通快激光与系统工程有限公司 用于自动化地求取激光加工参数对激光加工的影响的方法以及激光加工机和计算机程序产品
JP2022519202A (ja) * 2019-01-28 2022-03-22 トルンプフ レーザー- ウント ジュステームテヒニク ゲゼルシャフト ミット ベシュレンクテル ハフツング レーザ加工に及ぼすレーザ加工パラメータの影響を自動的に特定する方法ならびにレーザ加工機械およびコンピュータプログラム製品
CN113365774B (zh) * 2019-01-28 2023-10-24 通快激光与系统工程有限公司 用于自动化地求取激光加工参数对激光加工的影响的方法以及激光加工机和计算机程序产品

Also Published As

Publication number Publication date
CN104271307A (zh) 2015-01-07
DE102012100721B3 (de) 2013-04-11
CN104271307B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
DE102012100721B3 (de) Verfahren zum Regeln eines Laserschneidprozesses und Laserschneidmaschine
EP2310163B1 (fr) Procédé d'orientation excentrée d'un faisceau laser par rapport à un axe de buse et de découpage oblique, tête d'usinage laser et machine d'usinage laser correspondantes
EP3210714B1 (fr) Dispositif et procédé de surveillance, en particulier de réglage d'un processus de coupe
EP2544849B1 (fr) Tête de travail au laser et procédé de travail au laser
EP2691206B1 (fr) Procédé d'usinage par faisceau laser d'une pièce
EP1640101B1 (fr) Méthode pour contrôler un procédé d'usinage automatique.
EP2908981B1 (fr) Méthode et machine d'usinage pour rainurer, percer ou découper des pièces métalliques, avec détermination de l'intensité de la radiation d'usinage
EP1863612B1 (fr) Procede pour mesurer des limites de phase d'un materiau lors de l'usinage avec un faisceau d'usinage au moyen d'un rayonnement d'eclairage supplementaire et d'un algorithme de traitement d'images automatise et dispositif associe
DE102016118189B4 (de) Verfahren und Laserbearbeitungsmaschine zum Laserschweißen eines ersten und eines zweiten Werkstückabschnitts
DE3824048C2 (fr)
EP3049755A1 (fr) Procédé de mesure de la profondeur de pénétration d'un faisceau laser dans une pièce à usiner et dispositif d'usinage laser
EP3525975B1 (fr) Procédé et dispositif pour la détermination et la régulation d'une position focale d'un faisceau d'usinage
EP0451164A1 (fr) Procede et dispositif d'usinage de pieces avec des rayons laser.
DE102018129407B4 (de) Verfahren zum Schneiden eines Werkstücks mittels eines Laserstrahls und Laserbearbeitungssystem zum Durchführen des Verfahrens
DE102017115922B4 (de) Verfahren und Vorrichtung zur Messung und Einstellung eines Abstands zwischen einem Bearbeitungskopf und einem Werkstück sowie dazugehöriges Verfahren zur Regelung
EP3917714B1 (fr) Procédé de détermination automatisée de l'influence d'un paramètre d'usinage au laser sur un usinage au laser ainsi que machine d'usinage au laser et produit programme informatique
DE102014203025A1 (de) Verfahren zum Laserstrahlschweißen und Schweißkopf
EP2117762A2 (fr) Procédé et dispositif de soudage laser
DE102020000630A1 (de) Verfahren und Vorrichtung zum Durchführen und Überwachen eines Bearbeitungsprozesses eines Werkstücks
WO2020074713A1 (fr) Procédé permettant de déterminer une grandeur d'un processus d'usinage et machine d'usinage
WO2019115449A1 (fr) Procédé et unité d'ajustement servant à ajuster de manière automatisée un rayon laser d'un machine d'usinage par laser, ainsi que machine d'usinage par laser comprenant l'unité d'ajustement
EP3883720B1 (fr) Procédé d'usinage au laser et système d'usinage au laser destiné à la mise en oeuvre du procédé
EP1629931B1 (fr) Procédé et dispositif de soudage laser pour assembler des tôles métalliques avec un jeu entre les tôles controllé par un capteur mesurant le plasma généré par le laser
EP1194260A2 (fr) Dispositif de determination de la position de domaines d'emission d'un processus thermique avec apport d'energie localement limite
DE102004057799B4 (de) Verfahren und Vorrichtung zum Regeln eines Pulverbeschichtungsprozesses

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 13703992

Country of ref document: EP

Kind code of ref document: A1

122 Ep: pct application non-entry in european phase

Ref document number: 13703992

Country of ref document: EP

Kind code of ref document: A1