CN104271307A - 用于调节激光切割过程的方法和激光切割机 - Google Patents

用于调节激光切割过程的方法和激光切割机 Download PDF

Info

Publication number
CN104271307A
CN104271307A CN201380007392.8A CN201380007392A CN104271307A CN 104271307 A CN104271307 A CN 104271307A CN 201380007392 A CN201380007392 A CN 201380007392A CN 104271307 A CN104271307 A CN 104271307A
Authority
CN
China
Prior art keywords
laser
workpiece
laser beam
cutting
focal position
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
CN201380007392.8A
Other languages
English (en)
Other versions
CN104271307B (zh
Inventor
T·黑塞
D·辛德黑尔姆
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Trumpf Werkzeugmaschinen SE and Co KG
Original Assignee
Trumpf Werkzeugmaschinen SE and Co KG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Trumpf Werkzeugmaschinen SE and Co KG filed Critical Trumpf Werkzeugmaschinen SE and Co KG
Publication of CN104271307A publication Critical patent/CN104271307A/zh
Application granted granted Critical
Publication of CN104271307B publication Critical patent/CN104271307B/zh
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/03Observing, e.g. monitoring, the workpiece
    • B23K26/032Observing, e.g. monitoring, the workpiece using optical means
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/04Automatically aligning, aiming or focusing the laser beam, e.g. using the back-scattered light
    • B23K26/046Automatically focusing the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/02Positioning or observing the workpiece, e.g. with respect to the point of impact; Aligning, aiming or focusing the laser beam
    • B23K26/06Shaping the laser beam, e.g. by masks or multi-focusing
    • B23K26/062Shaping the laser beam, e.g. by masks or multi-focusing by direct control of the laser beam
    • B23K26/0626Energy control of the laser beam
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B23MACHINE TOOLS; METAL-WORKING NOT OTHERWISE PROVIDED FOR
    • B23KSOLDERING OR UNSOLDERING; WELDING; CLADDING OR PLATING BY SOLDERING OR WELDING; CUTTING BY APPLYING HEAT LOCALLY, e.g. FLAME CUTTING; WORKING BY LASER BEAM
    • B23K26/00Working by laser beam, e.g. welding, cutting or boring
    • B23K26/36Removing material
    • B23K26/38Removing material by boring or cutting

Abstract

本发明涉及一种用于调节激光切割过程的方法,包括步骤:借助于聚焦的激光射束在在工件上构成切割缝隙的情况下激光切割所述工件,探测在所述激光切割时由所述工件的表面在所述切割缝隙附近反射回的激光射束的激光功率,以及将所探测的激光功率(PL,R,IST)调节到额定值(PL,R,SOLL),在该额定值情况下,激光功率(PL,R)采用最小的值(PL,R,SOLL,)或者与所述最小的值(PL,R,MIN)具有预先给定的差(ΔPL,R)。本发明还涉及一种用于执行该方法的激光切割机。

Description

用于调节激光切割过程的方法和激光切割机
本发明涉及一种用于调节激光切割过程的方法以及一种用于激光切割工件、尤其是板材的激光切割机。
在激光射束切割过程中,除了其他的切割参数之外,激光射束的聚焦位置对工件的加工质量具有大的影响。迄今为止,通常以离线方式求取激光射束的聚焦位置的位置,尤其是待加工的工件上的射束腰(Strahltaille)的位置。出于这个目的,可以在真正的激光切割任务之前例如在测试工件中切割出线。在此,聚焦位置以离散的步伐变化,从而产生具有不同的切割缝隙宽度的齿。随后,或者以人工方式通过机器操作者或者借助于光学传感器求取最小的切割缝隙宽度。最小切割缝隙宽度在该处形成:在那里,聚焦位置处于工件上侧上面或者在必要时处于工件中心处。
从EP1750891B1中已知一种用于聚焦位置调节的方法,其中,以离线方式针对激光射束的不同聚焦位置来确定,激光射束的边缘区域是否与工件产生接触。为此,首先在工件中切割一切割缝隙,其中,在必要时调协聚焦位置。然后,改变聚焦调节并且使射束重新转向到切割缝隙中(在相同的部位上),其中,也可以调协聚焦位置。为了探测激光射束在此是否与工件产生接触,可以探测由工件或者由等离子体发射的射束或者过程光。
从DE102009059245B4已知,在进行激光加工时通过探测在工件上围绕加工点周围反射和/或散射的激光射束以及依据射束来确定聚焦位置,所述射束由至少两个调校光源发射并且在待加工的工件上被反射回。此外,在DE102009059245B4中参考DE10248458B4,该文献公开一种方法,其中,这样移动被布置在加工头中的聚焦光学器件,使得来自激光射束和工件之间的交互作用区域中的射束的份额为最大值。如果激光射束相对工件的聚焦位置对于加工来说优化,则达到该最大值。
本发明的任务在于,提供一种用于调节激光切割过程的方法和一种激光切割机,其中,可以在激光切割过程期间优化切割质量。
根据第一方面,该任务通过一种方法解决,该方法包括以下步骤:借助于聚焦的激光射束在在工件上构成切割缝隙的情况下激光切割工件,探测在所述激光切割时由所述工件的表面在所述切割缝隙的附近反射回的激光射束的功率,以及将所探测的激光功率调节到额定值,在该额定值情况下,激光功率采用最小的值或者与所述最小的值具有预先给定的差。
在激光切割过程期间,一定份额的激光射束总是由工件的上侧被反射回到激光射束的光路中,因为激光射束在工件上侧上的几何扩展通常比所产生的切割缝隙宽度大。发明者已知,在(尤其是同轴心地)探测由工件上侧在切割缝隙附近、即在激光射束的侧边的区域中反射的激光射束时,刚好当激光射束以最小的切割缝隙宽度切割工件时,测量到激光功率的最小值。激光射束越是以散焦的方式照射工件上侧,则越多的激光射束在激光射束的边缘区域中由工件上侧被反射回到探测器,即所测量到的射束功率越大。
所探测的激光功率可以被调节到额定值,在该额定值情况下切割缝隙宽度最小。典型的与之意义相同的是,聚焦位置(在射束传播方向上)处于工件的上侧上。但是,根据使用情况而定,在必要时也可以散焦地切割,以得到优化的切割结果,即,可以有利的是,激光功率的额定值与最小的值不一致,从而激光射束的聚焦位置不处于工件上侧上。例如,在对厚的工件燃烧切割或者熔割时是这种情况。
在该方法的一种变型中,在之前的步骤中确定所探测的激光功率和激光射束的聚焦位置所述工件的上侧的间距之间的关系,并且,依据该关系这样确定所述额定值,使得激光射束的聚焦位置相对于工件的所述上侧具有所期望的间距。在该变型中,依据例如可以在测试工件上进行的测试测量来确定所测量的激光功率和激光切割射束的聚焦位置之间的关系(特性曲线)。出于该目的,例如可以改变用于聚焦激光射束的聚焦透镜光学器件和工件之间的间距和/或在必要时存在的聚焦镜的曲率半径,并且感测所探测的射束功率的与所述间距改变对应的改变,以得到期望的特性曲线。
在该变型的一种改进中,针对在所述工件上构成切割缝隙时激光射束和工件之间的、不同的进给速度来确定所述关系。通常,在工件上反射回的激光功率的强度与激光切割时的进给速度有关。该进给相关性可以在校准激光切割机时被确定并且在过程调节中被考虑到。出于该目的,例如可以在测试工件上测量多个特性曲线,所述特性曲线在分别不同的进给速度下描绘反射回的激光功率和激光射束的聚焦位置之间的关系。
在另一种变型中,在之前的步骤中在构成切割缝隙的情况下进行对工件的激光切割(测试切割),其中,改变激光射束的聚焦位置相对于工件的上侧的间距以及连续地测量或者说探测反射的激光功率的强度。随后,检查切割缝隙上或者说沿着切割的边沿的毛刺形成,以求取所探测的激光功率的数值范围,切割的边沿或者说切割缝隙在该范围内无毛刺。切割质量或者说毛刺形成可以自动地借助于合适的光学器件和评估或者在必要时人工地通过机器操作者来判断。确定处于数值范围内的一个值作为反射的激光功率的额定值,在所述数值范围情况下,测试切割时的切割缝隙具有无毛刺的切割边沿(更准确地说具有多个无毛刺的切割边沿)。(例如呈作为切割轮廓的线的形式的)测试切割可以在这样的工件上进行,在所述工件上也进行随后的激光切割过程。替代地,测试切割可以在另一工件(测试工件)上进行,所述工件具有与待切割的工件相同的材料特性(以及典型地相同的厚度)。
优选,确定反射的激光功率的数值范围的平均值作为额定值,在所述数值范围情况下,切割缝隙具有无毛刺的边沿。典型地,切割质量在激光功率的确定的数值范围(相应于聚焦位置和工件上侧之间的间距的数值范围)内是好的,即,切割(基本上)是无毛刺的。激光功率的额定值(其构成该功率范围的平均值)使得能够过程可靠地调节激光切割过程,其中,可能出现的过调不导致不利的切割结果。
在另一种变型中,为了将所探测的激光功率调节到额定值而改变激光切割过程的至少一个参数,所述参数影响激光射束的聚焦位置。例如,可以合适地匹配聚焦光学器件和工件之间的间距或者可以合适地匹配适应的聚焦光学器件的光学特性(例如焦距)。附加地或者替代地,也可以使用并且合适地匹配激光切割过程的另外的过程参数、例如进给速度或者激光源的射束源功率作为操纵变量。
在另一种变型中,由工件反射回的激光射束出于探测的目的借助于耦合输出元件从激光射束的光路中耦合输出。在这种也被称为同轴心种类的探测情况下,探测由工件反射回到激光射束的光路中的激光射束功率份额,其方式是,使所述份额从光路中耦合输出。在必要时,部分透射的镜可以用作耦合输出元件,所述镜仅在光路边缘上的区域中透射到达的激光射束的一部分。替代地,也可以这样小地确定转向镜的尺寸,使得反射回的激光射束不被该转向镜转向并且照到被布置在该转向镜之后的探测器面上。
在一种特别有利的实施方式中,与激光射束轴线成角度地取向的刮镜(Scraper-Spiegel)用作耦合输出元件。该刮镜为孔镜,其中央的穿孔典型地布置在激光射束的光学轴线的中心。只要穿孔的直径比加工射束的最大直径大(在以相对于射束轴线大约成45°的方式布置的情况下,该直径典型地大于加工射束的最大直径的1.5倍),则激光射束可以不受阻碍地穿过刮镜中的孔传播。反射回的激光射束照到刮镜的在穿孔之外的反射表面上并且由该反射表面反射到探测器。刮镜相对于激光射束轴线取向所成的角度例如可以是45°,从而反射回的激光射束以90°的角度从光路中耦合输出。
激光切割过程的调节可以以高的时间分辨率进行,因为对于功率测量来说足够的是:感测照到探测器面上的激光功率的唯一的积分测量值,即,通常不需要以地点分辨的方式感测激光功率。在这种情况下,可以通过快速的功率探测器或者说功率测量头来实现高的时间分辨率,所述功率探测器或者说功率测量头的测量原理基于热电效应(塞贝克效应,Seebeck-Effekt)。构造为原子层探测器的合适的功率探头例如被提供用于HTS ForTech GmbH公司的CO2激光器的激光波长(参考www.fortech-hts.com)。
本发明的另一方面以用于激光切割工件的激光切割机实现,该激光切割机包括:用于使激光射束对准到工件上的激光切割头,用于使激光射束在与所述工件的上侧隔开间距的焦点位置上聚焦的聚焦装置,至少一个用于产生用于在所述工件上构成切割缝隙的、所述激光切割头和所述工件之间的相对运动的驱动装置,用于探测在激光切割时由所述工件的表面在所述切割缝隙的附近反射回的激光射束的激光功率的探测器,以及构造或者说编程用于将所探测的激光功率调节到额定值的调节装置,其中,在所述额定值情况下,激光功率采用最小的值或者相对于该最小的值具有预先给定的差。
借助于所述调节装置,可以优化激光切割过程的切割质量。即,可以这样调整或者说调节所探测的激光功率的额定值(进而聚焦位置),使得进行(基本上)无毛刺的切割。
在一种实施方式中,所述调节装置构成或者说编程用于,依据所探测的激光功率和激光射束的聚焦位置相对于所述工件的上侧的间距之间的、预先给定的关系来这样确定额定值,使得所述激光射束的聚焦位置相对于所述工件的上侧具有所期望的、预先给定的间距。根据使用情况而定,优化的聚焦位置可以变化,即焦点位置与工件上侧的优化的间距可以变化。依据例如可以在之前进行的测试切割过程中求取的预先给定的关系(特性曲线),可以调节到限定的、与工件上侧偏离的聚焦位置。在此,预先给定的关系(特性曲线)典型地(例如以表格或者类似的形式)存储在配属于所述调节装置的存储装置中。可以理解的是,在必要时可以将多个特性曲线存储在存储装置中,所述特性曲线分别在不同的切割参数情况下测绘。在这种情况下,所述调节装置可以依据配属于对应的激光切割过程的切割参数选择对于所探测的功率和聚焦位置之间的关系适合的特性曲线。
在一种改进中,所述调节装置构造或者说编程用于,根据借助于驱动装置产生的、激光切割头和工件之间的相对运动的速度来确定额定值。反射回的激光功率的份额与激光切割时的进给速度有关,从而有利的是,在分别不同的进给速度情况下针对所探测的激光功率和聚焦位置之间的关系求取多个特性曲线并且存储在调节装置中或者存储在其他部位上,在所述部位上可以通过调节装置进行存取。
在另一种实施方式中,所述调节装置构造或者说编程用于,为了将所探测的激光功率调节到额定值而改变激光切割过程的至少一个参数,所述参数影响激光射束相对于工件的聚焦位置。因为激光射束从激光切割头中聚焦地射出,例如可以由此改变聚焦位置,即,改变激光切割头或者切割头中的聚焦光学器件和工件之间的间距。但是,也可以使用激光切割过程的其他参数作为操纵变量使用,例如进给速度或者射束源功率。
在另一种实施方式中,激光切割机附加地包括用于使反射回的激光射束从激光射束的光路中耦合输出的耦合输出装置。以这种方式可以进行所谓的同轴心探测,即,可以耦合输出和探测被反射回到激光射束的光路中的激光射束。但是,可理解的是,也能够以其他的方式探测反射回的射束功率,例如,其方式是,借助于同轴心地环形地围绕加工头布置的探测器来观察瞬时加工部位,激光射束在所述瞬时加工部位上照到工件上。
在一种有利的改进中,耦合输出装置构造为与激光射束轴线成角度地取向的刮镜。该刮镜使得能够以特别有利的方式耦合输出由工件在切割缝隙附近反射回的激光射束,因为反射回的激光射束来自于激光射束在工件上的强度分布的侧边或者说边缘,与射束轴线隔开间距并且可以借助于合适地定位的刮镜以简单的方式从光路中耦合输出。
在另一种实施方式中,(功率)探测器是热电探测器,即,使用热电效应(塞贝克效应)用于功率测量的探测器。快速的功率探测器例如尤其可以通过使用薄层来实现,例如呈原子层探测器的形式。这种探测器使得能够以高的时间分辨率感测所探测到的激光功率并且由此特别快速地调节激光切割过程。
本发明的其他优点从说明和图示中得到。之前提到的和还将进一步解释的特征也可以单独地或者以多个任意的组合得以应用。所示出和所描述的实施方式不应被理解为最终的列举,而是更确切地说具有用于说明本发明的示例性的特点。
附图示出:
图1根据发明的激光切割机在切割处理工件时的实施方式的示意图,
图2a,b在两个不同聚焦位置的情况下激光射束在工件表面上的射束轮廓以及强度分布的示意图,
图3激光切割头的示意图,该激光切割头具有用于从工件反射回的激光射束的探测器,
图4借助于探测器测量的激光功率根据激光射束的聚焦位置的图解,以及
图5用于将激光射束的聚焦位置调节到额定值的调节回路的示意图。
图1示出一种用于激光切割的激光切割机1形式的工具机,其具有CO2激光器或者固体激光器作为激光发生器2、具有激光加工头4和工件支架5。激光切割射束6的光路3通过射束引导借助于(未示出的)转向镜由CO2激光器或者借助于光导线缆由固体激光器被引导至激光加工头4。切割射束6借助于布置在加工头4中的聚焦光学器件聚焦并且在本示例中垂直于呈板材形式的工件8的表面8a取向,即,从激光加工头4中射出的激光射束6的射束轴线(光学轴线)在垂直于工件8的Z方向上延伸,为了切割加工将该工件支承在工件支架5上,该支架构成加工平面(XY平面)。
为了对工件8激光加工,首先以激光射束6刺入,即,工件8在一部位上被点式地熔化或者氧化并且在此产生的熔融物被吹出。随后,激光射束6和工件8相对于彼此运动,从而构成连续的切割缝隙9的形式的二维加工轨迹,激光射束6沿着该加工轨迹切开工件8。
可以通过添加气体既支持所述刺入也支持所述激光切割。作为切割气体10可以使用氧气、氮气、压缩空气和/或专用的气体。最终使用何种气体取决于切割何种材料以及对工件8提出何种质量要求。所产生的颗粒和气体可以借助于抽吸装置11吸走,该抽吸装置与处于工件支架5下方的抽吸室连接。
为了在XY平面中沿着二维的加工轨迹(相应于切割缝隙9)进行工件8的加工,加工头4在在Y方向上延伸的框架12上借助于传统的驱动单元7b可线性移动地引导,其中,加工头4能够以典型的方式在工件支架5或者说工件8的整个宽度上移动。框架12借助于传统的驱动单元7a(例如线性驱动器)是能够在X方向上移动的,从而激光加工头4也能够在工件支架5的整个长度上移动。在本实例中,加工头4附加地借助于另一驱动单元7c可在Z方向上,即垂直于工件8移动,以便能够在激光切割时改变聚焦的激光射束6的聚焦位置。
图2a,b示出激光加工头4和工件8在激光射束6的两个不同的聚焦位置情况下的细节。在这里,聚焦位置由激光射束在垂直于射束传播方向的平面中的最小延伸(射束腰,Strahltaille)限定。在图2a中,激光射束6的焦点在激光射束方向上正好处于工件8的上侧8a上,这在下文中(任意)被限定为零位置,即,在图2a中示出的聚焦位置情况下ZF=0适用。
在图2b中,射束腰进而聚焦位置与工件8隔开间距d,即,ZF=d适用。如果聚焦位置与图2a中示出的零位置不重合,则激光射束6不在其最小延伸的区域中照到工件8上,而是具有相应增大的直径(参考图2b)。相应地,图2a中的切割缝隙a1的宽度最小并且由此小于图2b中所示情况下的切割缝隙宽度a2(a1<a2)。
如在图2a,b中也可看出,激光射束6在工件8的上侧8a上具有(例如高斯形的)强度分布I1,I2,所述强度分布的几何延伸比对应的切割缝隙宽度a1,a2大。由此,强度分布I1,I2的边缘上的(阴影示出的区域中的)激光射束或者说激光功率不对切割缝隙9的形成作出贡献,它们至少部分式地被反射回到激光射束6的光路中并且能够被用于确定激光射束6的聚焦位置。
下面参照图3说明一种用于探测由工件8的上侧8a(图2a,b中阴影示出的区域)反射回的激光射束13a,13b的可能性,该可能性在激光切割头4的内部进行。激光切割头4具有用于使由射束源2沿着射束轴线20供入的激光射束6转向到工件8的方向上的转向镜15。布置在转向镜15之后的聚焦透镜16用于使激光射束6聚焦到工件8上。在图3中不能看出所述聚焦,因为仅示出射束轴线20。传统的驱动装置17(例如线性马达或者类似的)使得能够移动聚焦透镜16并且由此改变激光射束6在Z方向上的聚焦位置ZF
由切割缝隙9的两个边缘反射回的激光射束13a,13b穿过聚焦透镜16以及转向镜15并且照到布置在光路3中的、平直的刮镜19上,该刮镜按照与激光射束轴线20成45°的角度α(倾斜)取向。刮镜19具有中心穿孔,该穿孔的直径在本示例中这样确定尺寸,使得该直径至少为激光射束6的最大直径的大约1.5倍。以这种方式保证激光射束6能够不受阻碍地穿过刮镜19的穿孔传播。相对地,由工件8反射回的激光射束13a,13b以90°的角度从激光射束6的光路中耦合输出并且照到探测器18上。在本示例中,探测器18为快速的功率探测器(例如原子层探测器形式的功率测量头),该功率探测器以高的时间分辨率感测激光功率PL,R。在本示例中,功率探测器18的测量原理基于热电效应。
图4示出借助于探测器18(以积分方式)测量的激光功率PL,R与聚焦位置ZF的相关性关系。如图4中可明显看出,所探测的激光功率PL,R在聚焦位置ZF=0时具有最小值PL,R,MIN,在这种情况下,激光射束焦点处于工件8的上侧8a上(参考图2a)。在这种情况下,不仅切割缝隙宽度a1而且由工件8的上侧8a反射回的激光射束13a,13b是最小的。在图2b中示出的情况下,其中,聚焦位置ZF与工件8的上侧8a隔开不为零的间距,相对地,反射回的激光功率PL,R较大,更确切地说大ΔPL,R。当聚焦位置ZF处于工件8的上侧8a的下方时,反射回的激光功率PL,R也较大。
反射回的激光功率PL,R和聚焦位置ZF之间的、在图4中示出的关系可以在进行激光切割过程之前依据测试测量来求取,其中,聚焦位置ZF通过借助于配属于聚焦透镜的驱动装置17在Z方向上移动该聚焦透镜16和/或通过借助于配属于激光切割头的驱动器7c在Z方向上移动该激光切割头4来改变。在此,所探测的激光功率的最小值配属于这样的聚焦位置ZF=0,在所述聚焦位置上激光射束6聚焦到工件8的上侧8a上。
因为图4中示出的关系与(瞬时)进给速度v(参考图1)有关,激光射束6以该进给速度在工件8上移动,可以在分别不同的进给速度v的情况下在测试工件上测量多个特性曲线,以描绘出反射回的激光功率PL,R和聚焦位置ZF之间的对应的关系。可以理解的是,也能够针对另外的切割参数进行相应地测绘多个特性曲线,所述切割参数对反射的激光功率PL,R和聚焦位置ZF之间的关系具有(重要的)影响。
对应的特性曲线可以被存储在存储装置中,所述存储装置是图1中所示的调节装置14的一部分,该存储装置承担对激光切割机1的调节以及控制任务。调节装置14可以构造为具有合适地匹配的软件的硬件部件(计算机)或者以其它的方式构成,例如构造为“现场可编程门阵列(Field Programmable Gate Arrays)”,FPGA等形式的可编程的硬件部件。调节装置14典型地被设计用于实施加工程序,该加工程序控制或者说调节激光加工头4的运动用于在工件8上构成所期望的切割轮廓(具有期望几何结构的切割缝隙9)。
调节装置14也可以用于调节激光切割过程,以实现改进的切割结果(例如用于在切割缝隙9上得到尽可能无毛刺的切割边沿),如下文依据图5中示出的调节回路所说明的,该调节回路的部件构成激光切割机1的部分。反射回的激光功率PL,R(参考图4)用作调节变量。针对该调节变量首先确定额定值PL,R,SOLL,该额定值在本示例中与反射回的激光功率PL,R的最小值PL,R,MIN相应,即,应调节到最小的切割缝隙宽度或者说调节到处于工件8的上侧上的聚焦位置(ZF=0)上。借助于作为测量元件的探测器18,瞬时反射回的激光功率PL,R,IST被感测并且供入调节器12,该调节器例如可以实施在调节装置14中。调节器21被设计用于使调节差、即偏差PL,R,IST-PL,R,SOLL最小化。
出于该目的,可以改变激光切割过程的不同操纵变量,尤其是这样的操纵变量,所述操纵变量对激光射束6的聚焦位置ZF有(直接或间接的)影响。例如,调节器21可以控制聚焦透镜16的驱动装置17或者用于在Z方向上移动激光切割头4的驱动装置7c,以便这样影响(作为受控系统的)激光切割过程P,使得调节偏差即所测量的反射回的激光功率PL,R,IST和额定值PL,R,SOLL之间的差向最小值的方向改变。可以理解的是,激光切割过程的仅间接影响聚焦位置ZF的参数、例如进给速度v以及射束源(参考图1)的功率PL,Q也可以被包括在所述调节中。
可以根据对应的应用(板材厚度、待切割的轮廓的几何结构、待切割的材料的种类等等)这样确定额定值PL,R,SOLL,使得实现无毛刺的切割。可以理解的是,不必强制地调节到反射的激光功率的最小值PL,R,MIN:如果应当受限定地、散焦地(defokussiert)切割,则可以进行调节到反射回的激光功率的被限定的额定值PL,R,SOLL,该额定值比最小值PL,R,MIN大预先给定的数值ΔPL,R。如果已知在对应的应用情况下为了无毛刺的切割及高的切割质量所需要的聚焦位置ZF,则在此可以依据图4中所示的关系进行额定值PL,R,SOLL的确定。
可以理解的是,如果已知优化的(无毛刺的)切割结果和反射回的激光功率PL,R的额定值PL,R,SOLL之间的直接关系,则不必强制地参考图4中示出的关系。例如,对于这样的情况,即,最小的切割缝隙宽度或者说处于工件8的上侧8a上的聚焦位置(ZF=0)是所期望的,则可以不从外部为调节器21预先给定额定值PL,R,SOLL,而是可以为调节器21这样进行额定值预先给定,使得应当使反射的激光功率的实际值PL,R,IST最小化。
如果首先在测试切割中求取反射回的激光功率PL,R的数值范围,在该数值范围情况下,切割过程导致无毛刺的切割边沿,则也不必参考图4中示出的关系。出于该目的,可以在所述测试切割时改变聚焦位置ZL与(测试)工件8的上侧8a之间的间距以及例如通过操作者或者(光学)传感器求取切割缝隙上的毛刺形成。在这种情况下,例如可以确定在所述测试切割时求取的数值范围的平均值作为反射的激光功率PL,R的额定值PL,R,SOLL,在该数值范围情况下不产生毛刺形成。
可以理解的是,不仅能够在如图1中所示的激光切割机的情况下以上述方式进行对激光切割过程的调节。更确切地说,上述的调节也可以在这样的激光切割机上进行,在所述激光切割机情况下,工件不是静止的,而是在至少一个空间方向上运动。上述的调节过程也不局限于用于加工基本上板形的工件的激光切割机。更确切地说,也可以对在基本上管形或者三维可变地成形的工件的上侧上反射的激光射束进行探测。

Claims (15)

1.用于调节激光切割过程的方法,包括步骤:
借助于聚焦的激光射束(6)在在工件(8)上构成切割缝隙(9)的情况下激光切割所述工件(8),
探测在所述激光切割时由所述工件(8)的表面(8a)在所述切割缝隙(9)的附近反射回的激光射束(13a,13b)的功率(PL,R),以及
将所探测的激光射束功率(PL,R,IST)调节到额定值(PL,R,SOLL),在该额定值情况下,激光功率(PL,R)采用最小的值(PL,R,SOLL=PL,R,MIN)或者与所述最小的值(PL,R,MIN)具有预先给定的差(ΔPL,R)。
2.根据权利要求1的方法,其中,在之前的步骤中确定所探测的激光功率(PL,R)和激光射束(6)的聚焦位置(ZL)相对于所述工件(8)的上侧(8a)的间距(d)之间的关系,并且,依据该关系这样确定所述额定值(PL,R,SOLL),使得激光射束(6)的聚焦位置(ZL)相对于工件(8)的所述上侧(8a)具有所期望的间距(d)。
3.根据权利要求2的方法,其中,针对在所述工件(8)上构成切割缝隙(9)时激光射束(6)和工件(8)之间的、不同的进给速度(v)来确定所述关系。
4.根据权利要求1的方法,其中,在之前的步骤中,在工件(8)上在构成切割缝隙(9)的情况下进行测试切割,其中,改变激光射束(6)的聚焦位置(ZL)相对于工件(8)的上侧(8a)的间距(d),并且其中,确定反射的激光功率(PL,R)的一个值作为额定值(PL,R,SOLL),在所述值的情况下所述切割缝隙(9)具有无毛刺的边沿。
5.根据权利要求4的方法,其中,确定反射的激光功率(PL,R)的数值范围的平均值作为额定值(PL,R,SOLL),在所述数值范围情况下,在所述测试切割时构成的切割缝隙(9)具有无毛刺的边沿。
6.根据前述权利要求之一的方法,其中,为了将所探测的激光功率(PL,R,IST)调节到额定值(PL,R,SOLL),改变激光切割过程的至少一个参数,所述参数影响激光射束(6)的聚焦位置(ZF)。
7.根据前述权利要求之一的方法,其中,为了探测,借助于耦合输出元件(19)使由所述工件(8)反射回的激光射束(13a,13b)从激光射束(6)的光路(3)中耦合输出。
8.根据权利要求7的方法,其中,使用与激光射束轴线(20)成角度(α)地取向的刮镜(19)作为耦合输出元件。
9.用于激光切割工件(8)的激光切割机(1),包括:
用于使激光射束(6)对准到工件(8)上的激光切割头(4),
用于使激光射束(6)在与所述工件(8)的上侧(8a)隔开间距(d)的焦点位置(ZF)上聚焦的聚焦装置(16),
至少一个用于产生用于在所述工件(8)上构成切割缝隙(9)的、所述激光切割头(4)和所述工件(8)之间的相对运动的驱动装置(7a,7b),
用于探测在激光切割时由所述工件(8)的表面(8a)在所述切割缝隙(9)的附近反射回的激光射束(13a,13b)的激光功率(PL,R)的探测器(18),以及
用于将所探测的激光功率(PL,R,IST)调节到额定值(PL,R,SOLL)的调节装置(14),在所述额定值情况下,激光功率(PL,R)采用最小的值(PL,R,MIN)或者相对于该最小的值(PL,R,MIN)具有预先给定的差(ΔPL,R)。
10.根据权利要求9的激光切割机,其中,所述调节装置(14)构造用于,依据所探测的激光功率(PL,R)和激光射束(6)的聚焦位置(ZL)相对于所述工件(8)的上侧(8a)的间距(d)之间的、预先给定的关系来这样确定额定值(PL,R,SOLL),使得所述激光射束(6)的聚焦位置(ZL)与所述工件(8)的上侧(8a)具有所期望的间距(d)。
11.根据权利要求9或10的激光切割机,其中,所述调节装置(14)构造用于,根据借助于所述至少一个驱动装置(7a,7b)产生的、所述激光切割头(4)和所述工件(8)之间的相对运动的速度(v)来确定所述额定值(PL,R,SOLL)。
12.根据权利要求9至11之一的激光切割机,其中,所述调节装置(14)构造用于,为了将所探测的激光功率(PL,R,IST)调节到额定值(PL,R,SOLL)而改变激光切割过程的至少一个参数,所述参数影响激光射束(6)的聚焦位置(ZF)。
13.根据权利要求9至12之一的激光切割机,还包括:用于使反射回的激光射束(13a,13b)从激光射束(6)的光路(3)中耦合输出的耦合输出装置(19)。
14.根据权利要求13的激光切割机,其中,所述耦合输出装置构造为相对于激光射束轴线(20)成角度(α)地取向的刮镜(19)。
15.根据权利要求9至14之一的激光切割机,其中,所述探测器(18)是热电探测器。
CN201380007392.8A 2012-01-30 2013-01-23 用于调节激光切割过程的方法和激光切割机 Expired - Fee Related CN104271307B (zh)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE102012100721.7 2012-01-30
DE201210100721 DE102012100721B3 (de) 2012-01-30 2012-01-30 Verfahren zum Regeln eines Laserschneidprozesses und Laserschneidmaschine
PCT/EP2013/000193 WO2013113479A1 (de) 2012-01-30 2013-01-23 Verfahren zum regeln eines laserschneidprozesses und laserschneidmaschine

Publications (2)

Publication Number Publication Date
CN104271307A true CN104271307A (zh) 2015-01-07
CN104271307B CN104271307B (zh) 2017-04-26

Family

ID=47714004

Family Applications (1)

Application Number Title Priority Date Filing Date
CN201380007392.8A Expired - Fee Related CN104271307B (zh) 2012-01-30 2013-01-23 用于调节激光切割过程的方法和激光切割机

Country Status (3)

Country Link
CN (1) CN104271307B (zh)
DE (1) DE102012100721B3 (zh)
WO (1) WO2013113479A1 (zh)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104999184A (zh) * 2015-06-05 2015-10-28 柳州弘天科技有限公司 一种可减少崩刃的刀具刃口加工方法
WO2018019002A1 (zh) * 2016-07-27 2018-02-01 英诺激光科技股份有限公司 一种激光打标、漂白装置及其加工方法
CN109405767A (zh) * 2018-12-25 2019-03-01 威海筑丰五金有限公司 基于激光轮廓测量仪的铸造件浇冒口切割轨迹确定方法
CN109952171A (zh) * 2016-10-13 2019-06-28 通快机床两合公司 用于确定和调节加工射束的焦点位置的方法和设备
CN110524108A (zh) * 2019-09-12 2019-12-03 中南大学 基于二次谐波的定位激光聚焦点的方法和光路系统
CN112834032A (zh) * 2020-12-30 2021-05-25 湖南华曙高科技有限责任公司 一种用于制造三维物体的激光功率实时检测方法和系统
CN112888526A (zh) * 2018-08-09 2021-06-01 康宁股份有限公司 用于激光束的机器内分布的系统、方法和装置

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105252144B (zh) * 2014-07-17 2017-11-03 大族激光科技产业集团股份有限公司 一种高精度激光随动切割头及其监测和自动寻焦方法
JP6392804B2 (ja) * 2016-03-29 2018-09-19 ファナック株式会社 ギャップセンサ補正と反射光プロファイル測定を同時に行うレーザ加工装置及びレーザ加工装置の相関テーブル生成方法
DE102016215019C5 (de) 2016-08-11 2023-04-06 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren zum Laserschneiden mit optimierter Gasdynamik
DE102016219927B4 (de) 2016-10-13 2018-08-30 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Vorrichtung und Verfahren zur Überwachung eines thermischen Schneidprozesses
DE102016222186B3 (de) * 2016-11-11 2018-04-12 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Kalibrieren zweier Scannereinrichtungen jeweils zur Positionierung eines Laserstrahls in einem Bearbeitungsfeld und Bearbeitungsmaschine zum Herstellen von dreidimensionalen Bauteilen durch Bestrahlen von Pulverschichten
DE102016222187A1 (de) 2016-11-11 2018-05-17 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum Bestimmen eines Strahlprofils eines Laserstrahls und Bearbeitungsmaschine
DE102017002922B4 (de) * 2017-03-27 2019-11-28 Lessmüller Lasertechnik GmbH Überwachungsvorrichtung für ein Bearbeitungssystem, Bearbeitungssystem und Verfahren zur Überwachung eines Bearbeitungssystems
DE102018002420B4 (de) 2018-03-23 2020-03-12 A.L.L. Lasersysteme GmbH Verfahren zum Bestimmen der Bearbeitungsqualität einer lasergestützten Materialbearbeitung
DE102018216873A1 (de) * 2018-10-01 2020-04-02 Trumpf Werkzeugmaschinen Gmbh + Co. Kg Verfahren und Vorrichtung zur Bearbeitung eines Werkstücks
DE102019201033A1 (de) * 2019-01-28 2020-07-30 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zum automatisierten Ermitteln des Einflusses eines Schneidparameters beim Laserschneiden sowie Laserbearbeitungsmaschine und Computerprogrammprodukt
JP6968126B2 (ja) * 2019-06-26 2021-11-17 株式会社アマダ レーザ加工機の設定方法及びレーザ加工機
DE102021206302A1 (de) 2021-06-18 2022-12-22 Trumpf Laser- Und Systemtechnik Gmbh Verfahren zur Laserbearbeitung und Laserbearbeitungsanlage sowie Steuereinrichtung hierfür

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811453A2 (en) * 1996-06-07 1997-12-10 Lumonics Ltd. Focus control of lasers in material processing operations
JPH11129084A (ja) * 1997-10-30 1999-05-18 Sumitomo Heavy Ind Ltd レーザ溶接機の焦点位置制御装置
JP2002346783A (ja) * 2001-05-30 2002-12-04 Denso Corp レーザ溶接制御方法及びその装置
CN201076969Y (zh) * 2007-09-28 2008-06-25 北京工业大学 紫外激光微加工精确定位系统
US20090200279A1 (en) * 2008-02-11 2009-08-13 Jiping Li Automatic focus and emissivity measurements for a substrate system
US20090266802A1 (en) * 2008-04-28 2009-10-29 Disco Corporation Laser processing apparatus
DE102009059245B4 (de) * 2009-12-21 2011-09-22 Lt Ultra-Precision-Technology Gmbh Verfahren und Vorrichtung zur Erfassung und Justierung des Fokus eines Laserstrahls bei der Laserbearbeitung von Werkstücken

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3623409A1 (de) * 1986-07-11 1988-01-21 Bias Forschung & Entwicklung Verfahren zur ueberwachung des bearbeitungsprozesses mit einer hochleistungsenergiequelle, insbesondere einem laser, und bearbeitungsoptik zur durchfuehrung desselben
DE10248458B4 (de) * 2002-10-17 2006-10-19 Precitec Kg Verfahren und Vorrichtung zum Einstellen der Fokuslage eines auf ein Werkstück gerichteten Laserstrahls
CN101208171B (zh) * 2005-06-23 2011-01-12 通快机床两合公司 确定激光束的焦点位置的方法

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0811453A2 (en) * 1996-06-07 1997-12-10 Lumonics Ltd. Focus control of lasers in material processing operations
JPH11129084A (ja) * 1997-10-30 1999-05-18 Sumitomo Heavy Ind Ltd レーザ溶接機の焦点位置制御装置
JP2002346783A (ja) * 2001-05-30 2002-12-04 Denso Corp レーザ溶接制御方法及びその装置
CN201076969Y (zh) * 2007-09-28 2008-06-25 北京工业大学 紫外激光微加工精确定位系统
US20090200279A1 (en) * 2008-02-11 2009-08-13 Jiping Li Automatic focus and emissivity measurements for a substrate system
US20090266802A1 (en) * 2008-04-28 2009-10-29 Disco Corporation Laser processing apparatus
DE102009059245B4 (de) * 2009-12-21 2011-09-22 Lt Ultra-Precision-Technology Gmbh Verfahren und Vorrichtung zur Erfassung und Justierung des Fokus eines Laserstrahls bei der Laserbearbeitung von Werkstücken

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104999184A (zh) * 2015-06-05 2015-10-28 柳州弘天科技有限公司 一种可减少崩刃的刀具刃口加工方法
WO2018019002A1 (zh) * 2016-07-27 2018-02-01 英诺激光科技股份有限公司 一种激光打标、漂白装置及其加工方法
CN109952171A (zh) * 2016-10-13 2019-06-28 通快机床两合公司 用于确定和调节加工射束的焦点位置的方法和设备
CN112888526A (zh) * 2018-08-09 2021-06-01 康宁股份有限公司 用于激光束的机器内分布的系统、方法和装置
CN109405767A (zh) * 2018-12-25 2019-03-01 威海筑丰五金有限公司 基于激光轮廓测量仪的铸造件浇冒口切割轨迹确定方法
CN110524108A (zh) * 2019-09-12 2019-12-03 中南大学 基于二次谐波的定位激光聚焦点的方法和光路系统
CN110524108B (zh) * 2019-09-12 2021-11-30 中南大学 基于二次谐波的定位激光聚焦点的方法和光路系统
CN112834032A (zh) * 2020-12-30 2021-05-25 湖南华曙高科技有限责任公司 一种用于制造三维物体的激光功率实时检测方法和系统

Also Published As

Publication number Publication date
WO2013113479A1 (de) 2013-08-08
DE102012100721B3 (de) 2013-04-11
CN104271307B (zh) 2017-04-26

Similar Documents

Publication Publication Date Title
CN104271307A (zh) 用于调节激光切割过程的方法和激光切割机
JP6972165B2 (ja) 付加製造用の装置及び方法
CN105829828B (zh) 测量激光束到工件中的透入深度的方法及激光加工设备
JP6462140B2 (ja) 溶接シームの深さをリアルタイムで測定するための装置
CN103476537B (zh) 用于使激光射束聚焦的装置和用于监控激光加工的方法
TWI504463B (zh) 用於控制雷射光束焦斑尺寸之方法和裝置
JP5393150B2 (ja) レーザビームのフォーカス位置の決定方法
RU2750781C2 (ru) Способ лазерной обработки металлического материала с управлением положением оптической оси лазера относительно потока защитного газа, включая установку и компьютерную программу для реализации упомянутого способа
JP2008012539A5 (zh)
CN101646525A (zh) 加工设备以及用于材料加工的方法
CN110142503A (zh) 一种激光切割离焦补偿系统及其补偿方法
US11103952B2 (en) Laser beam welding of geometric figures using OCT seam tracking
JP7315670B2 (ja) 加工プロセスの特性値を求める方法および加工機械
JP2001517554A (ja) 誘起された高エネルギビームのプラズマを用いて材料加工する方法及び装置
CN113348047A (zh) 用于借助激光射束切割工件的方法和用于执行该方法的激光加工系统
CN213516886U (zh) 等离子体面壁部件原位诊断与缺陷修复系统
CN116900470A (zh) 激光加工设备
US11334047B2 (en) Device and method for the controlled processing of a workpiece with processing radiation
KR101554389B1 (ko) 레이저 가공장치
Abels et al. Universal coaxial process control system for laser materials processing
KR20160127461A (ko) 레이저 가공 장치 및 그 가공방법
CN113226624B (zh) 用于激光加工的方法和用于执行该方法的激光加工系统
JP2021058933A (ja) 材料加工用機械のレーザビームの伝播経路に沿って配置された光学素子の動作状態を検出する方法、当該方法を実行するためのシステム、及び当該システムを備えるレーザ加工機
JP6157245B2 (ja) レーザ加工装置およびレーザ光軸調整方法
JP7396851B2 (ja) 制御装置、制御システム、及びプログラム

Legal Events

Date Code Title Description
C06 Publication
PB01 Publication
C10 Entry into substantive examination
SE01 Entry into force of request for substantive examination
GR01 Patent grant
GR01 Patent grant
CF01 Termination of patent right due to non-payment of annual fee

Granted publication date: 20170426

CF01 Termination of patent right due to non-payment of annual fee