EP0719255A1 - Substituierte pyridine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide - Google Patents

Substituierte pyridine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide

Info

Publication number
EP0719255A1
EP0719255A1 EP94926234A EP94926234A EP0719255A1 EP 0719255 A1 EP0719255 A1 EP 0719255A1 EP 94926234 A EP94926234 A EP 94926234A EP 94926234 A EP94926234 A EP 94926234A EP 0719255 A1 EP0719255 A1 EP 0719255A1
Authority
EP
European Patent Office
Prior art keywords
halogen
alkyl
phenyl
substituted
alkoxy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP94926234A
Other languages
English (en)
French (fr)
Inventor
Dieter Bernd Reuschling
Adolf Heinz Linkies
Volkmar Wehner
Rainer Preuss
Wolfgang Schaper
Harald Jakobi
Peter Braun
Werner Knauf
Burkhard Sachse
Anna Waltersdorfer
Manfred Kern
Peter Lümmen
Werner Bonin
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Bayer CropScience AG
Original Assignee
Hoechst Schering Agrevo GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hoechst Schering Agrevo GmbH filed Critical Hoechst Schering Agrevo GmbH
Publication of EP0719255A1 publication Critical patent/EP0719255A1/de
Withdrawn legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/62Oxygen or sulfur atoms
    • C07D213/69Two or more oxygen atoms
    • AHUMAN NECESSITIES
    • A01AGRICULTURE; FORESTRY; ANIMAL HUSBANDRY; HUNTING; TRAPPING; FISHING
    • A01NPRESERVATION OF BODIES OF HUMANS OR ANIMALS OR PLANTS OR PARTS THEREOF; BIOCIDES, e.g. AS DISINFECTANTS, AS PESTICIDES OR AS HERBICIDES; PEST REPELLANTS OR ATTRACTANTS; PLANT GROWTH REGULATORS
    • A01N43/00Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds
    • A01N43/34Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom
    • A01N43/40Biocides, pest repellants or attractants, or plant growth regulators containing heterocyclic compounds having rings with one nitrogen atom as the only ring hetero atom six-membered rings
    • AHUMAN NECESSITIES
    • A61MEDICAL OR VETERINARY SCIENCE; HYGIENE
    • A61PSPECIFIC THERAPEUTIC ACTIVITY OF CHEMICAL COMPOUNDS OR MEDICINAL PREPARATIONS
    • A61P31/00Antiinfectives, i.e. antibiotics, antiseptics, chemotherapeutics
    • CCHEMISTRY; METALLURGY
    • C05FERTILISERS; MANUFACTURE THEREOF
    • C05GMIXTURES OF FERTILISERS COVERED INDIVIDUALLY BY DIFFERENT SUBCLASSES OF CLASS C05; MIXTURES OF ONE OR MORE FERTILISERS WITH MATERIALS NOT HAVING A SPECIFIC FERTILISING ACTIVITY, e.g. PESTICIDES, SOIL-CONDITIONERS, WETTING AGENTS; FERTILISERS CHARACTERISED BY THEIR FORM
    • C05G3/00Mixtures of one or more fertilisers with additives not having a specially fertilising activity
    • C05G3/60Biocides or preservatives, e.g. disinfectants, pesticides or herbicides; Pest repellants or attractants
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/74Amino or imino radicals substituted by hydrocarbon or substituted hydrocarbon radicals
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/72Nitrogen atoms
    • C07D213/76Nitrogen atoms to which a second hetero atom is attached
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D213/00Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members
    • C07D213/02Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members
    • C07D213/04Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom
    • C07D213/60Heterocyclic compounds containing six-membered rings, not condensed with other rings, with one nitrogen atom as the only ring hetero atom and three or more double bonds between ring members or between ring members and non-ring members having three double bonds between ring members or between ring members and non-ring members having no bond between the ring nitrogen atom and a non-ring member or having only hydrogen or carbon atoms directly attached to the ring nitrogen atom with hetero atoms or with carbon atoms having three bonds to hetero atoms with at the most one bond to halogen, e.g. ester or nitrile radicals, directly attached to ring carbon atoms
    • C07D213/78Carbon atoms having three bonds to hetero atoms, with at the most one bond to halogen, e.g. ester or nitrile radicals
    • C07D213/79Acids; Esters
    • C07D213/80Acids; Esters in position 3
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D401/00Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom
    • C07D401/02Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings
    • C07D401/12Heterocyclic compounds containing two or more hetero rings, having nitrogen atoms as the only ring hetero atoms, at least one ring being a six-membered ring with only one nitrogen atom containing two hetero rings linked by a chain containing hetero atoms as chain links
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09DCOATING COMPOSITIONS, e.g. PAINTS, VARNISHES OR LACQUERS; FILLING PASTES; CHEMICAL PAINT OR INK REMOVERS; INKS; CORRECTING FLUIDS; WOODSTAINS; PASTES OR SOLIDS FOR COLOURING OR PRINTING; USE OF MATERIALS THEREFOR
    • C09D5/00Coating compositions, e.g. paints, varnishes or lacquers, characterised by their physical nature or the effects produced; Filling pastes
    • C09D5/14Paints containing biocides, e.g. fungicides, insecticides or pesticides
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09KMATERIALS FOR MISCELLANEOUS APPLICATIONS, NOT PROVIDED FOR ELSEWHERE
    • C09K3/00Materials not provided for elsewhere
    • C09K3/10Materials in mouldable or extrudable form for sealing or packing joints or covers
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M133/00Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen
    • C10M133/02Lubricating compositions characterised by the additive being an organic non-macromolecular compound containing nitrogen having a carbon chain of less than 30 atoms
    • C10M133/38Heterocyclic nitrogen compounds
    • C10M133/40Six-membered ring containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M173/00Lubricating compositions containing more than 10% water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2201/00Inorganic compounds or elements as ingredients in lubricant compositions
    • C10M2201/02Water
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/221Six-membered rings containing nitrogen and carbon only
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/22Heterocyclic nitrogen compounds
    • C10M2215/225Heterocyclic nitrogen compounds the rings containing both nitrogen and oxygen
    • C10M2215/226Morpholines
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10MLUBRICATING COMPOSITIONS; USE OF CHEMICAL SUBSTANCES EITHER ALONE OR AS LUBRICATING INGREDIENTS IN A LUBRICATING COMPOSITION
    • C10M2215/00Organic non-macromolecular compounds containing nitrogen as ingredients in lubricant compositions
    • C10M2215/30Heterocyclic compounds
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2040/00Specified use or application for which the lubricating composition is intended
    • C10N2040/20Metal working
    • C10N2040/22Metal working with essential removal of material, e.g. cutting, grinding or drilling
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10NINDEXING SCHEME ASSOCIATED WITH SUBCLASS C10M RELATING TO LUBRICATING COMPOSITIONS
    • C10N2050/00Form in which the lubricant is applied to the material being lubricated
    • C10N2050/01Emulsions, colloids, or micelles

Definitions

  • the invention relates to new substituted 4-amino and 4-hydroxypyridines, processes for their preparation and their use as pesticides, in particular as insecticides, acaricides and fungicides.
  • the invention therefore relates to compounds of the formula 1 and their salts, in which (1) the number x of the radicals R 1 , R 2 , R 3 and R 4 , which are identical or different, is selected from the group consisting of
  • R 1 , R 2 , R 3 and R 4 which are the same or different, are selected from the group consisting of
  • Arylkyl means aryl (C r C 4 ) alkyl
  • Y - Z together means a (C 5 -C 12 ) hydrocarbon radical which is unbranched or branched and in which one or more, preferably up to three, CH 2 is formed by heteroatom groups such as O, NR 5 , S, SO, SO 2 or SiR 6 R 7 can be replaced, where R 5 is hydrogen, (C, -C 4 ) alkyl or (C 1 -C 4 ) acyl, and R 6 and R 7 , which are the same or different, independently of one another (C 1 -C 4 ) alkyl, phenyl or substituted phenyl, and wherein this (C 5 -C 12 ) carbon hydrogen radical with the possible aforementioned variations (replacement by heteroatom radical (s)) optionally with one or more, preferably up to three identical or different residues from the series
  • Y is a bond or a divalent hydrocarbon radical with 1 to 6 carbon atoms, which is one or more, preferably up to three identical or different radicals from the series
  • Aryl, O-aryl or aryl- (C r C 4 ) -alkyl where aryl is a phenyl group, optionally with one or more, preferably up to five, in particular up to three identical or different radicals from the series
  • R 8 (C r C 7 ) alkyl, halogen (C r C 7 ) alkyl, (C 3 -C 7 ) cycloalkyl, halogen (C 3 -C 7 ) cycloalkyl, (C 1 -C 7 ) -Alkoxy, phenyl or substituted phenyl;
  • R 9 , R 10 and R 1 1 are the same or different and independently of one another are (C 1 -C 4 ) alkyl, phenyl and / or substituted phenyl;
  • R 12 and R 13 are identical or different and independently of one another are hydrogen, (C r C 4 ) -alkyl and / or (C 1 -C 4 ) -acyl;
  • R 14 represents (C.
  • CO also with one or more, preferably up to three, in the case of halogen up to the maximum number of radicals identical or different of the radicals below from the series halogen, halogen (C 1 -C 4 ) alkoxy, hydroxy, (C 3 -C 8 ) cycloalkyl, (C 3 -C 8 ) cycloalkenyl, (C, -C 4 ) acyl, phenoxy, substituted phenoxy, phenyl, substituted phenyl, phenylthio and substituted phenylthio may be substituted; or (b) is (C 3 -C 8 ) cycloalkyl or (C 5 -C 8 ) cycloalkenyl, where a CH 2 group of the carbocycle can be replaced by NR 15 ; R 15 denotes phenyl or substituted phenyl and the (C 3 -C 8 ) cycloalkyl or (C 5 -C 8 ) cyclo
  • (C 2 -C 18 ) alkylidene is substituted and in the (C-
  • R 9 , R 10 , R 1 1 and aryl have the meanings as under (5 a); and R 16 and R 17 are identical or different and are independently hydrogen, (C-j-C6) alkyl, (C.
  • halogen means a fluorine, chlorine, bromine or iodine atom, preferably a fluorine, chlorine or bromine atom, in particular a fluorine or chlorine atom;
  • alkyl an unbranched or branched hydrocarbon residue such as. B. the methyl, ethyl, propyl, 1-methylethyl, 1-methylpropyl, 2-methylpropyl or 1, 1-dimethylethyl radical, the pentyl, 2-methylbutyl or the 1, 1-dimethylpropyl radical, the hexyl -, heptyl, octyl or 1, 1, 3,3-tetramethylbutyl, the nonyl, decyl, undecyl or dodecyl radical and the like;
  • cycloalkyl preferably cyclopropyl, cyclobutyl, cyclopentyl, cyclohexyl, cycloheptyl or cyclooctenyl group;
  • alkoxy means an alkoxy group whose hydrocarbon radical has the meaning given under the term “alkyl”;
  • cycloalkoxy a cycloalkoxy group whose hydrocarbon radical has the meaning given under “cycloalkyl”
  • alkylthio means an alkylthio group whose hydrocarbon radical has the meaning given under the term “alkyl”
  • haloalkyl is one referred to under the term "(C j -C ⁇ alkyl” group in which one or more hydrogen atoms are replaced by the abovementioned halogen atoms, preferably chlorine or fluorine, is replaced, such as the trifluoromethyl group, the 2 , 2,2-trifluoroethyl group, the chloromethyl, fluoromethyl group, the difluoromethyl group or the 1, 1, 2,2-tetrafluoroethyl group (the same applies to "haloalkenyl”);
  • haloalkoxy means a haloalkoxy group whose halogenated hydrocarbon radical has the meaning given under the term "haloalkyl";
  • Substituted phenyl means a phenyl radical which has one or more, preferably up to three identical or different substituents from the series halogen, (C r C 4 ) -alkyl, halogen (C r C 4 ) -alkyl, hydroxy- (C r C 4 ) -alkyl, (C r C 4 ) -alkoxy, halogen- (C 1 -C 4 ) -alkoxy, phenoxy, phenyl, nitro, hydroxy, cyano, (C 1 -C 4 ) -alkanoyl, benzoyl, (C r C 4 ) alkanoyloxy, (C 1 -C 4 ) alkoxycarbonyl;
  • substituted amino means an amino group which is substituted by one or two (C 1 -C 4 ) -alkyl groups or one (C 1 -C 4 ) -alkanoyl group;
  • a "bivalent hydrocarbon radical” means a radical derived from n-alkanes or n-alkenes by removing one hydrogen atom from each of the two terminal carbon atoms in the chain, such as methylene, ethanediyl, trimethylene, tetramethylene; "Acyl” means in particular an alkanoyl radical, such as acetyl, propionyl or butyryl, or an alkyloxycarbonyl radical.
  • the substituents on the cycloalkyl or cycloalkenyl radicals defined under (5b) can be ice or trans with respect to Y; the cis position is preferred. If only one substituent is present, it should be in cyclohexyl, preferably in the 4-position, and be cis-configured.
  • the number x of the radicals R 1 , R 2 , R 3 and R 4 which are the same or different, is selected from the group consisting of RO-CH 2 -, RO-CO-,
  • R 1 , R 2 , R 3 and R 4 which are the same or different, are selected from the group consisting of
  • X represents O, S, NH, NR or NOR;
  • Y is a bond or a divalent hydrocarbon radical with 1 to 6 C atoms, which is one or more, preferably up to three identical or different radicals from the series:
  • Aryl, O-aryl or aryl- (C 1 -C 4 ) -alkyl where aryl is a phenyl group which may have one or more, preferably up to five, in particular up to three identical or different radicals from the Halogen series,
  • R 8 (C r C 7 ) alkyl, halogen (C r C 7 ) alkyl, (C 5 -C 6 ) cycloalkyl, (C r
  • R 9 , R 10 and R 1 1 are identical or different and independently of one another are (CC 4 ) alkyl, phenyl and / or substituted phenyl;
  • R 12 and R 13 are identical or different and independently of one another are hydrogen, (C 1 -C 4 ) -alkyl and / or (C 1 -C 4 ) -acyl; wherein in (CC 12 ) alkyl, (C 2 -C 12 ) alkenyl and (C 1 -C 12 ) alkoxy optionally one or more, preferably up to 3 CH 2 -
  • R 5 , R 6 and R 7 have the meaning as above under (3); the (C- C j ⁇ alkyl radical and the (C ⁇ C ⁇ j alkoxy radical with or without the abovementioned variations (replacement by heteroatom radical (s)) also with one or more, preferably up to three, in
  • Halogen halogen- (C 1 -C 4 ) alkoxy, (C 3 -C 6 ) cycloalkyl, (C 1 -C 4 ) acyl,
  • Phenoxy, substituted phenoxy, phenyl and substituted phenyl may be substituted; or halogen represents F or Cl;
  • (b) denotes (C 3 -C 6 ) cycloalkyl or (C 5 -C 8 ) cycloalkenyl, it being possible for a CH 2 group of the carbocycle to be replaced by NR 15 ;
  • R 15 denotes phenyl or substituted phenyl and the (C 3 -C 8 ) cycloalkyl or (C 5 -C 8 ) cycloalkenyl radical, optionally with one or more, preferably up to three, in the case of halogen up to the maximum number same or different residues from the series
  • Aryl- (C 1 -C 4 ) alkyloximino and (C 2 -C 18 ) alkylidene are substituted and in the (C-
  • R 9 , R 10 , R 1 1 and aryl have the meanings as under (5 a).
  • the number x of the radicals R 1 , R 2 , R 3 and R 4 which are the same or different, is selected from the group consisting of
  • Y - Z together means a (C 5 -C 12 ) hydrocarbon radical which is unbranched or branched and in which one or more, preferably up to three, CH 2 have been replaced by heteroatom groups such as O, NR 5 or SiR 6 R 7 where R 5 is (C r C 4 ) acyl, and R 6 and R 7 , which are the same or different, independently of one another are (C 1 -C 4 ) alkyl, phenyl or substituted phenyl, and wherein this (C 5 -C 12 ) - hydrocarbon radical with the possible above-mentioned variations (replacement by heteroatom radical (s)) optionally with one or more, preferably up to three identical or different radicals from the series
  • Halogen (C 1 -C 4 ) alkyl and halogen (C 1 -C 3 ) alkoxy is substituted; or, if not covered by the above definitions,
  • Y is a bond or a divalent hydrocarbon radical with 1 to 6 carbon atoms, which is one or more, preferably up to three identical or different radicals from the series
  • Halogen (C 1 -C 3 ) alkyl and halogen (C 1 -C 3 ) alkoxy is substituted;
  • Aryl or O-aryl where aryl is a phenyl group which may be one or more, preferably up to five, in particular up to three identical or different radicals from the series
  • (C r C 7 ) alkoxy is substituted; and R 9 , R 10 and R 1 1 are identical or different and independently of one another are (C 1 -C 4 ) -alkyl, phenyl and / or substituted phenyl; where in (C-
  • (b) denotes (C 3 -C 6 ) -cycloalkyl, where a CH 2 group of the carbocycle can be replaced by NR 15 ;
  • R 15 is phenyl or substituted phenyl and the (C 3 -C 8 ) cycloalkyl radical optionally with one or more, preferably up to three, in the case of halogen up to the maximum number of identical or different radicals from the series
  • (C 2 -C 12 ) alkylidene is substituted and in the (C r C 12 ), (C 2 -C 12 ) and (C r C 8 ) hydrocarbon radicals mentioned one or more, preferably up to three CH 2 groups can be replaced by heteroatoms / groups such as O, NR 5 or SiR 6 R 7 , where R 5 , R 6 and R 7 have the meaning as under (3) and moreover 3 to 6 C atoms and / or heteroatom radical (s) of these hydrocarbon radicals can form a cycle and these hydrocarbon radicals with or without the variations (replacement by heteroatom radical (s) and / or cycle formation) optionally with one or more, preferably up to three, in the case of Halogen are substituted up to the maximum number of identical or different radicals from the series halogen, haloalkyl, cycloalkyl, acyl, phenoxy, substituted phenoxy, phenyl and substituted phenyl;
  • R 9 , R 10 , R 1 1 and aryl have the meanings as under (5 a).
  • the present invention relates to the compounds of formula 1 in the form of the free base or an acid addition salt.
  • Acids which can be used for salt formation are inorganic acids such as hydrochloric acid, hydrobromic acid, nitric acid, sulfuric acid, phosphoric acid or organic acids such as formic acid, acetic acid, propionic acid, malonic acid, oxalic acid, fumaric acid, adipic acid, stearic acid, oleic acid, methanesulfonic acid, benzenesulfonic acid or toluene .
  • Racemates and diastereomers can therefore occur.
  • the invention encompasses both the pure isomers and their mixtures.
  • the mixtures of diastereomers can according to common methods, e.g. B. by selective crystallization from suitable solvents or by chromatography in the components. Racemates can be separated into the enantiomers by customary methods, for. B. by salt formation with an optically active acid, separation of the diastereomeric salts and release of the pure enantiomers by means of a base.
  • the invention further relates to a process for the preparation of compounds of formula 1, which is characterized in that compounds of formula 2
  • R 1 , R 2 , R 3 and R 4 are as defined above and L is a leaving group, with the corresponding amines, alcohols, phenols or mercaptans, or to form compounds of the formula 1, in which Z is as described in (5b ) is defined, such compounds of formula 1, wherein R 1 , R 2 , R 3 , R 4 , X and Y are as defined above and Z for an unsaturated carbocyclic, such as cycloalkyl or cycloalkenyl under (5b) defined substituted radical, preferably a phenyl radical substituted in this way is hydrogenated, and the compounds of formula 1 thus obtained are optionally converted into their salt.
  • R 1 , R 2 , R 3 and R 4 are as defined above and L is a leaving group, with the corresponding amines, alcohols, phenols or mercaptans, or to form compounds of the formula 1, in which Z is as described in (5b ) is defined, such compounds of formula 1, wherein R 1 , R 2
  • the substitution reaction described above is known in principle.
  • the leaving group can be varied within wide limits and can mean, for example, a halogen atom such as fluorine, chlorine, bromine or iodine or alkylthio such as methyl or ethylthio, or alkanesulfonyloxy such as methane, trifluoromethane or ethanesulfonyloxy or arylsulfonyloxy such as benzenesulfonyloxy or toluenesulfonyloxy or alkylsulfonyl such as methyl - Or ethylsulfonyl or arylsulfonyl such as phenyl or toluenesulfonyl.
  • a halogen atom such as fluorine, chlorine, bromine or iodine or alkylthio such as methyl or ethylthio
  • alkanesulfonyloxy
  • the compounds of formula 2 can be prepared by known methods [e.g. BJ Med., Chem. 32, 1970 (1989), J. Org. Chem. 2 £ 776 (1964), J. Prakt. Chem. 331. 369 (1989), J. Org. Chem. 1_4, 97 (1949), Chem. Ber. 74, 1 1 1 1 (1941)].
  • the reactions with alcohols and mercaptans are carried out in the presence of a strong base such as sodium hydride, potassium hydride or potassium tert-butoxide in an inert aprotic solvent such as DMF, NMP, DMSO, THF, dioxane or sulfolane at a temperature between 0 and 80 ° C .;
  • a strong base such as sodium hydride, potassium hydride or potassium tert-butoxide
  • an inert aprotic solvent such as DMF, NMP, DMSO, THF, dioxane or sulfolane at a temperature between 0 and 80 ° C .
  • the conditions for the reaction of 2 with amines depend on the substituents R 1 to R 4 in 2 and on the structure of the amines used; if the radicals R 1 to R 4 in 2 are inert, 2 can be converted to 1 with an excess of amine with or without solvent at temperatures between 80 and 200 ° C. The excess of amine can be reduced and the temperature lowered if acidic catalysts such as phenol [J. Amer. Chem. Soc. 73, 2623 (1951)] or salts such as triethylammonium chloride or ammonium chloride. Suitable solvents are, for. B.
  • the compounds of formula 3 can by known methods [z. B. F. Zymalkowski, Catalytic hydrogenations, p. 191, Enke Verlag, Stuttgart 1965] to catalytically hydrogenate compounds of formula 1 (Scheme 1).
  • the resulting cis / trans mixtures can be separated by crystallization or chromatography.
  • stage 1 the products of the formula 4 are reacted selectively in the presence of bases such as sodium hydride or potassium tert-butoxide with alkylating agents of the formula LYZ on the nitrogen substituent in the 4-position of the pyridine ring to give 5; in the formula LYZ, L is halogen or R-SO 3 , Y is as defined above (except aryl) and Z is as indicated above.
  • bases such as sodium hydride or potassium tert-butoxide
  • alkylating agents of the formula LYZ on the nitrogen substituent in the 4-position of the pyridine ring to give 5; in the formula LYZ, L is halogen or R-SO 3 , Y is as defined above (except aryl) and Z is as indicated above.
  • sterically uniform alkylating agents sterically uniform reaction products can also be obtained in this way.
  • Solvents such as z. B. DMF, DMSO, THF, dimethoxyethane, dioxane,
  • the compounds of the formula 5 are prepared by known methods [R. Huisgen et al. B. 101, 2559 (1968) CH Rayburn, WR Harlau, HR Haumer Am. Soc. 72, 1721 (1950)] reductively converted into the compounds of formula 1.
  • the amines, alcohols and alkylating agents used are accessible by methods known from the literature.
  • the alcohols can be prepared, for example, by reducing a carbonyl group with a suitable reducing agent, for example a complex metal hydride or, in the case of an aldehyde or ketone, also with hydrogen and a hydrogenation catalyst.
  • a suitable reducing agent for example a complex metal hydride or, in the case of an aldehyde or ketone
  • Other possibilities are the implementation of an organometallic compound with a carbonyl group or an oxirane.
  • suitable substituted phenols can also be reacted with hydrogen in the presence of a hydrogenation catalyst.
  • the amines can be prepared, for example, by reducing an oxime or a nitrile with a suitable reducing agent, for example a complex metal hydride or hydrogen in the presence of a hydrogenation catalyst, reductive amination or Leuckart-Wallach reaction of an aldehyde or ketone or Gabriel reaction of an alkyl halide or tosylate .
  • a suitable reducing agent for example a complex metal hydride or hydrogen in the presence of a hydrogenation catalyst
  • reductive amination or Leuckart-Wallach reaction of an aldehyde or ketone or Gabriel reaction of an alkyl halide or tosylate reductive amination or Leuckart-Wallach reaction of an aldehyde or ketone or Gabriel reaction of an alkyl halide or tosylate .
  • suitable substituted anilines can also be reacted with hydrogen in the presence of a hydrogenation catalyst.
  • the compounds of formula 1 according to the invention are distinguished by an excellent fungicidal action. Fungal pathogens that have already penetrated into the plant tissue can be successfully combated curatively. This is particularly important and advantageous in the case of those fungal diseases which can no longer be effectively combated with the usual fungicides after infection has occurred.
  • the spectrum of activity of the claimed compounds covers various economically important phytopathogenic fungi, such as. B. Phytophthora infestans, Plasmopara viticola, but also Erysiphe graminis and Pyrenophora teres.
  • the compounds according to the invention are also suitable for use in technical fields, for example as wood preservatives, as preservatives, in sealants, in paints, in cooling lubricants for metalworking or as preservatives in drilling and cutting oils.
  • the invention also relates to compositions which contain the compounds of the formula 1 in addition to suitable formulation auxiliaries.
  • the agents according to the invention generally contain 1 to 95% by weight of the active compounds of the formula 1.
  • WP wettable powder
  • EC emulsifiable concentrates
  • SC aqueous dispersions based on oil or water
  • SC suspoemulsions
  • DP dusts
  • mordants granules in the form of water-dispersible granules (WG)
  • ULV formulations microcapsules, waxes or baits.
  • fertilizers and / or growth regulators can also be prepared, e.g. B. in the form of a finished formulation or as a tank mix.
  • Spray powders are preparations which are uniformly dispersible in water and which, in addition to the active substance, are also a wetting agent, in addition to a diluent or inert substance.
  • Emulsifiable concentrates are obtained by dissolving the active ingredient in an organic solvent, e.g. B. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons with the addition of one or more emulsifiers.
  • Alkylarylsulfonic acid calcium salts such as cadodecylbenzenesulfonate or nonionic emulsifiers such as fatty acid polyglycol esters,
  • Alkylaryl polyglycol ether fatty alcohol polyglycol ether, propylene oxide-ethylene oxide-sorbitan fatty acid ester, polyoxyethylene sorbitan fatty acid ester or polyoxethylene sorbitol ester.
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g. B. talc, natural clays such as kaolin, bentonite or pyropyllite or diatomaceous earth.
  • Granules can either be produced by spraying the active ingredient onto adsorbable, granulated inert material or by applying active ingredient concentrates using adhesives, e.g. As polyvinyl alcohol, sodium polyacrylic acid or mineral oils, on the surface of carriers such as sand, kaolinite or granulated inert material.
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules, if desired in a mixture with fertilizers.
  • the active ingredient concentration is e.g. B. about 10 to 90 wt .-%, the rest of 100 wt .-% consists of conventional formulation components.
  • the active substance concentration can be approximately 5 to 80% by weight.
  • Dust-like formulations usually contain 5 to 20% by weight.
  • the active ingredient content depends in part on whether the active compound is liquid or solid and which compound is liquid or solid and which granulation aids, fillers etc. are used.
  • the active ingredient formulations mentioned may contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetrants, solvents, fillers or carriers.
  • the concentrates present in the commercial form are optionally diluted in the customary manner, for. B. with wettable powders, emulsifiable concentrates, dispersions and sometimes also with microgranules using water.
  • Dust-like and granulated preparations as well as sprayable solutions are usually no longer diluted with other inert substances before use.
  • the application rate required varies with the external conditions such as temperature, humidity and others. It can fluctuate within wide limits, e.g. B. between 0.005 and 10.0 kg / ha or more of active substance, but it is preferably between 0.01 and 5 kg / ha.
  • the active compounds according to the invention can be used in their commercially available formulations either alone or in combination with other fungicides known from the literature.
  • the active ingredient according to the invention can be present in its commercially available formulations and in the use forms prepared from these formulations in a mixture with other active ingredients, such as insecticides, attractants, sterilants, acaricides, nematicides or herbicides.
  • Insecticides include, for example, phosphoric acid esters, carbamates, carboxylic acid esters, formamidines, tin compounds, substances produced by microorganisms and the like.
  • Preferred mix partners are:
  • Dicrotoph O-1, 2,2,2-tetrachloroethylphosphorthioate (SD 208 304), Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitriothion, Fensulfothion, Fenthion, Fonofos, Formothion, Heptenophos, Isozophos, Isioophos, Isio Isoxathion, Malathion, Methacrifos, Methamidophos, Methidation, Salithion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosfolan, Phosmet, Phosphamidon, Phoxim, Pirimiphos-ethyl, Pirimiphos-methyl, Profi
  • BPMC 2-sec-butylphenylmethylcarbamate
  • Drug concentration of use forms can range from 0.0001 to
  • active ingredient 95% by weight of active ingredient, preferably between 0.001 and 1% by weight.
  • the active substances are suitable for controlling animal pests, in particular insects, arachnids, helminths and molluscs, very particularly preferably for combating insects and arachnids used in agriculture animal breeding, in forests, in the protection of stocks and materials and in the hygiene sector. They are effective against normally sensitive and resistant species as well as all or individual stages of development.
  • the pests mentioned above include:
  • Rhipicephalus spp. Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa,
  • Periplaneta americana Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis,
  • Thysanoptera z From the order of the Thysanoptera z.
  • Trialeurodes vaporariorum Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus sp aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp. From the order of the Lepidoptera z. B.
  • the invention also relates to insecticidal and acaricidal compositions which comprise the compounds of the formula I in addition to suitable formulation auxiliaries.
  • the agents according to the invention generally contain 1 to 95% by weight of the active compounds of the formulas I.
  • WP wettable powder
  • SC aqueous solutions
  • SC emulsions
  • sprayable solutions dispersions based on oil or water
  • SC suspoemulsions
  • DP dusts
  • WP wettable powder
  • SC emulsifiable concentrates
  • SC aqueous solutions
  • SC emulsions
  • DP dusts
  • WG water-dispersible granules
  • ULV formulations microcapsules, waxes or baits.
  • combinations with other pesticidally active substances, fertilizers and / or growth regulators can also be prepared, e.g. B. in the form of a finished formulation or as a tank mix.
  • Spray powders are preparations which are uniformly dispersible in water.
  • Emulsifiable concentrates are obtained by dissolving the active ingredient in an organic solvent, e.g. B. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons with the addition of one or more emulsifiers.
  • organic solvent e.g. B. butanol, cyclohexanone, dimethylformamide, xylene or higher-boiling aromatics or hydrocarbons.
  • alkylarylsulfonic acid calcium salts such as Ca-dodecylbenzene sulfonate or nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl poiyethers, sorbitan fatty acid esters, polyoxyethylene ester or polyoxyethylene sorbitan polyethylenesorbitan-polyoxyethylene sorbitan or fatty acid polyoxyethylene sorbitan or fatty acid polyoxyethylene sorboxes.
  • alkylarylsulfonic acid calcium salts such as Ca-dodecylbenzene sulfonate
  • nonionic emulsifiers such as fatty acid polyglycol esters, alkylaryl polyglycol ethers, fatty alcohol polyglycol ethers, propylene oxide-ethylene oxide condensation products, alkyl poiyethers,
  • Dusts are obtained by grinding the active ingredient with finely divided solid substances, e.g. B. talc, natural clays such as kaolin, bentonite, pyrophyllite or diatomaceous earth.
  • Granules can either be produced by spraying the active ingredient onto adsorbable, granulated inert material or by applying active ingredient concentrates by means of adhesives, e.g. As polyvinyl alcohol, sodium polyacrylic acid or mineral oils, on the surface of carriers such as sand, kaolinite or granulated inert material.
  • Suitable active ingredients can also be granulated in the manner customary for the production of fertilizer granules, if desired in a mixture with fertilizers.
  • the active ingredient concentration is e.g. B. about 10 to 90 wt .-%, the rest of 100 wt .-% consists of conventional formulation components.
  • the active substance concentration can be approximately 5 to 80% by weight.
  • Dust-like formulations usually contain 5 to 20 wt .-% of active ingredient, sprayable solutions about 2 to 20 wt .-%.
  • the active ingredient content depends in part on whether the active compound is in liquid or solid form and which granulation aids, fillers, etc. are used.
  • the active ingredient formulations mentioned may contain the customary adhesives, wetting agents, dispersants, emulsifiers, penetrants, solvents, fillers or carriers.
  • the concentrates present in the commercial form are optionally diluted in the customary manner, for. B. with wettable powders, emulsifiable concentrates, dispersions and sometimes also with microgranules using water. Dust-like and granulated preparations as well as sprayable solutions are usually no longer diluted with other inert substances before use.
  • the required application rate varies. It can fluctuate within wide limits, e.g. B. between 0.001 and 10.0 kg / ha or more of active substance, but is preferably between 0.005 and 5 kg / ha.
  • the active compounds according to the invention can be present in their commercially available formulations and in the use forms prepared from these formulations in mixtures with other active compounds, such as insecticides, attractants, sterilants, acaricides, nematicides, fungicides, growth-regulating substances or herbicides.
  • the pesticides include, for example, phosphoric acid esters, carbamates, carboxylic acid esters, formamidines, tin compounds, substances produced by microorganisms, etc.
  • Preferred mixing partners are
  • BPMC 2-sec-butylphenylmethylcarbamate
  • the active substance content of the use forms prepared from the commercially available formulations can be from 0.00000001 to 95% by weight of active substance, preferably between 0.00001 and 1% by weight.
  • the application takes place in a customary manner adapted to the application forms.
  • the active compounds according to the invention are also suitable for combating endoparasites and ectoparasites in the veterinary field or in the field of animal husbandry.
  • the active compounds according to the invention are used here in a known manner, such as by oral use in the form of, for example, tablets, capsules, drinkers, granules, by dermal use in the form of, for example, dipping (dipping), spraying (spraying), pouring on (pour-on and spot) -on) and powdering and by parenteral use in the form of, for example, injection.
  • novel compounds of the formula I according to the invention can accordingly also be used particularly advantageously in animal husbandry (for example cattle, sheep, pigs and poultry such as chickens, geese, etc.).
  • animal husbandry for example cattle, sheep, pigs and poultry such as chickens, geese, etc.
  • the animals are given the new compounds, if appropriate in suitable formulations (see above) and if appropriate with the drinking water or feed orally. Since excretion in the faeces is effective, the development of insects in the faeces of the animals can be prevented very easily in this way.
  • the appropriate dosages and formulations depend in particular on the type and stage of development of the livestock and also on the infestation pressure and can be easily determined and determined using the usual methods.
  • the new compounds in cattle z. B. in doses of 0.01 to 1 mg / kg body weight.
  • Example 2 was prepared analogously to Example 5 from 4- [O-benzyl-N- (4-cis-tert-butylcyclohexyl) hydroxylamino] -3-methoxy-2-methoxy-methylpyridine (Example 2) Yield: 90%
  • Example 4 was prepared analogously to Example 5 from 4- [O-benzyl-N- (4-cis-tert.-amylcyclohexyl)] - hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 4).
  • the free base was released from the solution of the hydrochloride in methylene chloride by shaking with sodium bicarbonate solution.
  • Example 1 2-methoxymethyl-3-methoxy-4- (4-cis-tert-butyl-cyclohexyloxy) pyridine
  • Example 8 was prepared analogously to Example 8 from ethyl 4-chloro-2,6-dimethylnicotinate and 2- (2,4-dimethylphenoxy) ethylamine.
  • Example 2 was prepared analogously to Example 2 from 4-O-benzylhydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4- (4-ethoxyphenyl) -1-tosyloxycyclohexane. Yield: 46% 1 H-NMR (CDCI3. 100 MHz): ⁇ : 8.2 (d, 1 H), 7.3 (m, 6H), 7.0 (m, 4H), 4.7 (s, 2H), 4.6 (s, 2H), 4.0 (q, 2H), 3.9 (s, 3H), 3.8 (m, 1H), 3.5 (s, 3H), 2.8 ( m, 1H), 1.4 (t, 3H), 1.4-2.3 (m, 8H) ppm.
  • Example 1 was prepared analogously to Example 2 from 4-O-benzylhydroxylamino-3-methoxy-2-methylpyridine (Example 1) and dodecyl bromide. Yield: 80%
  • Example 24 was prepared analogously to Example 5 from 4- [O-benzyl-N (4-cis- (4-ethoxyphenyl) cyclohexyl) hydroxylamino] -3-methoxy-2-methoxymethylpyridine (Example 24). Yield: 74% 1H NMR (100 MHz, CDCI 3 ): ⁇ : 8.1 (d, 1H), 6.9 (m, 4H), 6.5 (d, 1H), 4.9
  • Example 25 was prepared analogously to Example 5 from 4- (O-benzyl-N-decylhydroxylamino) -3-methoxy-2-methoxymethylpyridine (Example 25). Yield: 84%
  • Example 1 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4 (4 (2 (2,5,5-trimethyl-1,5-dioxane-2- yl) -ethoxy) phenyl) -1-tosyloxy-cyclohexane.
  • Example 2 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4 ⁇ 4 (tetrahydrofur (2) yl-methoxyjphenyl> -1-tosyloxy-cyclohexane.
  • Example 1 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4 (4 (dimethyl-tert-butylsilyloxy) phenyl) -1-tosyloxy-cyclohexane.
  • Example 2 was prepared analogously to Example 2 from 4-O-benzylhydroxylamino-3-methoxy-2-methoxymethyl-pyridine (Example 1) and trans-4 (4 (2,2-dimethoxyethoxy) phenyl) -1-tosyloxy-cyclohexane.
  • Example 1 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4 (4-but-2-oxy-phenyl) -1-tosyloxy-cyclohexane
  • Example 2 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4 [4 (2-ethoxyethoxy) phenyl] -1-tosyloxy-cyclohexane.
  • Example 2 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethyl-pyridine (Example 1) and trans-4- [4 (2 (2-methoxyethoxy) ethoxy) phenyl] -1-tosyloxy -cyclohexane.
  • Example 2 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4- (4-propoxyphenyl) -1-tosyloxy-cyclohexane. Yield: 50.3%
  • Example 2 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethylpyridine (Example 1) and trans-4- (4-isopropoxyphenyl) -1-tosyloxycyclohexane Yield: 54.6%
  • 1 H-NMR 100 MHz, CDCI 3 ): ⁇ : 8.2 (d, 1H), 7.1-7.4 (m, 9H), 6.8 (d, 1H), 4.7 (s , 2H), 4.6 (s, 2H), 4.5 (m, 1H), 3.9 (s, 3H), 3.5 (s, 3H), 2.8 (m, 1H), 1 , 5-2.2 (m, 8H), 1.3-1.4 (d, 6H) ppm.
  • Example 1 was prepared analogously to Example 2 from 4-O-benzyl-hydroxylamino-3-methoxy-2-methoxymethyl-pyridine (Example 1) and trans-4- (4-butoxyphenyl) -1-tosyloxycyclohexane
  • Example 20 was prepared analogously to Example 2 from 4-O-benzylhydroxylamino-3-bromo-2-methoxymethylpyridine (Example 20) and trans-4 (1,1,3, 3-tetramethylbutyl) -1-tosyloxy-cyclohexane.
  • Example 19 was prepared analogously to Example 2 from 4-O-benzylhydroxylamino-3-ethoxy-2-ethoxymethylpyridine (Example 19) and trans-4 (4-ethoxyphenyl) -1-tosyloxycyclohexane Yield: 15.9%
  • Example 21 was prepared analogously to Example 2 from 4-O-benzylhydroxylamino-3-methoxy-2-allyloxymethylpyridine (Example 21) and 4-trans-tert-butyl-1-tosyloxy-cyclohexane.
  • 1 H NMR 100 MHz, CDCI 3 ): ⁇ : 8.3 (s, 1 H), 7.3 (s, 5H), 7.4 (d, 1 H), 5.8-6.2 (m, 1H), 5.1 -5.4 (m, 2H), 4.7 (d, 2H), 4.1 (m, 2H), 3.9 (s, 3H), 3.8 m (1H), 1, 0-2, 1 (m, 9H), 0.9, (s, 9H) ppm.
  • Example 54 was prepared analogously to Example 2 from 4-O-benzylhydroxylamino-3-methoxy-2-allyloxymethylpyridine (Example 21) and 4-phenyl-1-tosyloxy-cyclohexane. Yield: 33.7% H-NMR (100 MHz, CDCI 3 ): ⁇ : 8.2 (d, 1 H), 7.2 (m, 6H), 5.8-6.2 (m, 1 H) ), 5.1 -5.4 (m, 2H), 4.7 (d, 2H), 4.1-4.2 (m, 2H), 3.9 (s, 3H), 3.9 ( m, 1H), 2.9 (m, 1H), 1.4-2.3 (m, 8H) ppm.
  • Example 54 Example 54
  • Example 56 The preparation was carried out analogously to Example 57 from 4- (4-oxocyclohexylamino) -3-methoxy-2-methoxymethylpyridine (Example 56) and O-benzylhydroxylamine.
  • Example 42 was prepared analogously to Example 5 from 4- [O-benzyl-N (4-cis- (4-propoxyphenyl) cyclohexyl) hydroxyamino] -3-methoxy-2-methoxymethyl-pyridine (Example 42). Yield: 75%
  • Example 70 4- (Spiro [5,5] undecan (3) yl) amino-3-chloro-2-methoxymethyl-pyridine
  • Example 47 was prepared analogously to Example 5 from 4- [O-benzyl-N (4-cis-phenylcyclohexyl) hydroxylamino] -3-ethoxy-2-ethoxymethylpyridine (Example 47)
  • Example 48 was prepared analogously to Example 5 from 4- [O-benzyl-N (4-cis (4-ethoxyphenyl) cyclohexyl) hydroxylamino] -3-ethoxy-2-ethoxymethylpyridine (Example 48). Yield: 76.3%
  • Example 53 was prepared analogously to Example 50 from 4- [O-benzyl-N (4-cis-phenylcyclohexyl) hydroxylamino] -3-methoxy-2-allyloxymethylpyridine (Example 53)
  • Example 52 was prepared analogously to Example 50 from 4- [O-benzyl-N (4-cis-tert-butylcyclohexyl) hydroxylamino] -3-methoxy-2-allyloxymethylpyridine (Example 52) Yield: 79.1%
  • Example 31 was prepared analogously to Example 50 from 4- [O-benzyl-N (4-cis-tert-butylcyclohexyl) hydroxylamino] -3-bromo-2-methoxymethylpyridine (Example 31). Yield: 36%
  • Example 32 was prepared analogously to Example 50 from 4- [O-benzyl-N (4-cis-phenylcyclohexyl) hydroxylamino] -3-bromo-2-methoxymethylpyridine (Example 32)
  • Example 45 was prepared analogously to Example 50 from 4- [O-benzyl-N (4-cis-tert.-amylcyclohexyl) hydroxylamino] -3-bromo-2-methoxymethylpyridine (Example 45) Yield: 52.3%
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 4-cis-but (2) yl-cyclohexylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 4-trans-but (2) -yl-cyclohexylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 4-cis-cyclohexyl-cyclohexylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 4-trans-cyclohexyl-cyclohexylamine.
  • Example 89 was prepared analogously to Example 89 from 2-methoxymethyl-3,4-dichloropyridine and 3-isoamyl-cyclopentylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 4- [4- (2-ethoxyethoxy) ethoxy] phenyl-cyclohexylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 2- (2,4-dimethyl) phenoxypropylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 1- (4-difluoromethoxyphenyl) propylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 2-methyl-3- (4-tert-butylphenyl) propylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 2 (2,3-dimethyl-4-ethoxyethyl) phenoxyethylamine.
  • Example 89/90 were prepared analogously to Example 89/90 from 2-methoxymethyl-3,4-dichloropyridine and 4-cis / trans-butyl-cyclohexylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 2-methyl-3 (4-isopropylphenyl) propylamine.
  • Example 84 was prepared analogously to Example 84 from 2-methoxymethyl-3,4-dichloropyridine and 4 [4 (4-fluorobenzylidene)] cyclohexylamine.
  • Phosphorus oxychloride was distilled off in vacuo, ice water was added to the residue, the aqueous solution was adjusted to pH 7.5-8 with 32% sodium hydroxide solution and the reaction product was extracted with ethyl acetate. The purification is carried out by column chromatography.
  • a dusting agent is obtained by mixing 10 parts by weight of active ingredient and 90 parts by weight of talc as an inert substance and comminuting them in a hammer mill.
  • a wettable powder which is readily dispersible in water is obtained by adding 25 parts by weight of active compound, 65 parts by weight of kaolin-containing quartz as the inert substance, 10 parts by weight of lignosulfonic acid potassium and 1 part by weight of oleylmethyl tauric acid sodium as the wetting agent. and dispersant mixes and grinds in a pin mill.
  • a dispersion concentrate which is easily dispersible in water is prepared by mixing 40 parts by weight of active compound with 7 parts by weight of a sulfosuccinic acid half-ester, 2 parts by weight of a lignosulfonic acid sodium salt and 51 parts by weight of water and in a attritor ground to a fineness of less than 5 microns.
  • An emulsifiable concentrate can be prepared from 15 parts by weight of active ingredient, 75 parts by weight of cyclohexanone as solvent and
  • Granules can be produced from 2 to 15 parts by weight of active ingredient and an inert granule carrier material such as attapulgite, pumice granules and / or quartz sand.
  • a suspension of the wettable powder from example b) having a solids content of 30 is expediently used and is sprayed onto the surface of an attapulgite granulate, dried and mixed intimately.
  • the proportion by weight of the wettable powder is approximately 5% and that of the inert carrier material approximately 95% of the finished granulate.
  • Tomato plants of the "Rheinlands Ruhm” cultivar were wetted to drip wet levels in the 3 to 4 leaf stage with aqueous suspensions of the claimed compounds. After drying, the plants were inoculated with a zoosporangia suspension of Phytophthora infestans and kept in a climatic chamber for 2 days under optimal infection conditions. The plants were then cultivated further in the greenhouse until the symptoms developed. The infection was assessed approximately 1 week after inoculation. The degree of infestation of the plants was expressed in% infected leaf area in comparison to the untreated, 100% infected control plants.
  • the plants were again placed in the climatic chamber overnight in order to stimulate the sporulation of the fungus. The infestation was then assessed. The degree of infestation was expressed in% affected leaf area compared to the untreated, 100% infected control plants.
  • Barley plants of the "Igri" variety were treated to runoff with an aqueous suspension of the claimed compounds at the 2-leaf stage. After the spray coating had dried on, the plants were inoculated with an aqueous spore suspension of Pyrenophora teres and for 16 hours in a climatic chamber at 100% rel. Incubated humidity. The infected plants were then in a greenhouse at 25 ° C and 80% rel. Humidity continued to be cultivated.
  • Barley plants were heavily inoculated in the 3-leaf stage with conidia of barley mildew (Erysiphe graminis f. Sp. Hordei) and placed in a greenhouse at 20 ° C and a relative humidity of 90 to 95%. 24 hours after inoculation, the plants were wetted uniformly with the compounds listed below in the stated active compound concentrations. After an incubation period of 10 days, the plants were examined for infestation with barley mildew. The degree of infestation was expressed in% infected leaf area compared to untreated, 100% infected control plants.
  • barley mildew Erysiphe graminis f. Sp. Hordei
  • the number x of the radicals R 1 , R 2 , R 3 and R 4 which are the same or different, is selected from the group consisting of
  • R 1 , R 2 , R 3 and R 4 which are the same or different, are selected from the group consisting of

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Plant Pathology (AREA)
  • Pest Control & Pesticides (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Health & Medical Sciences (AREA)
  • General Chemical & Material Sciences (AREA)
  • Wood Science & Technology (AREA)
  • Materials Engineering (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • General Health & Medical Sciences (AREA)
  • Dentistry (AREA)
  • Agronomy & Crop Science (AREA)
  • Zoology (AREA)
  • Environmental Sciences (AREA)
  • Nuclear Medicine, Radiotherapy & Molecular Imaging (AREA)
  • Veterinary Medicine (AREA)
  • Public Health (AREA)
  • Animal Behavior & Ethology (AREA)
  • Pharmacology & Pharmacy (AREA)
  • Medicinal Chemistry (AREA)
  • Oncology (AREA)
  • Communicable Diseases (AREA)
  • Agricultural Chemicals And Associated Chemicals (AREA)
  • Pharmaceuticals Containing Other Organic And Inorganic Compounds (AREA)
  • Plural Heterocyclic Compounds (AREA)

Abstract

Die Erfindung betrifft Verbindungen der Formel (1) und deren Salze, worin 1, 2, 3 oder 4 der Reste R?1, R2, R3 und R4¿ einen über -O-CH¿2?- oder -O-CO- gebundenen aliphatischen, alicyclischen oder araliphatischen Rest bedeuten und die übrigen dieser Reste H, Halogen, einen aliphatischen oder aromatischen Rest bedeuten, X für O, S oder gegebenenfalls substituiertes Imino stehen, Y eine Bindung oder einen bivalenten Rest bedeutet und Z für einen aromatischen Rest oder gegebenenfalls substituiertes Cycloalkyl oder Cycloalkenyl steht. Die Erfindung betrifft weiter Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, insbesondere als Insektizide, Akarizide und Fungizide.

Description

Beschreibung
Substituierte Pyridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
Die Erfindung betrifft neue substituierte 4-Amino- und 4-Hydroxypyridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel, insbesondere als Insektizide, Akarizide und Fungizide.
Es ist bereits bekannt, daß bestimmte substituierte 4-Amino- und 4-Hydroxypyridine eine fungizide, akarizide und insektizide Wirkung zeigen (vgl. WO 93/05050). Die biologische Wirkung dieser Verbindungen ist jedoch insbesondere bei niedrigen Aufwandmengen und Konzentrationen nicht in allen Anwendungsbereichen zufriedenstellend.
Es wurden neue substituierte 4-Amino- und 4-Hydroxypyridine der allgemeinen Formel 1 gefunden, die biologisch aktiv sind.
Die Erfindung betrifft daher Verbindungen der Formel 1 und deren Salze, worin (1 ) die Anzahl x der Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt wird aus der Gruppe bestehend aus
R-O-CH2-,
R-O-CO-,
Halogen-(C1-C4)-alkoxymethyl,
Halogen-(CrC4)-alkenyloxymethyl, Halogen-(C1-C4)-alkoxycarbonyl, Halogen-IC-, -C4)-alkenyloxycarbonyl und Cyano; und x 1 , 2, 3 oder 4 ist;
und die übrigen 4-x Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt werden aus der Gruppe bestehend aus
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
(CrC4)-Alkoxy,
(C2-C4)-Alkenyloxy,
Halogen-(CrC4)-alkyl,
Halogen-(C2-C4)-alkenyl,
Halogen-(C1-C4)-alkoxy,
Halogen-(C2-C4)-alkenyloxy
(CrC4)-Alkylthio,
(CrC4)-Alkylsulfinyl,
(CrC4)-Alkylsulfonyl,
Aryl, substituiertes Amino,
Halogen und
Wasserstoff; R (CrC10)-Alkyl,
(C2-C10)-Alkenyl,
(C2-C10)-Alkinyl,
(C3-C8)-Cycloalkyl oder
Aralkyl bedeutet; Aryl wie unten unter (5a) definiert ist;
Arylkyl Aryl-(CrC4)-alkyl bedeutet;
(2) X O, S, NH, NR oder NOR bedeutet und R wie oben unter (1 ) definiert ist. (3) Y - Z zusammen einen (C5-C12) Kohlenwasserstoff rest bedeutet, der unverzweigt oder verzweigt ist und bei dem eine oder mehrere, vorzugsweise bis zu drei CH2 durch Heteroatomgruppen wie O, NR5, S, SO, SO2 oder SiR6R7 ersetzt sein können, wobei R5 Wasserstoff, (C,-C4)- Alkyl oder (C1-C4)-Acyl, und R6 und R7, die gleich oder verschieden sind, unabhängig voneinander (C1-C4)-Alkyl, Phenyl oder substituiertes Phenyl bedeuten, und wobei dieser (C5-C12)-Kohlen Wasserstoff rest mit den möglichen vorgenannten Variationen (Ersatz durch Heteroatomrest(e)) gegebenenfalls mit einer oder mehreren, vorzugsweise bis zu drei gleichen oder verschiedenen Resten aus der Reihe
(CrC7)-Alkyl, (C2-C4)-Alkenyl, (C2-C4)-Alkinyl, (C3-C7)-Cycloalkyl, (C3-C7)-Cycloalkenyl, Halogen,
Halogen-(CrC4)-alkyl, Halogen-(C1-C4)-alkoxy, Hydroxy und
(C1-C4)-Acyl, substituiert ist; oder, falls von den vorstehenden Definitionen nicht umfaßt,
(4) Y eine Bindung oder ein bivalenter Kohlenwasserstoffrest mit 1 bis 6 C-Atomen ist, der mit einer oder mehreren, vorzugsweise bis zu drei gleichen oder verschiedenen Resten aus der Reihe
(CrC7)-Alkyl,
(C2-C4)-Alkenyl,
(C3-C7)-Alkinyl,
(C3-C7)-Cycloalkyl,
(C3-C7)-Cycloalkenyl,
Halogen,
Halogen-(CrC4)-alkyl, Halogen-(C-|-C4)-alkoxy,
Hydroxy und
(C1-C4)-Acyl substituiert ist; und
(5) Z
(a) Aryl, O-Aryl oder Aryl-(CrC4)-alkyl bedeutet, wobei Aryl eine Phenylgruppe ist, die gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu fünf, insbesondere bis zu drei gleichen oder verschiedenen Resten aus der Reihe
Halogen,
(C3-C8)-Cycloalkyl,
(C3-C8)-Cycloalkenyl,
Phenoxy, substituiertes Phenoxy,
Phenylthio, substituiertes Phenylthio,
Phenyl, substitutiertes Phenyl,
NO2, O -C "-R 88,
Acetoxy,
Hydroxy,
Cyano,
SiR9R10R1 1 ,
O-SiR9R10R1 1 ,
NR12R13
S(O)R14,
SO2R14,
(CrC12)-Alkyl,
(C2-C12)-Alkenyl,
(C-|-Cι2)-Alkoxy und substituiert ist; und
R8 (CrC7)-Alkyl, Halogen-(CrC7)-alkyl, (C3-C7)-Cycloalkyl, Halogen-(C3-C7)-cycloalkyl, (C1-C7)-Alkoxy, Phenyl oder substituiertes Phenyl bedeutet;
R9, R10 und R1 1 gleich oder verschieden sind und unabhängig voneinander (C1-C4)-Alkyl, Phenyl und/oder substituiertes Phenyl bedeuten;
R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (CrC4)-Alkyl und/oder (C1-C4)-Acyl bedeuten;
R14 (C.|-C10)-Alkyl, Phenyl oder substituiertes Phenyl bedeutet; wobei in (C C12)-Alkyl, (C2-C12)-Alkenyl, (CrC12)-Alkoxy und (C1-C12)-Alkylthio gegebenenfalls eine oder mehrere, vorzugsweise bis zu 3 CH2-Gruppen durch CO und/oder Heteroatome/Gruppen, wie O, S, SO, SO2, NR5 oder SiR6R7 ersetzt sind; R5, R6 und R7 haben die Bedeutung wie oben unter (3); der (C.ι-C.| )-Alkylrest, der (C.,-C1 )-Alkoxyrest und der (C.ι-C12)- Alkylthiorest mit oder ohne den vorgenannten Variationen (Ersatz durch Heteroatomrest(e) bzw. CO) außerdem mit einer oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur maximalen Anzahl an Resten gleichen oder verschiedenen der nachstehenden Resten aus der Reihe Halogen, Halogen-(C.,-C4)- alkoxy, Hydroxy, (C3-C8)-Cycloalkyl, (C3-C8)-Cycloalkenyl, (C,-C4)- Acyl, Phenoxy, substituiertes Phenoxy, Phenyl, substituiertes Phenyl, Phenylthio und substituiertes Phenylthio substituiert sein können; oder (b) (C3-C8)-Cycloalkyl oder (C5-C8)-Cycloalkenyl bedeutet, wobei eine CH2-Gruppe des Carbocyclus durch NR15 ersetzt sein kann; R15 Phenyl oder substituiertes Phenyl bedeutet und der (C3-C8)- Cycloalkyl- oder (C5-C8)-Cycloalkenyl-Rest gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur Maximalanzahl an gleichen oder verschiedenen
Resten aus der Reihe (CrC18)-Alkyl, (C2-C18)-Alkenyl, (CrC12)-Alkoxy, (C2-C12)-Acyl, (C-, -C, 2)-Alky l-oxycarbonyl, SiR9R10R1 1, NR16R17, Hydroxyl, Oxo, Halogen, Aryl,
(C C18)-Alkandiyl, (Cι-C18)-Alkandiyldioxy, (C.,-C13)-Alkyl-oxiιτιino, Aryl-(C-|-C4)-alkyl-oximino und
(C2-C18)-Alkyliden substituiert ist und in den genannten (C-|-Cι8)-, (C2-C18)-, (C-|-C1 )-, (C -C12)- und (C-|-C13)- Kohlenwasserstoff-Resten eine oder mehrere, vorzugsweise bis zu drei CH2-Gruppen durch Heteroatome/Gruppen, wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5, R6 und R7 die Bedeutung wie unter (3) haben und darüber hinaus 3 bis 8, vorzugsweise 3 bis 6 C-Atome dieser Kohlenwasserstoff- Reste und gegebenenfalls Heteroatomreste einen Cyclus bilden können und diese Kohlenwasserstoff-Reste mit oder ohne den Variationen (Ersatz durch Heteroatomrest(e) und/oder Cyclusbildung) gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur Maximalanzahl an gleichen oder verschiedenen Resten aus der Reihe Halogen, Halogenalkyl, Cycloalkyl, Acyl, Phenoxy, substituiertes Phenoxy, Phenyl, substituiertes Phenyl, Phenylthio und substituiertes Phenylthio substituiert sind;
R9, R10, R1 1 und Aryl die Bedeutungen wie unter (5 a) haben; und R16 und R17 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C-j-C6)-Alkyl, (C.|-C6)-
Alkoxy, (CrC4)-Acyl, (C3-C6)-Cycloalkyl, Phenyl und substituiertes Phenyl bedeuten.
In der obigen Formel 1 ist unter "Halogen" ein Fluor-, Chlor-, Brom- oder lodatom, vorzugsweise ein Fluor-, Chlor- oder Bromatom, insbesondere ein Fluor- oder Chloratom, zu verstehen;
unter dem Ausdruck "Alkyl" ein unverzweigter oder verzweigter Kohlenwasserstoff rest wie z. B. der Methyl-, Ethyl-, Propyl-, 1-Methylethyl-, 1 -Methylpropyl-, 2-Methylpropyl- oder 1 ,1-Dimethylethylrest, der Pentyl, 2-Methylbutyl- oder der 1 ,1 -Dimethylpropylrest, der Hexyl-, Heptyl-, Octylrest oder 1 , 1 ,3,3-Tetramethylbutylrest, der Nonyl-, Decyl-, Undecyl- oder Dodecylrest und dergleichen;
unter "Alkenyl" und "Alkinyl" von dessen Alkylresten abgeleitete ungesättigte Reste;
unter dem Ausdruck "Cycloalkyl" vorzugsweise Cyclopropyl-, Cyclobutyl-, Cyclopentyl-, Cyclohexyl-, Cycloheptyl- oder Cyclooctenylgruppe; unter dem Ausdruck "Alkoxy" eine Alkoxygruppe, deren Kohlenwasserstoffrest die unter dem Ausdruck "Alkyl" angegebene Bedeutung hat;
unter dem Ausdruck "Cycloalkoxy" eine Cycloalkoxygruppe, deren Kohlenwasserstoffrest die unter "Cycloalkyl" angegebene Bedeutung hat; unter dem Ausdruck "Alkylthio" eine Alkylthiogruppe, deren Kohlenwasserstoffrest die unter dem Ausdruck "Alkyl" angegebene Bedeutung hat;
unter dem Ausdruck "Halogenalkyl" eine unter dem Ausdruck "(C-j-C^-Alkyl" genannte Alkylgruppe, in der eines oder mehrere Wasserstoffatome durch die obengenannten Halogenatome, bevorzugt Chlor oder Fluor, ersetzt wird, wie beispielsweise die Trifluormethylgruppe, die 2,2,2-Trifluorethylgruppe, die Chlormethyl-, Fluormethylgruppe, die Difluormethylgruppe oder die 1 ,1 ,2,2- tetrafluorethylgruppe (entsprechendes gilt für "HalogenalkenyP);
unter dem Ausdruck "Halogenalkoxy" eine Halogenalkoxygruppe, deren Halogen-Kohlenwasserstoffrest die unter dem Ausdruck "Halogenalkyl" angegebene Bedeutung hat;
auch bei den anderen, hier im einzelnen nicht aufgeführten Resten mit dem Zusatz "Halogen" bedeutet dieser Zusatz, daß in diesen Resten ein, mehrere oder alle Wasserstoffatome durch Halogenatome ersetzt sind;
unter "substituiertem Phenyl" einen Phenylrest, der einen oder mehrere, vorzugsweise bis zu drei gleiche oder verschiedene Substituenten aus der Reihe Halogen, (CrC4)-Alkyl, Halogen-(CrC4)-alkyl, Hydroxy-(CrC4)-alkyl, (CrC4)- Alkoxy, Halogen-(C1-C4)-alkoxy, Phenoxy, Phenyl, Nitro, Hydroxy, Cyano, (C1-C4)-Alkanoyl, Benzoyl, (CrC4)-Alkanoyloxy, (C1-C4)-Alkoxycarbonyl trägt;
unter "substituiertem Amino" eine Aminogruppe, die mit eifner oder zwei (C1-C4)-Alkylgruppen oder einer (C1-C4)-Alkanoylgruppe substituiert ist;
unter einem "bivalenten Kohlenwasserstoffrest" einen von n-Alkanen oder n-Alkenen durch Entfernen je eines Wasserstoffatoms von den beiden endständigen Kohlenstoffatomen der Kette abgeleiteter Rest, wie Methylen, Ethandiyl, Trimethylen, Tetramethylen; unter "Acyl" insbesondere einen Alkanoylrest, wie Acetyl, Propionyl oder Butyryl, oder einen Alkyloxycarbonylrest.
Die oben gegebene Erläuterung gilt entsprechend für Homologe bzw. deren abgeleitete Reste.
Die Substituenten an den unter (5b) definierten Cycloalkyl- oder Cycloalkenylresten können eis oder trans bezüglich Y stehen; bevorzugt ist die cis-Stellung. Wenn nur ein Substituente vorhanden ist, sollte er in Cyclohexyl, vorzugsweise in der 4-Position stehen und cis-konfiguiert sein.
Bevorzugt sind Verbindungen der Formel 1 und deren Salze, worin
(1 ) die Anzahl x der Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt wird aus der Gruppe bestehend aus R-O-CH2-, R-O-CO-,
Halogen-(C1-C )-alkoxymethyl, Halogen-(C1-C4)-alkenyloxymethyl, Halogen-(C1-C4)-alkoxycarbonyl, Halogen-(C,-C4)-alkenyloxycarbonyl und Cyano; und x 1 , 2, 3 oder 4 ist;
und die übrigen 4-x Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt werden aus der Gruppe bestehend aus
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
(CrC4)-Alkoxy,
(C2-C4)-Alkenyloxy,
Halogen-(CrC4)-alkyl,
Halogen-(C2-C4)-alkenyl, Halogen-(C1-C4)-alkoxy, Halogen-(C2-C4)-alkenyloxy Halogen und Wasserstoff; R (CrC7)-Alkyl,
(C2-C7)-Alkenyl, (C2-C7)-Alkinyl oder (C3-C6)-Cycloalkyl bedeutet;
(2) X O, S, NH, NR oder NOR bedeutet;
(3) Y - Z zusammen wie oben definiert ist und gegebenenfalls mit einer oder mehreren, vorzugsweise bis zu drei gleichen oder verschiedenen Resten aus der Reihe
(CrC7)-Alkyl, Halogen,
Halogen-(CrC4)-alkyl, Halogen-(C1-C4)-alkoxy, und
(C1-C4)-Acyl substituiert ist; oder, falls von den vorstehenden Definitionen nicht umfaßt,
(4) Y eine Bindung oder ein bivalenter Kohlenwasserstoffrest mit 1 bis 6 C-Atomen ist, der mit einer oder mehreren, vorzugsweise bis zu drei gleichen oder verschiedenen Resten aus der Reihe:
(CrC7)-Alkyl, Halogen,
Halogen-(C1-C4)-alkyl und Halogen-(CrC4)-alkoxy, substituiert ist; und (5) Z
(a) Aryl, O-Aryl oder Aryl-(C1-C4)-alkyl bedeutet, wobei Aryl eine Phenylgruppe ist, die gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu fünf, insbesondere bis zu drei gleichen oder verschiedenen Resten aus der Reihe Halogen,
(C3-C8)-Cycloalkyl, (C3-C8)-Cycloalkenyl, Phenoxy, substituiertes Phenoxy, Phenyl, substitutiertes Phenyl, O
-C '-R 88,
SiR9Rl0R1 1 ,
O-SiR9R10R1 1 ,
NR12R13
(CrC12)-Alkyl,
(C2-C12)-Alkenyl und
(C,-C12)-Alkoxy substituiert ist; und
R8 (CrC7)-Alkyl, Halogen-(CrC7)-alkyl, (C5-C6)-Cycloalkyl, (Cr
C7)-Alkoxy, Phenyl oder substituiertes Phenyl bedeutet;
R9, R10 und R1 1 gleich oder verschieden sind und unabhängig voneinander (C C4)-Alkyl, Phenyl und/oder substituiertes Phenyl bedeuten;
R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C1-C4)-Alkyl und/oder (C1-C4)-Acyl bedeuten; wobei in (C C12)-Alkyl, (C2-C12)-Alkenyl und (Cl-C12)-Alkoxy gegebenenfalls eine oder mehrere, vorzugsweise bis zu 3 CH2-
Gruppen durch CO und/oder Heteroatome/Gruppen, wie O, S, SO, SO2, NR5 oder SiR6R7 ersetzt sind;
R5, R6 und R7 haben die Bedeutung wie oben unter (3); der (C- Cj^-Alkylrest und der (C^C^j-Alkoxyrest mit oder ohne den vorgenannten Variationen (Ersatz durch Heteroatomrest(e)) außerdem mit einer oder mehreren, vorzugsweise bis zu drei, im
Falle von Halogen bis zur maximalen Anzahl an Resten gleichen oder verschiedenen der nachstehenden Resten aus der Reihe
Halogen, Halogen-(C1-C4)-alkoxy, (C3-C6)-Cycloalkyl, (C1-C4)-Acyl,
Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl substituiert sein können; oder Halogen F oder Cl bedeutet;
(b) (C3-C6)-Cycloalkyl oder (C5-C8)-Cycloalkenyl bedeutet, wobei eine CH2-Gruppe des Carbocyclus durch NR15 ersetzt sein kann; R15 Phenyl oder substituiertes Phenyl bedeutet und der (C3-C8)- Cycloalkyl- oder (C5-C8)-Cycloalkenyl-Rest gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur Maximalanzahl an gleichen oder verschiedenen Resten aus der Reihe
(CrC18)-Alkyl,
(C2-C18)-Alkenyl,
(CrC12)-Alkoxy,
(C2-C12)-Acyl,
(C-,-C12)-Alkyl-oxycarbonyl,
SiR9R10R1 1,
Hydroxyl,
Oxo,
Halogen,
Aryl,
(CrC18)-Alkandiyl,
(C C18)-Alkandiyldioxy
(C-|-C13)-Alkyl-oximino,
Aryl-(C1-C4)-alkyloximino und (C2-C18)-Alkyliden substituiert sind und in den genannten (C-|-C18)-, (C2-C-| 8)-, (C-,-C12)-, (C2-C-| 2)- und (Cι-C-,3)- Kohlenwasserstoff-Resten eine oder mehrere, vorzugsweise bis zu drei CH2-Gruppen durch Heteroatome/Gruppen, wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5, R6 und R7 die Bedeutung wie unter (3) haben und darüber hinaus 3 bis 6 C-Atome und gegebenenfalls Heteroatomreste dieser Kohlenwasserstoff-Reste einen Cyclus bilden können und diese Kohlenwasserstoff-Reste mit oder ohne den Variationen (Ersatz durch Heteroatomrest(e) und/oder Cyclusbildung) gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur Maximalanzahl an gleichen oder verschiedenen Resten aus der Reihe Halogen, Halogenalkyl, Cycloalkyl, Acyl, Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl substituiert sind;
R9, R10, R1 1 und Aryl die Bedeutungen wie unter (5 a) haben.
Besonders bevorzugt sind daher Verbindungen der Formel 1 und deren Salze, worin
(1 ) die Anzahl x der Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt wird aus der Gruppe bestehend aus
R-O-CH2-,
R-O-CO-,
Halogen-(C.,-C4)-alkoxymethyl,
Halogen-(C1-C4)-alkenyloxymethyl,
Halogen-(C1-C4)-alkoxycarbonyl,
Halogen-(C1-C4)-alkenyloxycarbonyl und Cyano; und x 1 , 2, 3 oder 4 ist; und die übrigen 4-x der Reste R1, R2, R3 und R4 unabhängig voneinander für gleiche oder verschiedene Reste aus der Reihe
(CrC3)-Alkyl,
(C2-C3)-Alkenyl,
(CrC3)-Alkoxy,
(C -C3)-Alkenyloxy,
Halogen-fCj-C^-alkyl,
Halogen-(C2-C9)-alkenyl,
Halogen-(C-|-C3)-alkoxy,
Halogen-(C2-C3)-alkenyloxy
Halogen und
Wasserstoff stehen; R (CrC5)-Alkyl,
(C2-C5)-Alkenyl oder
(C3-C6)-Cycloalkyl bedeutet;
(2) X O oder NH bedeutet;
(3) Y - Z zusammen einen (C5-C12) Kohlenwasserstoffrest bedeutet, der unverzweigt oder verzweigt ist und bei dem eine oder mehrere, vorzugsweise bis zu drei CH2 durch Heteroatomgruppen wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5 (CrC4)-Acyl, und R6 und R7, die gleich oder verschieden sind, unabhängig voneinander (C1-C4)-Alkyl, Phenyl oder substituiertes Phenyl bedeuten, und wobei dieser (C5-C12)- Kohlenwasserstoffrest mit den möglichen vorgenannten Variationen (Ersatz durch Heteroatomrest(e)) gegebenenfalls mit einer oder mehreren, vorzugsweise bis zu drei gleichen oder verschiedenen Resten aus der Reihe
(CrC5)-Alkyl, Fluor, Chlor,
Halogen-(C1-C4)-alkyl und Halogen-(C1-C3)-alkoxy substituiert ist; oder, falls von den vorstehenden Definitionen nicht umfaßt,
(4) Y eine Bindung oder ein bivalenter Kohlenwasserstoffrest mit 1 bis 6 C-Atomen ist, der mit einer oder mehreren, vorzugsweise bis zu drei gleichen oder verschiedenen Resten aus der Reihe
(CrC5)-Alkyl, Fluor, Chlor,
Halogen-(C1-C3)-alkyl und Halogen-(C1-C3)-alkoxy, substituiert ist; und
(5) Z
(a) Aryl oder O-Aryl bedeutet, wobei Aryl eine Phenylgruppe ist, die gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu fünf, insbesondere bis zu drei gleichen oder verschiedenen Resten aus der Reihe
Halogen,
(C3-C6)-Cycloalkyl,
Phenoxy, substituiertes Phenoxy,
Phenyl, substitutiertes Phenyl,
SiR9R10R1 1 ,
O-SiR9RloR1 1 ,
(CrC6)-Alkyl und
(CrC7)-Alkoxy substituiert ist; und R9, R10 und R1 1 gleich oder verschieden sind und unabhängig voneinander (C1-C4)-Alkyl, Phenyl und/oder substituiertes Phenyl bedeuten; wobei in (C-|-C6)-Alkyl und (C-,-C7)- Alkoxy gegebenenfalls eine oder mehrere, vorzugsweise bis zu 3 CH2-Gruppen durch Heteroatome/Gruppen, wie O, S, NR5 oder SiR6R7 ersetzt sind; R5, R6 und R7 haben die Bedeutung wie oben unter (3); der (CrC6)-Alkylrest und der (C1-C7)-Alkoxyrest mit oder ohne den vorgenannten Variationen (Ersatz durch Heteroatomrest(e)) außerdem mit einer oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur maximalen Anzahl an Resten gleichen oder verschiedenen der nachstehenden Resten aus der Reihe: Halogen, (C3-C6)-Cycloalkyl, Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl substituiert sein kann; Halogen Fluor oder Brom ist; oder
(b) (C3-C6)-CycloaIkyl bedeutet, wobei eine CH2-Gruppe des Carbocyclus durch NR15 ersetzt sein kann; R15 Phenyl oder substituiertes Phenyl bedeutet und der (C3-C8)- Cycloalkyl- Rest gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur Maximalanzahl an gleichen oder verschiedenen Resten aus der Reihe
(CrC12)-Alkyl,
(C2-C18)-Alkenyl,
(CrC12)-Alkoxy,
(C2-C12)-Acyl,
SiR9R10R1 1 ,
Hydroxyl,
Oxo,
Halogen,
Aryl,
(Cj-C^-Alkandiyl,
(C,-C18)-Alkandiyldioxy (C-,-C18)-Alkyl-oximino, Aryl-(C.|-C4)-alkyloximino und
(C2-C12)-Alkyliden substituiert ist und in den genannten (CrC12)-, (C2-C12)- und (CrC8)-Kohlenwasserstoff-Resten eine oder mehrere, vorzugsweise bis zu drei CH2-Gruppen durch Heteroatome/Gruppen, wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5, R6 und R7 die Bedeutung wie unter (3) haben und darüber hinaus 3 bis 6 C-Atome und/oder Heteroatomrest(e) dieser Kohlenwasserstoff-Reste einen Cyclus bilden können und diese Kohlenwasserstoff-Reste mit oder ohne den Variationen (Ersatz durch Heteroatomrest(e) und/oder Cyclusbildung) gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur Maximalanzahl an gleichen oder verschiedenen Resten aus der Reihe Halogen, Halogenalkyl, Cycloalkyl, Acyl, Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl substituiert sind;
R9, R10, R1 1 und Aryl die Bedeutungen wie unter (5 a) haben.
Die vorliegende Erfindung betrifft die Verbindungen der Formel 1 in Form der freien Base oder eines Säureadditionssalzes. Säuren, die zur Salzbildung herangezogen werden können, sind anorganische Säuren, wie Salzsäure, Bromwasserstoffsäure, Salpetersäure, Schwefelsäure, Phosphorsäure oder organische Säuren wie Ameisensäure, Essigsäure, Propionsäure, Malonsäure, Oxalsäure, Fumarsäure, Adipinsäure, Stearinsäure, Olsäure, Methansulfonsäure, Benzolsulfonsäure oder Toluolsulfonsäure.
Die Verbindungen der Formel 1 weisen zum Teil ein oder mehrere asymmetrische Kohlenstoffatome auf. Es können daher Racemate und Diastereomere auftreten. Die Erfindung umfaßt sowohl die reinen Isomeren als auch deren Gemische. Die Gemische von Diastereomeren können nach gebräuchlichen Methoden, z. B. durch selektive Kristallisation aus geeigneten Lösungsmitteln oder durch Chromatographie in die Komponenten aufgetrennt werden. Racemate können nach üblichen Methoden in die Enantiomeren aufgetrennt werden, so z. B. durch Salzbildung mit einer optisch aktiven Säure, Trennung der diastereomeren Salze und Freisetzung der reinen Enantiomeren mittels einer Base.
Die Erfindung betrifft weiterhin ein Verfahren zur Herstellung von Verbindungen der Formel 1 , das dadurch gekennzeichnet ist, daß man Verbindungen der Formel 2
in der R1 , R2, R3 und R4 wie oben definiert sind und L eine Abgangsgruppe ist, mit den entsprechenden Aminen, Alkoholen, Phenolen oder Mercaptanen umsetzt, oder unter Bildung von Verbindungen der Formel 1 , worin Z wie unter (5b) definiert ist, solche Verbindungen der Formel 1 , worin R1 , R2, R3, R4, X und Y wie oben definiert sind und Z für einen ungesättigten carbocyclischen, wie Cycloalkyl oder Cycloalkenyl unter (5b) definiert substituierten Rest, vorzugsweise einen auf diese Weise substituierten Phenylrest steht, hydriert, und die so erhaltenen Verbindungen der Formel 1 gegebenenfalls in ihr Salz überführt.
Die oben beschriebene Substitutionsreaktion ist im Prinzip bekannt. Die Abgangsgruppe ist in weiten Grenzen variierbar und kann beispielsweise ein Halogenatom wie Fluor, Chlor, Brom oder Jod bedeuten oder Alkylthio wie Methyl- oder Ethylthio, oder Alkansulfonyloxy wie Methan-, Trifluormethan- oder Ethansulfonyloxy oder Arylsulfonyloxy, wie Benzolsulfonyloxy oder Toluolsulfonyloxy oder Alkylsulfonyl wie Methyl- oder Ethylsulfonyl oder Arylsulfonyl wie Phenyl- oder Toluolsulfonyl. Die Verbindungen der Formel 2 können nach bekannten Methoden hergestellt werden [z. B. J. Med., Chem. 32, 1970 (1989), J. Org. Chem. 2£ 776 (1964), J. Prakt. Chem. 331 . 369 (1989), J. Org. Chem. 1_4, 97 (1949), Chem. Ber. 74, 1 1 1 1 (1941 )]. Bevorzugt werden bei der Herstellung der Verbindungen 1 Verbindungen 2 eingesetzt, bei denen L = Cl Ist.
Die Umsetzungen mit Alkoholen und Mercaptanen werden in Gegenwart einer starken Base wie Natriumhydrid, Kaliumhydrid oder Kalium-tert.butylat in einem inerten aprotischen Lösungsmittel wie DMF, NMP, DMSO, THF, Dioxan oder Sulfolan bei einer Temperatur zwischen 0 und 80°C ausgeführt; bei der Umsetzung mit Alkoholaten kann es auch günstig sein, den dazugehörigen Alkohol als Lösungsmittel zu benutzen.
Die Bedingungen für die Umsetzungen von 2 mit Aminen sind abhängig von den Substituenten R1 bis R4 in 2 und von der Struktur der eingesetzten Amine; sind die Reste R1 bis R4 in 2 inert, so kann 2 mit einem Überschuß Amin mit oder ohne Lösungsmittel bei Temperaturen zwischen 80 und 200°C zu 1 umgesetzt werden. Der Überschuß an Amin kann reduziert und die Temperatur erniedrigt werden, wenn saure Katalysatoren wie Phenol [J. Amer. Chem. Soc. 73, 2623 (1951 )] oder Salze wie Triethylammoniumchlorid oder Ammoniumchlorid verwendet werden. Als Lösungsmittel eignen sich z. B. DMF, N,N-Dimethylacetamid, DMSO, NMP, Dioxan, Diethylenglykoldimethylether, Triethylenglykol-dimethylether, Sulfolan, Toluol, Chlorbenzol oder Xylol. Es können auch Gemische der genannten Lösungsmittel verwendet werden.
Ist oder sind einer oder mehrere Reste von R1 bis R4 in 2 eine RO-Funktion, so erhält man mit Aminen nach den oben genannten Methoden schlechte Ausbeuten an 1 oder andere nicht erwünschte Reaktionsprodukte; Ausnahmen sind die Reaktionen mit Anilinen und O-Alkyl- bzw. O-Aralkyl-hydroxylaminen, die zu den Produkten 3 und 4 führen (R' ist ein Substituent am Phenyl).
Die Verbindungen der Formel 3 lassen sich nach bekannten Methoden [z. B. F. Zymalkowski, Katalytische Hydrierungen, S. 191 , Enke Verlag, Stuttgart 1965] zu Verbindungen der Formel 1 katalytisch hydrieren (Schema 1 ).
Schema 1
Die dabei anfallenden cis/trans-Gemische können durch Kristallisation oder Chromatographie getrennt werden.
Die Verbindungen der Formel 4 sind geeignete Zwischenprodukte, um eine breite Auswahl von Verbindungen der Formel 1 mit X = NH herzustellen (Schema 2) Schema 2:
1 ( X = N H )
Auf der Stufe 1 werden die Produkte der Formel 4 in Gegenwart von Basen wie Natriumhydrid oder Kalium-tert.butylat mit Alkylierungsmitteln der Formel L-Y-Z selektiv am Stickstoffsubstituenten in 4-Stellung des Pyridinringes zu 5 umgesetzt; in der Formel L-Y-Z bedeuten L Halogen oder R-SO3, Y wie oben definiert (außer Aryl) und Z wie oben angegeben. Bei der Verwendung von sterisch einheitlichen Alkylierungsmitteln sind auf diese Weise auch sterisch einheitliche Reaktionsprodukte zu erhalten. Eingesetzt werden bei dieser Reaktion Lösungsmittel wie z. B. DMF, DMSO, THF, Dimethoxyethan, Dioxan, Diethylenglykol-dimethylether, Sulfolan oder Toluol. Es können auch Gemische der genannten Lösungsmittel verwendet werden. Auf der Stufe 2 werden die Verbindungen der Formel 5 nach bekannten Methoden [R. Huisgen et al. B. 101 , 2559 (1968) C. H. Rayburn, W. R. Harlau, H. R. Haumer Am. Soc. 72, 1721 (1950)] reduktiv in die Verbindungen der Formel 1 umgewandelt.
Die eingesetzten Amine, Alkohole und Alkylierungsmittel sind nach literaturbekannten Methoden zugänglich. Die Alkohole können beispielsweise hergestellt werden durch Reduktion einer Carbonylgruppe mit einem geeigneten Reduktionsmittel, beispielsweise einem komplexen Metallhydrid oder im Falle eines Aldehyds oder Ketons auch mit Wasserstoff und einem Hydrierkatalysator. Weitere Möglichkeiten sind die Umsetzung einer metallorganischen Verbindung mit einer Carbonylgruppe oder einem Oxiran. Zur Darstellung von Cyclohexanol-Derivaten können auch geeignete substituierte Phenole mit Wasserstoff in Gegenwart eines Hydrierkatalysators umgesetzt werden.
Die Amine können beispielsweise hergestellt werden durch Reduktion eines Oxims oder eines Nitrils mit einem geeigneten Reduktionsmittel, beispielsweise einem komplexen Metallhydrid oder Wasserstoff in Gegenwart eines Hydrierkatalysators, reduktive Aminierung oder Leuckart-Wallach-Reaktion eines Aldehyds oder Ketons oder Gabriel-Reaktion eines Alkylhalogenids oder -Tosylats. Zur Darstellung von Cyclohexylamin-Derivaten können auch geeignete substituierte Aniline mit Wasserstoff in Gegenwart eines Hydrierkatalysators umgesetzt werden.
Die erfindungsgemäßen Verbindungen der Formel 1 zeichnen sich durch eine hervorragende fungizide Wirkung aus. Bereits in das pflanzliche Gewebe eingedrungene pilzliche Krankheitserreger lassen sich erfolgreich kurativ bekämpfen. Dies ist besonders wichtig und vorteilhaft bei solchen Pilzkrankheiten, die nach eingetretener Infektion mit den sonst üblichen Fungiziden nicht mehr wirksam bekämpft werden können. Das Wirkungsspektrum der beanspruchten Verbindungen erfaßt verschiedene wirtschaftlich bedeutende, phytopathogene Pilze, wie z. B. Phytophthora infestans, Plasmopara viticola, aber auch Erysiphe graminis und Pyrenophora teres. Die erfindungsgemäßen Verbindungen eignen sich daneben auch für den Einsatz in technischen Bereichen, beispielsweise als Holzschutzmittel, als Konservierungsmittel, in Dichtmassen, in Anstrichfarben, in Kühlschmiermittel für die Metallbearbeitung oder als Konservierungsmittel in Bohr- und Schneidölen.
Gegenstand der Erfindung sind auch Mittel, die die Verbindungen der Formel 1 neben geeigneten Formulierungshilfsmitteln enthalten. Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formel 1 im allgemeinen zu 1 bis 95 Gew.-%.
Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher in Frage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SC), Stäubemittel (DP), Beizmittel, Granulate in Form von wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder.
Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in: Winnacker-Küchler, "chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972 bis 73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carrier", 2nd Ed., Darland Books, caldwell N.J.; H. v. Olphen, "Introduction to Clay Colloid Chemistry, 2nd Ed., J. Wiley & Sons, N.Y.; Marschen, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's "Detergents and Emulsifiers Annual", MG Publ. Corp., Ridgewood N.Y.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z. B. in Form einer Fertigformulierung oder als Tankmix.
Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdünnungs- oder Inertstoff noch Netzmittel, z. B. polyoxethylierte Alkylphenole, polyoxethyiierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z. B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin- sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z. B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden:
Alkylarylsulfonsaure Calzium-Salze wie Ca- dodecylbenzolsulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester,
Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxld-Ethylenoxid- Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z. B. Talkum, natürlichen Tonen wie Kaolin, Bentonit oder Pyropyllit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z. B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
In Spritzpulvern beträgt die Wirkstoffkonzentration z. B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe.
Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z. B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser.
Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt. Mit den äußeren Bedingen wie Temperatur, Feuchtigkeit u. a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z. B. zwischen 0,005 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,01 und 5 kg/ha.
Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen entweder allein oder in Kombination mit weiteren, literaturbekannten Fungiziden angewendet werden.
Als literaturbekannte Fungizide, die erfindungsgemäß mit den Verbindungen der Formel 5 kombiniert werden können, sind z. B. folgende Produkte zu nennen: Aldimorph, Andoprim, Anilazine, BAS 480F, BAS 490F, Benalaxyl, Benodanil, Benomyl, Binapacryl, Bitertanol, Bromuconazol, Buthiobate, Captafol, Captan, Carbendazim, Carboxin, CGA 173506, Chlobenzthiazone, Chlorthalonil, Cymoxanil, Cyproconazole, Cyprofuram, Dichlofluanid, Dichlomezin, Diclobutrazol, Diethofencarb, Difenconazol (CGA 169374), Difluconazole, Dimethirimol, Dimethomorph, Diniconazole, Dinocap, Dithianon, Dodemorph, Dodine, Edifenfos, Ethirimol, Etridiazol, Fenarimol, Fenfuram, Fenpiclonil, Fenpropidin, Fenpropimorph, Fentinacetate, Fentinhydroxide, Ferimzone (TF164), Fluazinam, Fluobenzimine, Fluquinconazole, Fluorimide, Flusilazole, FlutolaniH Flutriafol, Folpet, Fosetylaluminium, Fuberidazole, Fulsulfamide (MT-F651 ), Furalaxyl, Furconazol, Furmecyclox, Guazatine, Hexaconazole, ICI ASS 04, Imazalil, Imiben-Conazole, Iprobenfos, Iprodione, Isoprothiolane, KNF 317, Kupferverbindungen wie Cu-oxychlorid, Oxine-Cu, Cu-oxide, Mancozeb, Maneb, Mepanipyrim (KIF 3535), Metconazol, Mepronil, Metalaxyl, Methasulfocarb, Methfuroxam, MON 24000, Myclobutanil, Nabam, Nitrothalidopropyl, Nuarimol, Ofurace, Oxadixyl, Oxycarboxin, Penconazol, Pencycuron, PP 969, Probenazole, Propineb, Prochloraz, Procymidon, Propamocarb, Propiconazol, Prothiocarb, Pyracarbolid, Pyrazophos, Pyrifenox, Pyroquilon,' Rabenzazole, RH7592, Schwefel, Tebuconazole, TF 167, Thiabendazole, Thicyofen, Thiophanatemethyl, Thiram, Tolclofos-methyl, Tolylfluanid, Triadimefon, Triadimenol, Tricyclazole, Tridemorph, Triflumizol, Triforine, Validamycin, Vinchlozolin, XRD 563, Zineb, Natriumdodecylsulfonate, Natriumdodecylsulfat, Natrium-C13/C15-alkoholethersulfonat, Natriumcetostearylphosphatester, Dioctyl-natrium-sulfosuccinat, Natrium- isopropylnaphthalenesulfonat, Natrium-methylenebisnaphthalenesulfonat, Cetyltrimethyl-ammoniumchlorid, Salze von langkettigen primären, sekundären oder tertiären Aminen, Alkyl-propyleneamine, Lauryl-pyrimidiniumbromid, ethoxilierte quarternierte Fettamine, Alkyl-dimethyl-benzyl-ammoniumchlorid und 1 -Hydroxyethyl-2-alkylimidazolin.
Die oben genannten Kombinationspartner stellen bekannte Wirkstoffe dar, die zum großen Teil in Ch.R Worthing, U.S.B. Walker, The Pesticide Manual, 7. Auflage (1983), British Crop Protection Council beschrieben sind.
Darüber hinaus kann der erfindungsgemäße Wirkstoff in seinen handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischung mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden oder Herbiziden vorliegen. Zu den Insektiziden zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u. a. Bevorzugte Mischungspartner sind:
1 . Aus der Gruppe der Phosphorverbindungen
Acephate, Azamethiphos, Azinphos-ethyl, Azinphosmethyl, Bromophos, Bromophos-ethyl, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Demeton, Demeton-S-methyl, Demeton-S-methyl sulfone, Dialifos, Diazinon, Dichlorvos, Dicrotophos, O,O-1 ,2,2,2-tetrachlorethylphosphorthioate (SD 208 304), Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitriothion, Fensulfothion, Fenthion, Fonofos, Formothion, Heptenophos, Isozophos, Isothioate, Isoxathion, Malathion, Methacrifos, Methamidophos, Methidation, Salithion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosfolan, Phosmet, Phosphamidon, Phoxim, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Propaphos, Proetamphos, Prothiofos, Pyraclofos, Pyridapenthion, Quinalphos, Sulprofos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorphon, Vamidothion.
2. Aus der Gruppe der Carbamate
Aldicarb, 2-sec-Butylphenylmethylcarbamate (BPMC), Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Benfuracarb, Ethiofencarb, Furathiocarb, Isoprocarb, Methomyl, 5-Methyl-m-cumenyl-butyryl- (methyl)carbamate, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Ethyl 4,6,9-triaza-4-benzyl-6,10-dimethyl-8-oxa-7-oxo-5, 1 1-dithia-9-dodecenoate (OK 135), 1 -Methylthio-(ethylideneamino)-N- methyl-N-(morpholinothio)-carbamate (UC 51717).
3. Aus der Gruppe der Carbonsäureester
Allethrin, Alphametrin, 5-Benzyl-3-furylmethyl-(E)-(1 R)-cis- 2,2-di-methyl-3-(2-oxothiolan-3-ylidenemethyl)-cyclopropane-carboxylate, Bioallethrin, Bioallethrin((S)-cyclopentenylisomer), Bioresmethrin, Biphenate, (RS)-l-Cyano-1 -(6-phenoxy-2-pyridyl)-methyl-(1 RS)-trans-3- (4-tert. butylphenyl)-2,2-di-methylcyclopropanecarboxylate (NCI 85193), Cycloprothrin, Cyhalothrin, Cypermethrin, Cyphenothrin, Deltamethrin, Empenthrin, Esfenvalerate, Fenfluthrin, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate (D-isomer), Permethrin, Pheothrin ((R)-Isomer), d-Prallethrin, Pyrethrine (natürliche Produkte), Resmethrin, Tefluthrin, Tetramethrin, Tralomethrin.
4. Aus der Gruppe der Amidine Amitraz, Chlordimeform
5. Aus der Gruppe der Zinnverbindungen Cyhexatin, Fenbutatinoxide 6. Sonstige
Abamectin, Bacillus thuringiensis, Bensultap, Binapacryl, Bromopropylate, Buprofezin, Camphechlor, Cartap, Chlorobenzilate, Chlorfluazuron, 2-(4- (Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlorfentezine, Cyclopropancarbonsäure-(2-naphthylmethyl)ester (Ro12-0470), Cyromazin, N-(3,5-Dichlor-4-(1 ,1 ,2,3,3,3-hexafluor-1-propyloxy) phenyl)carbamoyl)-2-chlorbenzcarboximidsäureethylester, DDT, Dicofol, N-(N-(3,5-Di-chlor-4-(1 ,1 ,2,2-tetrafluorethoxy)phenylamino)carbonyl)-2,6- difluorbenzamid (XRD 473), Diflubenzuron, N-(2,3-Dihydro-3-methyl-1 ,3- thiazol-2-ylidene)-2,4-xylidine, Dinobuton, Dinocap, Endosulfan, Ethofenprox, (4-Ethoxyphenyl) (dimethyl) (3-(3-phenoxyphenyl)propyl)- silan, (4-Ethoxyphenyl) (3-(4-fluoro-3-phenoxyphenyl)propyl)dimethylsilan, Fenoxycarb, 2-Fluoro-5-(4-(4-ethoxyphenyl-4-methyl- 1-pentyl)diphenylether (MTI 800), Granulöse- und Kernpolyederviren, Fenthiocarb, Flubenzimine, Flucycloxuron, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramechylnon (AG 217300), Ivermectin, 2-Nitromethyl- 4,5-dihydro-6H-thiazin (SD 52618), 2-Nitromethyl-3,4-dihydrothiazol (SD 35651 ), 2-Nitromethylene-1 ,2-thiazinan-3-ylcarbamaldehyde (WL 108477), Propargite, Teflubenzuron, Tetradifon, Tetrasul, Thiocyclam, Triflumuron.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten
Anwendungsformen kann in weiten Bereichen variieren, die
Wirkstoffkonzentration der Anwendungsformen kann von 0,0001 bis zu
95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,001 und 1 Gew.-% liegen. Die
Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen
Weise.
Die Wirkstoffe eignen sich bei guter Pflanzenverträglichkeit und günstiger Warmblütertoxizität zur Bekämpfung von tierischen Schädlingen, insbesondere Insekten, Spinnentieren, Helminthen und Mollusken, ganz besonders bevorzugt zur Bekämpfung von Insekten und Spinnentieren, die in der Landwirtschaft, bei der Tierzucht, in Forsten, im Vorrats- und Materialschutz sowie auf dem Hygienesektor vorkommen. Sie sind gegen normal sensible und resistente Arten sowie alle oder einzelne Entwicklungsstadien wirksam. Zu den oben erwähnten Schädlingen gehören:
Aus der Ordnung der Acarina z. B. Acarus siro, Agras spp., Omithodoros spp.,
Dermanyssus gallinae, Eriophyes ribis, Phyllocoptruta oleivora, Boophilus spp.,
Rhipicephalus spp., Amblyomma spp., Hyalomma spp., Ixodes spp., Psoroptes spp., Chorioptes spp., Sarcoptes spp., Tarsonemus spp., Bryobia praetiosa,
Panonychus spp., Tetranychus spp., Eotetranychus spp., Oligonychus spp.,
Eutetranychus spp.
Aus der Ordnung der Isopoda, z. B. Oniscus asellus, Armadillidium vulgäre,
Porcellio scaber.
Aus der Ordnung der Diplopoda z. B. Blaniulus guttulatus.
Aus der Ordnung der Chilopoda z. B. Geophilus carpophagus, Scutigera spp.
Aus der Ordnung der Symphyla z. B. Scutigerella immaculata.
Aus der Ordung der Thysanura z. B. Lepisma saccharina.
Aus der Ordnung der Collembola z. B. Onychiurus armatus.
Aus der Ordnung der Orthoptera z. B. Blatta orientalis,
Periplaneta americana, Leucophaea maderae, Blattella germanica, Acheta domesticus, Gryllotalpa spp., Locusta migratoria migratorioides, Melanoplus differentialis,
Schistocerca gregaria.
Aus der Ordnung des Isoptera z. B. Reticulitermes spp..
Aus der Ordnung der Anoplura z. B. Phylloxera vastatrix, Pemphigus spp.,
Pediculus humanus corporis, Haematopinus spp., Linognathus spp..
Aus der Ordnung der Mallophaga z. B. Trichodectes spp., Damalinea spp..
Aus der Ordnung der Thysanoptera z. B. Hercinothrips femoralis, Thrips tabaci.
Aus der Ordnung der Heteroptera z. B. Eurygaster spp., Dysdercus intermedius,
Piesma quadrata, Cimex lectularius, Rhodnius prolixus, Triatoma spp..
Aus der Ordnung der Homoptera z. B. Aleurodes brassicae, Bemisia tabaci,
Trialeurodes vaporariorum, Aphis gossypii, Brevicoryne brassicae, Cryptomyzus ribis, Doralis fabae, Doralis pomi, Eriosoma lanigerum, Hyalopterus arundinis, Macrosiphum avenae, Myzus spp., Phorodon humuli, Rhopalosiphum padi, Empoasca spp., Euscelus bilobatus, Nephotettix cincticeps, Lecanium corni, Saissetia oleae, Laodelphax striatellus, Nilaparvata lugens, Aonidiella aurantii, Aspidiotus hederae, Pseudococcus spp., Psylla spp. Aus der Ordnung der Lepidoptera z. B. Pectinophora gossypiella, Bupalus piniarius, Cheimatobia brumata, Lithocolletis blancardella, Hyponomeuta padella, Plutella maculipennis, Malacosoma neustria, Euproctis chrysorrhoea, Lymantria spp., Bucculatrix thurberiella, Phyllocnistis citrella, Agrotis spp., Euxoa spp., Feltia spp., Earias insulana, Heliothis spp., Laphygma exigua, Mamestra brassicae, Panolis flammea, Prodenia litura, Spodoptera spp., Trichoplusia ni, Carpocapsa pomonella, Pieris spp., Chilo spp., Pyrausta nubilalis, Ephestia kuehnieila, Galleria mellonella, Cacoecia podana, Capua reticulana, Choristoneura fumiferana, Clysia ambiguella, Homona magnanima, Tortrix viridana.
Aus der Ordnung der Coleoptera z. B. Anobium punctatum, Rhizopertha dominica, Bruchidius obtectus, Acanthoscelides obtectus, Hylotrupes bajulus, Agelastica alni, Leptinotarsa decemlineata, Phaedon cochleariae, Diabrotica spp., Psylloides chrysocephala, Epilachna varivestis, Atomaria spp., Oryzaephilus surinamensis, Anthonumus spp., Sitophilus spp., Otiorrhynchus sulcatus, Cosmopolites sordidus, Ceuthorrhynchus assimilis, Hypera postica, Dermestes spp., Trogoderma spp., Anthrenus spp., Attagenus spp., Lyctus spp., Meligethes aeneus, Ptinus spp., Niptus hololeucus, Gibbium psylloides, Tribolium spp., Tenebrio molitor, Agriotes spp., Conoderus spp., Melolontha melolontha, Amphimallon solstitialis, Costelytra zealandica. Aus der Ordnung der Hymenoptera z. B. Diprion spp., Hoplocampa spp., Lasius spp., Monomorium pharaonis, Vespa spp..
Aus der Ordnung der Diptera z. B. Aedes spp., Anopheles spp., Culex spp., Drosophila melanogaster, Musca spp., Fannia spp., Calliphora erythrocephala, Lucilia spp., Chrysomyia spp., Cuterebra spp., Gastrophilus spp., Hypobosca spp., Stomoxys spp., Oestrus spp., Hypoderma spp., Tabanus spp., Tannia spp., Bibio hortulanus, Oscinella frit, Phorbia spp., Pegomyia hyoscyami, Ceratitis capitata, Dacus oleae, Tipula paludosa.
Aus der Ordnung der Siphonaptera z. B. Xenopsylla cheopis, Ceratophyllus spp.. Aus der Ordnung der Arachnida z. B. Scorpio maurus, Latrodectus mactans. Aus der Klasse der Helminthen z. B. Haemonchus, Trichostrongulus, Ostertagia. Cooperia, Chabertia, Strongyloides, Oesophagostomum, Hyostrongulus, Ancylostoma, Ascaris und Heterakis sowie Fasciola und pflanzenschädigende Nematoden z. B. solche der Gattungen Meloidogyne, Heterodera, Ditylenchus, Aphelenchoides, Radopholus, Globodera, Pratylenchus, Longidorus und Xiphinema.
Aus der Klasse der Gastropoda z. B. Deroceras spp., Arion spp., Lymnaea spp., Galba spp., Succinea spp., Biomphalaria spp., Bulinus spp., Oncomelania spp.. Aus der Klasse der Bivalva z. B. Dreissena spp..
Die Erfindung betrifft auch insektizide und akarizide Mittel, die die Verbindungen der Formel I neben geeigneten Formulierungshilfsmitteln enthalten.
Die erfindungsgemäßen Mittel enthalten die Wirkstoffe der Formeln I im allgemeinen zu 1 bis 95 Gew.-%.
Sie können auf verschiedene Art formuliert werden, je nachdem wie es durch die biologischen und/oder chemisch-physikalischen Parameter vorgegeben ist. Als Formulierungsmöglichkeiten kommen daher infrage: Spritzpulver (WP), emulgierbare Konzentrate (EC), wäßrige Lösungen (SC), Emulsionen, versprühbare Lösungen, Dispersionen auf Öl- oder Wasserbasis (SC), Suspoemulsionen (SC), Stäubemittel (DP), Beizmittel, Granulate in Form von Mikro-, Sprüh-, Aufzugs- und Adsorptionsgranulaten, wasserdispergierbare Granulate (WG), ULV-Formulierungen, Mikrokapseln, Wachse oder Köder. Diese einzelnen Formulierungstypen sind im Prinzip bekannt und werden beispielsweise beschrieben in:
Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986; van Falkenberg, "Pesticides Formulations", Marcel Dekker N.Y., 2nd Ed. 1972-73; K. Martens, "Spray Drying Handbook", 3rd Ed. 1979, G. Goodwin Ltd. London.
Die notwendigen Formulierungshilfsmittel wie Inertmaterialien, Tenside, Lösungsmittel und weitere Zusatzstoffe sind ebenfalls bekannt und werden beispielsweise beschrieben in: Watkins, "Handbook of Insecticide Dust Diluents and Carriers", 2nd Ed., Darland Books, Caldwell N.J.; H.v. Olphen, "Introduction to Clay Colloid Chemistry", 2nd Ed., J. Wiley & Sons, N.Y.; Marschen, "Solvents Guide", 2nd Ed., Interscience, N.Y. 1950; McCutcheon's, "Detergents and Emulsifiers Annual", MC Publ. Corp., Ridgewood N.J.; Sisley and Wood, "Encyclopedia of Surface Active Agents", Chem. Publ. Co. Inc., N.Y. 1964; Schönfeldt, "Grenzflächenaktive Äthylenoxidaddukte", Wiss. Verlagsgesell., Stuttgart 1976; Winnacker-Küchler, "Chemische Technologie", Band 7, C. Hauser Verlag München, 4. Aufl. 1986.
Auf der Basis dieser Formulierungen lassen sich auch Kombinationen mit anderen pestizid wirksamen Stoffen, Düngemitteln und/oder Wachstumsregulatoren herstellen, z. B. in Form einer Fertigformulierung oder als Tankmix. Spritzpulver sind in Wasser gleichmäßig dispergierbare Präparate, die neben dem Wirkstoff außer einem Verdunnungs- oder Inertstoff noch Netzmittel, z. B. polyoxethylierte Alkylphenole, polyoxethylierte Fettalkohole, Alkyl- oder Alkylphenol-sulfonate und Dispergiermittel, z. B. ligninsulfonsaures Natrium, 2,2'-dinaphthylmethan-6,6'-disulfonsaures Natrium, dibutylnaphthalin- sulfonsaures Natrium oder auch oleylmethyltaurinsaures Natrium enthalten. Emulgierbare Konzentrate werden durch Auflösen des Wirkstoffes in einem organischen Lösungsmittel, z. B. Butanol, Cyclohexanon, Dimethylformamid, Xylol oder auch höhersiedenden Aromaten oder Kohlenwasserstoffen unter Zusatz von einem oder mehreren Emulgatoren hergestellt. Als Emulgatoren können beispielsweise verwendet werden: Alkylarylsulfonsaure Calcium-Salze wie Ca-dodecylbenzol-sulfonat oder nichtionische Emulgatoren wie Fettsäurepolyglykolester, Alkylarylpolyglykolether, Fettalkoholpolyglykolether, Propylenoxid-Ethylenoxid-Kondensationsprodukte, Alkylpoiyether, Sorbitanfettsäureester, Polyoxyethylensorbitan-Fettsäureester oder Polyoxethylensorbitester.
Stäubemittel erhält man durch Vermählen des Wirkstoffes mit fein verteilten festen Stoffen, z. B. Talkum, natürlichen Tonen wie Kaolin, Bentonit, Pyrophyllit oder Diatomeenerde. Granulate können entweder durch Verdüsen des Wirkstoffes auf adsorptionsfähiges, granuliertes Inertmaterial hergestellt werden oder durch Aufbringen von Wirkstoffkonzentraten mittels Klebemitteln, z. B. Polyvinylalkohol, polyacrylsaurem Natrium oder auch Mineralölen, auf die Oberfläche von Trägerstoffen wie Sand, Kaolinite oder von granuliertem Inertmaterial. Auch können geeignete Wirkstoffe in der für die Herstellung von Düngemittelgranulaten üblichen Weise - gewünschtenfalls in Mischung mit Düngemitteln - granuliert werden.
In Spritzpulvern beträgt die Wirkstoffkonzentration z. B. etwa 10 bis 90 Gew.-%, der Rest zu 100 Gew.-% besteht aus üblichen Formulierungsbestandteilen. Bei emulgierbaren Konzentraten kann die Wirkstoffkonzentration etwa 5 bis 80 Gew.-% betragen. Staubförmige Formulierungen enthalten meistens 5 bis 20 Gew.-% an Wirkstoff, versprühbare Lösungen etwa 2 bis 20 Gew.-%. Bei Granulaten hängt der Wirkstoffgehalt zum Teil davon ab, ob die wirksame Verbindung flüssig oder fest vorliegt und welche Granulierhilfsmittel, Füllstoffe usw. verwendet werden.
Daneben enthalten die genannten Wirkstofformulierungen gegebenenfalls die jeweils üblichen Haft-, Netz-, Dispergier-, Emulgier-, Penetrations-, Lösungsmittel, Füll- oder Trägerstoffe. Zur Anwendung werden die in handelsüblicher Form vorliegenden Konzentrate gegebenenfalls in üblicher Weise verdünnt, z. B. bei Spritzpulvern, emulgierbaren Konzentraten, Dispersionen und teilweise auch bei Mikrogranulaten mittels Wasser. Staubförmige und granulierte Zubereitungen sowie versprühbare Lösungen werden vor der Anwendung üblicherweise nicht mehr mit weiteren inerten Stoffen verdünnt.
Mit den äußeren Bedingungen wie Temperatur, Feuchtigkeit u.a. variiert die erforderliche Aufwandmenge. Sie kann innerhalb weiter Grenzen schwanken, z. B. zwischen 0,001 und 10,0 kg/ha oder mehr Aktivsubstanz, vorzugsweise liegt sie jedoch zwischen 0,005 und 5 kg/ha.
Die erfindungsgemäßen Wirkstoffe können in ihren handelsüblichen Formulierungen sowie in den aus diesen Formulierungen bereiteten Anwendungsformen in Mischungen mit anderen Wirkstoffen, wie Insektiziden, Lockstoffen, Sterilantien, Akariziden, Nematiziden, Fungiziden, wachstumsregulierenden Stoffen oder Herbiziden vorliegen.
Zu den Schädlingsbekämpfungsmitteln zählen beispielsweise Phosphorsäureester, Carbamate, Carbonsäureester, Formamidine, Zinnverbindungen, durch Mikroorganismen hergestellte Stoffe u.a.. Bevorzugte Mischungspartner sind
1. aus der Gruppe der Phosphorverbindungen
Acephate, Azamethiphos, Azinphos-ethyl, Azinphosmethyl, Bromophos, Bromophos-ethyl, Chlorfenvinphos, Chlormephos, Chlorpyrifos, Chlorpyrifos-methyl, Demeton, Demeton-S-methyl, Demeton-S-methyl sulphone, Dialifos, Diazinon, Dichlorvos, Dicrotophos, O,O-1 ,2,2,2-tetrachlorethylρhosphorthioate (SD 208 304), Dimethoate, Disulfoton, EPN, Ethion, Ethoprophos, Etrimfos, Famphur, Fenamiphos, Fenitrothion, Fensulfothion, Fenthion, Fonofos, Formothion, Heptenophos, Isazophos, Isothioate, Isoxathion, Malathion, Methacrifos, Methamidophos, Methidathion, Salithion, Mevinphos, Monocrotophos, Naled, Omethoate, Oxydemeton-methyl, Parathion, Parathion-methyl, Phenthoate, Phorate, Phosalone, Phosfolan, Phosmet, Phosphamidon, Phoxim, Pirimiphos-ethyl, Pirimiphos-methyl, Profenofos, Propaphos, Proetamphos, Prothiofos, Pyraclofos, Pyridapenthion, Quinalphos, Sulprofos, Temephos, Terbufos, Tetrachlorvinphos, Thiometon, Triazophos, Trichlorphon, Vamidothion;
2. aus der Gruppe der Carbamate
Aldicarb, 2-sec-Butylphenylmethylcarbamate (BPMC), Carbaryl, Carbofuran, Carbosulfan, Cloethocarb, Benfuracarb, Ethiofencarb, Furathiocarb, Isoprocarb, Methomyl, 5-Methyl-m-cu-menylbutyryl(methyl)carbamate, Oxamyl, Pirimicarb, Propoxur, Thiodicarb, Thiofanox, Ethyl 4,6,9-triaza-4-benzyl-6, 10-dimethyl-8- oxa7-oxo-5,1 1 -dithia-9-dodecenoate (OK 135), I-Methylthio(ethylideneamino)- N-methyl-N-(morpholinothio)carbamate (UC 51717);
3. aus der Gruppe der Carbonsäureester
Allethrin, Alphametrin, 5-Benzyl-3-furylmethyl-(E)-(1 R)-cis-2,2-di-methyl- 3-(2-oxothiolan-3-ylidenemethyl)cyclopropanecarboxylate, Bioallethrin, Bioallethrin((S)-cyclopentylisomer), Bioresmethrin, Biphenate, (RS)-1-Cyano-1-(6- phenoxy-2-pyridyl)methyl-(1 RS)-trans-3-(4-tert.-butylphenyl)-2,2- dimethylcyclopropanecarboxylate (NCI 85193), Cycloprothrin, Cyhalothrin, Cypermethrin, Cyphenothrin, Deltamethrin, Empenthrin, Esfenvalerate, Fenfluthrin, Fenpropathrin, Fenvalerate, Flucythrinate, Flumethrin, Fluvalinate (D-isomer), Permethrin, Pheothrin ((R)-Isomer), d-Pralethrin, Pyrethrine (natürliche Produkte), Resmethrin, Tefluthrin, Tetramethrin, Tralomethrin;
4. aus der Gruppe der Amidine Amitraz, Chlordimeform; 5. aus der Gruppe der Zinnverbindungen Cyhexatin, Fenbutatinoxide;
6. Sonstige
Abamectin, Bacillus thuringiensis, Bensultap, Binapacryl, Bromopropylate, Buprofezin, Camphechlor, Cartap, Chlorobenzilate, Chlorfluazuron, 2-(4-(Chlorphenyl)-4,5-diphenylthiophen (UBI-T 930), Chlorfentezine, Cyclopropancarbonsäure-(2-naphthylmethyl)ester (Ro12-0470), Cyromazin, N-(3,5-Dichlor-4-( 1 , 1 , 2,3,3, 3-hexafluor-1 -propyloxy)phenyl)carbamoyl)-2- chlorbenzcarboximidsäureethylester, DDT, Dicofol, N-(N-(3,5-Di-chlor-4- (1 , 1 ,2,2-tetrafluorethoxy)phenylamino)carbonyl)-2,6-difluorbenzamid (XRD 473), Diflubenzuron, N-(2,3-Dihydro-3-methyl-1 ,3-thiazol-2-ylidene)-2,4-xylidine, Dinobuton, Dinocap, Endosulfan, Ethofenprox, (4-Ethoxyphenyl)(dimethyl)(3-(3- phenoxyphenyl)propyl)silan, (4-Ethoxyphenyl) (3-(4-fluoro- 3-phenoxyphenyl)propyl)dimethylsilan, Fenoxycarb, 2-Fluoro-5-(4- (4-ethoxyphenyl)-4-methyl-1 -pentyl)diphenylether (MTI 800), Granulöse- und Kernpolyederviren, Fenthiocarb, Flubenzimine, Flucycloxuron, Flufenoxuron, Gamma-HCH, Hexythiazox, Hydramechylnon (AC 217300), Ivermectin, 2-Nitromethyl-4,5-dihydro-6H-thiazin (SD 52618),
2-Nitromethyl-3,4-dihydrothiazol (SD 35651 ), 2-Nitromethylene-1 ,2-thiazinan-3- ylcarbamaldehyde (WL 108477), Propargite, Teflubenzuron, Tetradifon, Tetrasul, Thiocyclam, Triflumuron.
Der Wirkstoffgehalt der aus den handelsüblichen Formulierungen bereiteten Anwendungsformen kann von 0,00000001 bis zu 95 Gew.-% Wirkstoff, vorzugsweise zwischen 0,00001 und 1 Gew.-% liegen.
Die Anwendung geschieht in einer den Anwendungsformen angepaßten üblichen Weise. Die erfindungsgemäßen Wirkstoffe eignen sich auch zur Bekämpfung von Endo- und Ektoparasiten auf dem veterinärmedizinischen Gebiet bzw. auf dem Gebiet der Tierhaltung.
Die Anwendung der erfindungsgemäßen Wirkstoffe geschieht hier in bekannter Weise wie durch orale Anwendung in Form von beispielsweise Tabletten, Kapseln, Tränken, Granulaten, durch dermale Anwendung in Form beispielsweise des Tauchens (Dippen), Sprühens (Sprayen), Aufgießen (pour-on and spot-on) und des Einpuderns sowie durch parenterale Anwendung in Form beispielsweise der Injektion.
Die erfindungsgemäßen neuen Verbindungen der Formel I können demgemäß auch besonders vorteilhaft in der Viehhaltung (z. B. Rinder, Schafe, Schweine und Geflügel wie Hühner, Gänse usw.) eingesetzt werden. In einer bevorzugten Ausführungsform der Erfindung werden den Tieren die neuen Verbindungen, gegebenenfalls in geeigneten Formulierungen (vgl. oben) und gegebenenfalls mit dem Trinkwasser oder Futter oral verabreicht. Da eine Ausscheidung im Kot in wirksamer Weise erfolgt, läßt sich auf diese Weise sehr einfach die Entwicklung von Insekten im Kot der Tiere verhindern. Die jeweils geeigneten Dosierungen und Formulierungen sind insbesondere von der Art und dem Entwicklungsstadium der Nutztiere und auch vom Befallsdruck abhängig und lassen sich nach den üblichen Methoden leicht ermitteln und festlegen. Die neuen Verbindungen können bei Rindern z. B. in Dosierungen von 0,01 bis 1 mg/kg Körpergewicht eingesetzt werden.
Die folgenden Beispiele dienen zur Erläuterung der Erfindung, ohne daß diese darauf beschränkt wäre. A. Chemische Beispiele:
Beispiel 1 4-O-Benzylhydroxylamino-3-methoxy-2-methoxymethylpyridin
13 g 4-Chlor-3-methoxy-2-methoxymethylpyridin, 50 g Phenol und 30 g O-Benzylhydroxylamin werden 4 Stunden unter Stickstoff auf 1 15 bis 120°C erhitzt. Nach dem Abkühlen wird der Ansatz in eine Lösung von 32 g NaOH in 200 ml Wasser gegossen. Das Produkt wird mit Methylenchlorid extrahiert. Der nach dem Abdestillieren des Methylenchlorids und des überschüssigen O-Benzylhydroxylamins verbleibende Rückstand wird durch Säulenchromatographie an Kieselgel mit Ethylacetat gereinigt. 14 g = 74 %
1H-HMR (100 MHz, CDCI3) = 8,2 (d, 1 H), 7,4 (s, 5H), 7,0 (d, 2H), 4,9 (s, 2H),
4.5 (s, 2H), 3,7 (s, 3H), 3,4 (s, 3H) ppm
Beispiel 2
4-[O-Benzyl-N-(4-cis-tert.-butylcyclohexyl)-hydroxylamino]-3-methoxy-2- methoxymethylpyridin
Zu 2,8 g Kalium-tert.-butylat in 10 ml absolutem DMSO tropft man unter Stickstoff die Lösung von 5,4 g 4-O-Benzylhydroxylamino- 3-methoxy-2-methoxymethylpyridin in 10 ml absolutes Tetrahydrofuran. Anschließend tropft man die Lösung von 8,2 g 4-trans-tert.-Butyl-O- tosylcyclohexanol in 15 ml absolutes THF zu und rührt sie 14 Stunden bei 50°C. Danach wird das THF im Vakuum abdestilliert und der Rückstand mit Wasser und Methylenchlorid aufgearbeitet. Die Methylenchloridphase wird über Kieselgel gereinigt. Ausbeute: 3,5 g = 43 %.
1H-NMR (100 MHz, CDCI3) = 8,3 (d, 1 H), 7,3 (d, 1 H), 7,3 (s, 5H), 4,7 (s, 2H),
4.6 (s, 2H), 3,9 (s, 3H), 3,7 (m, 1 H), 3,5 (s, 3H), 0,9 bis 2,1 (m, 9H), 0,8 (s, 9H) ppm Beispiel 3
4-[O-Benzyl-N-(4-cis-( 1 ,1 ,3, 3-tetramethylbutyl)-cyclohexyl]-hydroxylamino-3- methoxy-2-methoxymethylpyridin
wurde dargestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy-2- methoxymethylpyridin und trans-4-( 1 ,1 ,3, 3-TetramethylbutyD- O-tosylcyclohexanol. Ausbeute: 26 %
1H-NMR (100 MHz, CDCI3) = 8,3 (d, 1 H), 7,4 (d, 1 H), 7,3 (s, 5H), 4,7 (s, 2H), 4,6 (s, 2H), 3,9 (s, 3H), 3,7 (m, 1 H), 3,5 (s, 3H), 1 ,4 bis 2,1 (m, 9H), 0,9 und 1 ,0 (2s, 15H) ppm
Beispiel 4
4-[O-Benzyl-N-(4-cis-tert.-amylcyclohexyl)]-hydroxylamino-3-methoxy-2- methoxy-methylpyridin-Hydrochlorid
wurde dargestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy- 2-methoxymethylpyridin und trans-4-tert.-amyl-O-tosylcyclohexan. Ausbeute: 35 %
1H-NMR (100 MHz, CDCI3) = 8,3 (t, 1 H), 7,6 (d, 1 H), 7,4 (s, 5H), 5,4 (m, 1 H), 4,8 (s, 4H), 4,4 (m, 1 H), 3,8 (s, 3H), 3,6 (s, 3H), 1 ,0 bis 2,1 (m, 9H), 0,8 (s, t, 9H) ppm
Beispiel 5
4-[4-cis-( 1 , 1 ,3, 3-Tetramethylbutyl)-cyclohexylamino]-3-methoxy-2-methoxy- methylpyridin-Hydrochlorid
1 ,2 g 4-[O-Benzyl-N-(4-cis-(1 ,1 ,3,3-Tetramethylbutyl))-cyciohexyl]- hydroxylamino-3-methoxy-2-methoxymethylpyridin werden in 20 ml Methanol mit 0,5 g Raney-Nickel bei Normaldruck bis zum Ende der Wasserstoffaufnahme hydriert. Die filtrierte Lösung wird eingeengt im Vakuum und der Rückstand in Hexan gelöst. Auf Zugabe von etherischer HCI fällt das Hydrochlorid aus. Es wird abgesaugt, mit Ether gewaschen und getrocknet. 0,8 g = 85 %
1H-NMR (100 MHz, CDCI3) = 8, 1 (t, 1 H), 6,7 (d, 1 H), 5,9 (m, 1 H), 4,9 (s, 2H), 3,9 (s, 3H), 3,9 (m, 1 H), 3,6 (s, 3H), 1 ,0 bis 2,1 (m, 9H), 1 ,0 (2s, 15H) ppm
Beispiel 6 4-(4-cis-tert.-Butylcyclohexylamino)-3-methoxy-2-methoxymethylpyridin
wurde analog Beispiel 5 hergestellt aus 4-[O-Benzyl-N-(4-cis- tert.-butylcyclohexyl)-hydroxylamino]-3-methoxy-2-methoxy-methylpyridin (Beispiel 2) Ausbeute: 90 %
1H-NMR (100 MHz, CDCI3) = 8,2 (t, 1 H), 6,8 (d, 1 H), 5,9 (m, 1 H), 4,8 (s, 2H), 3,9 (s, 3H), 3,9 (m, 1 H), 3,6 (s, 3H), 1 ,0 bis 2,1 (m, 9H), 0,9 (s, 9H) ppm
Beispiel 7
4-[4-cis-( 1 , 1 -Dimethy lprop-( 1 )-yl)-cyclohexylamino]-3-methoxy-2- methoxymethylpyridin
wurde analog Beispiel 5 hergestellt aus 4-[O-Benzyl-N-(4-cis-tert.- amylcyclohexyl)]-hydroxylamino-3-methoxy-2-methoxymethylpyridin (Beispiel 4).
Die freie Base wurde aus der Lösung des Hydrochlorids in Methylenchlorid durch Schütteln mit Natriumhydrogencarbonatlösung in Freiheit gesetzt.
1H-NMR (100 MHz, CDCI3) = 8,0 (d, 1 H), 6,5 (d, 1 H), 5,8 (d, 1 H), 4,5 (s, 2H), 3,8 (s, 3H), 3,7 (m, 1 H), 3,5 (s, 3H), 1 , 1 bis 2,1 (m, 9H), 0,8 (s, t, 9H) ppm Beispiel 8
Ethyl -2,6-dimethyl-4-(cis-4-tert.-butyl-cyclohexylamino)-nicotinat
2, 1 g Ethyl-4-chlor-2,6-dimethylnicotinat werden unter Stickstoff mit 4,7 g 4-cis-tert.-Butylcyclohexylamin 3 Stunden auf 170 bis 180°C erhitzt. Nach dem Abkühlen wird die sirupöse Masse mit Wasser und Methylenchlorid ausgeschüttelt, die organische Phase über CaCI2 getrocknet und das Produkt durch Säulenchromatographie isoliert (Kieselgel/Toluol : Ethylacetat 3 : 1 ). Ausbeute: 1 ,8 g
1 H-NMR (100 MHz, CDCI3) = 0,85 (s, 9H), 1 ,37 (t, 3H), 2,37 und 2,60 (2s, 6H), 3,70 (m, 1 H), 4,33 (q, 2H) ppm
Beispiel 9 Ethyl-2-methyl-4-(cis-4-tert.-amyl-cyclohexylamino)-nicotinat
2,0 g 4-Chlor-2-methyl-3-ethoxycarbonyl-pyridin und 1 ,7 g cis-4-tert.-Amylcyclohexan sowie katalytische Mengen Ammoniumchlorid werden 10 Stunden auf 100°C erhitzt. Nach dem Abkühlen wird in 20 ml Methanol aufgenommen und mit 2N Natronlauge neutralisiert. Die so erhaltene Reaktionsmischung wird im Vakuum zur Trockene gebracht und die freie Base mit Dichlormethan extrahiert. Nach dem Trocknen mit Na2SO4, Filtration und Entfernen des Lösungsmittels verbleiben 3,0 g Sirup.
1H-NMR (100 MHz, CDCI3) = 8,2 (d, 1 H), 7,2 (d, 1 H), 4,4 (q, 2H), 3,6 (m, 1 H), 1 ,4 (t, 3H) ppm
Beispiel 10 Ethyl-2-methyl-4-(cis-4-phenyl-cyclohexylamino)-nicotinat
Die Darstellung erfolgte analog Beispiel 9 aus 4-Chlor-2-methyl-3- ethoxycarbonylpyridin und 4-cis-Phenylcyclohexylamin Fp.: 191 °C Beispiel 1 1 2-Methoxymethyl-3-methoxy-4-(4-cis-tert.-butyl-cyclohexyloxy)-pyridin
Zu 0,36 g (12 mMol) NaH (80 %ig) In 25 ml DMSO wird bei 25°C eine Mischung aus 1 ,88 g (10 mMol) 2-Methoxymethyl-3-methoxy-4-chlor-pyridin, 2,03 g (13 mMol) 4-cis-tert.-Butyl-cyclohexanol und 15 ml DMSO getropft. Anschließend wird 6 Stunden bei 60°C gerührt. Zur Aufarbeitung wird bei 20 bis 25 °C gesättigte Ammoniumchloridlösung zugegeben und mit Ethylacetat extrahiert. Das Reaktionsprodukt wird chromatographisch (SiO2; zunächst EtOAc/CH2CI2 [1 : 3] dann EtOAc) gereinigt. Ausbeute: 1 ,23 g (40 %)
1H-NMR (CDCI3) = 8,2 (d, 1 H), 6,8 (d, 1 H), 4,6 (s, 2H), 4,2 (m, 1 H), 3,8 (s, 3H), 3,5 (s, 1 H), 0,9 - 2,3 (m, 9H), 0,9 (s, 9H)
Beispiel 12 Ethyl-2,6-dimethyl-4-[2-(2,4-dimethyiphenoxy)-ethylamino]-nicotinat
wurde dargestellt analog Beispiel 8 aus Ethyl-4-chlor-2,6-dimethylnicotinat und 2-(2,4-Dimethylphenoxy)-ethylamin.
Beispiel 13 Ethyl-2,6-dimethyl-4-(2,2,6,6-tetramethylpiperidin-(4)-ylamino)-nicotinat
wurde dargestellt analog Beispiel 8 aus Ethyl-4-chlor-2,6-dimethylnicotinat und 2,2,6,6-Tetramethyl-4-aminopiperidin. Fp.: 89 bis 90°C
Beispiel 14 Ethyl-2,6-dimethyl-4-[2-methyl-3-(4-tert.-butylcyclohexyl)-propylamino]-nicotinat
wurde dargestellt analog Beispiel 8 aus Ethyl-4-chlor-2,6-dimethylnicotinat und 2-Methyl-3-(4-tert.-butylcyclohexyl)-propylamin. n^3: 1 ,4738 Beispiel 15 Ethyl-2,6-dimethyl-4-(dec(2)ylamino)-nicotinat
wurde dargestellt analog Beispiel 8 aus Ethyl-4-chlor-2,6-dimethylnlcotinat und 2-Aminodecan. n^3: 1 ,4700
Beispiel 16 Ethyl-2,6-dimethyl-4-(4-phenylcyclohexylamino)-nicotinat
wurde hergestellt analog Beispiel 8 aus Ethyl-4-chlor-2,6-dimethylnicotinat und 4-Phenylcyclohexylamin. n^3: 1 ,5389
Beispiel 17 Ethyl-2,6-dimethyl-4-[N-(4-butylphenyl)-piperidin(4)ylamino]-nicotinat
wurde hergestellt analog Beispiel 8 aus Ethyl-4-chlor-2,6-dimethylnicotinat und 4-Amino-N-(4-butylphenyl)-piperidin. n^3: 1 ,5400
Beispiel 18 2-Acetoxymethyl-3-methoxy-4-(4-cis-tert.-butyl-cyclohexyloxy)-piperidin
4,16 g (15 mMol) 2-Methyl-3-methoxy-4-(4-cis-tert.-butylcyclohexyloxy)-pyridin werden in 100 ml CH2CI2 bei 25°C mit 7,45 g (23,75 Mmol) m-Chlorperbenzoesäure (55 %ig) versetzt und bei dieser Temperatur 28 Stunden gerührt. Nach dem Waschen mit gesättigter NaHCO3-Lösung, dem Abdampfen des Lösungsmittel und der chromatographischen Reinigung [SiO2; EtOAc/AcOH (5 : 1 )] erhält man 4,19 g (95,2 %) 2-Methyl-3-methoxy-4-(4-cis-tert.-butyl- cyclohexyloxy)-pyridin-N-oxid, die mit 20 ml Acetanhydrid 1 Stunde auf 120°C erwärmt werden. Die Reaktionsmischung wird Im Vakuum eingedampft und der Rückstand chromatographisch (SiO2; EtOAc) gereinigt. Ausbeute: 4,95 g (99 %) 1H-NMR (CDCI3) = 8,2 (d, 1 H), 6,8 (d, 1 H), 5,2 (s, 2H), 4,6 (m, 1 H), 3,9 (s, 3H), 2,1 (s, 3H), 0,9 bis 2,3 (m, 9H), O,9(s, 9H), ppm
Beispiel 19 4-O-Benzylhydroxylamino-3-ethoxy-2-ethoxymethyl-pyridin
Die Darstellung geschah analog Beispiel 1 aus 4-Chlor-3-ethoxy-2- ethoxymethylpyridin und O-Benzylhydroxylamin. Ausbeute: 90 %
1H-NMR (100 MHz, CDCI3): 8,2 (d, 1 H), 7,5 (s, 1 H), 7,4 (s, 5H), 7,0 (d, 1 H), 4,9 (s, 2H), 4,6 (s, 2H), 3,9 (q, 2H), 3,6 (9,2H), 1 ,3 (t, 3H), 1 ,2 (t, 3H) ppm.
Beispiel 20 4-O-Benzylhydroxylamino-3-brom-2-methoxymethyl-pyridin
Die Darstellung geschah analog Beispiel 1 aus 4-Chlor-3-brom-2- methoxymethylpyridin und O-Benzylhydroxylamin. Ausbeute: 95 %
1H-NMR (100 MHz, CDCI3): δ: 8,3 (d, 1 H), 7,7 (s, 1 H), 7,4 (m, 1 H), 6,9 (d, 1 H), 4,9 (s, 2H), 4,6 (s, 2H), 3,5 (s, 3H) ppm.
Beispiel 21 4-O-Benzylhydroxylamino-3-methoxy-2-allyloxy-pyridin
Die Darstellung geschah analog Beispiel 1 aus 4-Chlor-3-methoxy-2- allyloxypyridin und O-Benzylhydroxylamin. Ausbeute: 46,9 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,5 (s, 1 H), 7,4 (s, 5H), 5,8-6,1 (m, 1 H), 5, 1 -5,4 (m, 2H), 4,9 (s, 2H), 4,1-4,2 (m, 2H), 3,8 (s, 3H) ppm. Beispiel 22 4-O-Benzylhydroxylamino-3-chlor-2-methoxymethyl-pyridin
Die Darstellung geschah analog Beispiel 1 aus 3,4-Dichlor-2- methoxymethylpyridin und O-Benzylhydroxylamin. Ausbeute: 52,8 %
1H-NMR (100 MHz, CDCI3): δ: 8,3 (d, 1 H), 7,6 (s, 1 H), 7,3-7,5 (m, 5H), 7,0 (s, 1 H), 4,9 (s, 2H), 4,6 (s, 2H), 3,5 (s, 3H) ppm.
Beispiel 23
4-[O-Benzyl-N(4-cis-phenylcyclohexyl)-hydroxylamino]-3-methoxy-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4-Phenyl-1 -tosyloxycyclohexan. Ausbeute: 39 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,3 (m, 6H), 4,7 (s, 2H), 4,6 (s, 2H), 3,9 (s, 3H), 3,8 (m, 1 H), 3,5 (s, 3H), 2,8 (m, 1 H), 1 ,5-2,4 (m, 8H) ppm.
Beispiel 24
4-[O-Benzyl-N(4-cis-(4-ethoxyphenyl)cyclohexyl)-hydroxylamino]-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4-(4-Ethoxyphenyl)-1 -tosyloxy- cyclohexan. Ausbeute: 46 % 1H-NMR (CDCI3. 100 MHz): δ: 8,2 (d, 1 H), 7,3 (m, 6H), 7,0 (m, 4H), 4,7 (s, 2H), 4,6 (s, 2H), 4,0 (q, 2H), 3,9 (s, 3H), 3,8 (m, 1 H), 3,5 (s, 3H), 2,8 (m, 1 H), 1 ,4 (t, 3H), 1 ,4-2,3 (m, 8H) ppm.
Beispiel 25 4-(O-Benzyl-N-decyl-hydroxylamino)-3-methoxy-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy-2- methylpyridin (Beispiel 1 ) und Dodecylbromid. Ausbeute: 80 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,3 (s, 5H), 7,3 (d, 1 H), 4,7 (s, 2H), 4,6 (s, 2H), 3,8 (s, 3H), 3,5 (s, 3H), 3,3 (t, 2H), 1 ,1 -1 ,8 (m, 16H), 0,9 (t, 3H) ppm.
Beispiel 26 4-(4-cis-Phenylcyclohexylamino)-3-methoxy-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus 4-[O-Benzyl-N(4-cis-phenylcyclohexyl)- hydroxylamino]-3-methoxy-2-methoxymethyl-pyridin (Beispiel 23) Ausbeute: 100 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 7,2 (m, 5H), 6,5 (d, 1 H), 4,9 (d, 1 H), 4,5 (s, 2H), 4,9 (s, 3H), 4,8 (m, 1 H), 3,5 (s, 3H), 2 (m, 1 H), 1 ,6-2,2 (m, 9H) ppm.
Beispiel 27 4-t4-cis(4-Ethoxyphenyl)-cyclohexylamino)-3-methoxy-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus 4-[O-Benzyl-N(4-cis-(4- ethoxyphenyl)cyclohexyl)-hydroxylamino]-3-methoxy-2-methoxymethylpyridin (Beispiel 24). Ausbeute: 74 % 1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1H), 6,9 (m, 4H), 6,5 (d, 1H), 4,9
(d, 1H), 4,6 (s, 2H), 4,0 (q, 2H), 3,9 (s, 3H), 3,8 (m, 1H), 2,5 (m, 1H), 1,6-2,1
(m, 8H), 1,4 (t, 3H) ppm.
Beispiel 28 4-Decylamino-3-methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 5 aus 4-(O-Benzyl-N-decylhydroxylamino)-3- methoxy-2-methoxymethylpyridin (Beispiel 25). Ausbeute: 84 %
1H-NMR (100 MHz, CDCI3): δ: 8,0 (d, 1H), 6,4 (d, 1H), 4,6 (t, 1H), 4,5 (s, 2H), 3,0 (s, 3H), 2,0 (s, 3H), 3,1 (q, 2H), 1,2-1,6 ( , 16H), 0,9 (t, 3H) ppm.
Beispiel 29
4-[O-Benzyl-N(1,4-dioxa-spiro[4,5]-dec-8-yl)hydroxylamino]-3-methoxy-2- methoxymethylpyridin
Die Darstellung erfolgte analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3- methoxy-2-methoxymethylpyridin (Beispiel 1) und 8-Tosyloxy-1,4-dioxa- spiro[4,5]-decan. Ausbeute: 78 %
1H-NMR (100 MHz, CDCI3): 8,2 (d, 1H), 7,4 (s, 5H), 7,3 (d, 1H), 4,7 (s, 2H), 4,6 (s, 2H), 3,9 (s, 3H), 3,8 (s, 3H), 3,7 (m, 1H), 3,5 (s, 4H), 1,4-2,3 (m, 8H) ppm. Beispiel 30
4-[O-Benzyl-N(3,3-dimethyl-1 ,5-dioxa-spiro[5,5]undecan(9)yl)hydroxylamino]-3- methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-0-Benzylhydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und 3,3-Dimethyl-9-tosyloxy-1 ,5-dioxa- spiro[5,5]undecan. Ausbeute: 68 %
1H-NMR (100 MHz, CDCI3): δ\ 8,2 (d, 1 H), 7,3 (m, 5H), 7,2 (d, 1 H), 4,7 (s, 2H), 4,6 (s, 2H), 9,8 (s, 3H), 3,7 (m, 1 H), 3,5 (m, 7H), 1 ,2-2,4 (m, 12H), 1 ,0 (s, 6H) ppm.
Beispiel 31
4-[O-Benzyl-N(4-cis-tert.-butylcyclohexyl)-hydroxylaminoJ-3-brom-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-brom-2- methoxymethylpyridin (Beispiel 20) und 4-trans-tert.-Butyl-1-tosyloxy- cyclohexan. Ausbeute: 56,4 %
1 H-NMR (100 MHz, CDCI3): δ: 8,4 (s, 1 H), 7,2-7,4 (m, 6H), 4,6 (s, 2H), 4,7 (s, 2H), 3,5 (s, 3H), 3,5 (m, 1 H), 1 ,0-2,0 (m, 9H), 0,8 (s, 9H) Beispiel 32
4-[O-Benzyl-N(4-cis-phenylcyclohexyl)-hydroxylamino]-3-brom-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-brom-2- methoxymethyl-pyridin (Beispiel 20) und trans-4-Phenyl-1 -tosyloxy-cyclohexan. Ausbeute: 29,9 %
1H-NMR (100 MHz, CDCI3): δ 8,4 (d, 1 H), 7,2-7,4 (m, 1 1 H), 4,7 (s, 2H), 4,6 (s, 2H), 3,5 (s, 3H), 3,6 (m, 1 H), 2,9 (m, 1 H), 1 ,3-2,3 (m, 8H) ppm.
Beispiel 33
4-[O-Benzyl-N(spiro[5,5]undecan(3)yl)hydroxylamino]-3-methoxy-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und 3-Tosyloxy-spiro[5,5]undecan. Ausbeute: 81 %
1H-NMR (CDCI3, 100 MHz): δ: 8,2 (d,1 H), 7,4 (m,5H), 7,2 (d, 1 H), 4,6 (s,2H), 4,7 (s,2H), 3,8(s,3H), 3,7 (m,1 H) 3,5 (s,3H), 1 ,0-2,0 (m,18H) ppm. Beispiel 34
4-[O-Benzyl-N(spiro[5,5]undecan(3)yl)hydroxylamino]-3-chlor-2-methoxymethyl- pyridin
O
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-chlor-2- methoxymethylpyridin (Beispiel 22) und 3-Tosyloxy-spiro[5,5]undecan. Ausbeute: 77 %
1H-NMR (CDCI3, 100 MHz): δ: 8,3 (d,1 H), 7,3 (m,5H), 7,3 (d, 1 H), 4,6 (s,2H), 4,7 (s,2H), 4,6 (s,2H), 3,5 (s,3H) 3,3 (m,1 H), 0,9-2,0 (m, 18H) ppm.
Beispiel 35
4-[O-Benzyl-N-(4-cis(4(2(2,5,5-trimethyl-1 ,5-dioxan-2-yl)- ethoxy)phenyl)cyclohexyl)-hydroxylamino]-3-methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4(4(2(2,5,5-Trimethyl-1 ,5-dioxan-2- yl)-ethoxy)phenyl)-1-tosyloxy-cyclohexan.
Ausbeute: 34 %
1 H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7, 1-7,4 (m,9H), 6,8 (d,1 H), 4,7
(s,2H), 4,6 (s,2H), 4,2-4,1 (m,4H), 3,9 (m,1 H) 3,9 (s,3H), 3,5 (q,4H), 3,5
(s,3H), 2,8 (m, 1 H), 1 ,5-2,4 (m,4H), 1 ,5 (s,3H), 1 ,0 (s,3H), 0,9 (s,3H) ppm. Beispiel 36
4-[O-Benzyl-N-4-cis < (4-tetrahydrof ur(2)yl-methoxy)phenyl > -cyclohexylamino]-
3-methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4<4(Tetrahydrofur(2)yl- methoxyjphenyl > -1 -tosyloxy-cyclohexan.
Ausbeute: 51 ,4 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7,2-7,4 (m,9H), 6,8 (d, 1 H), 4,6
(s,2H), 4,7 (s,2H), 4,3 (m,1 H), 3,9 (s,1 H) 3,8-4,1 (m,5H), 3,5 (s,3H), 2,8
(m,1 H), 1 ,5-2,2 (m, 12H).
Beispiel 37
4-[O-Benzyl-N(4-cis(4(dimethyl-tert.-butylsilyloxy)phenyl)-cyclohexyl)- hydroxylamino-3-methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4(4(Dimethyl-tert.-butyl- silyloxy)phenyl)-1 -tosyloxy-cyclohexan.
Ausbeute: 23 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7,1 -7,4 (m,9H), ..,8 (d,1 H), 4,7
(s,2H), 4,6 (s,2H), 3,9 (s,3H), 3,9 (m,1 H), 3,4 (s,3H), 2,8 (m,1 H), 1 ,5-2,2
(m, 8H), 1 ,0 (s,9H), 0,2 (s,6H) ppm.
Beispiel 38
4-[O-Benzyl-N(4-cis(4(2,2-dimethoxyethoxy)phenyl)-cyclohexyl)-hydroxylamino]-
3-methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy-2- methoxymethyl-pyridin (Beispiel 1 ) und trans-4(4(2,2-Dimethoxyethoxy)phenyl)- 1 -tosyloxy-cyclohexan. Ausbeute: 66,2 % 1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,2 (m,9H), 7,2-7,4 (m,9H), 6,8 (d, 1 H), 5,3 (s,1 H), 4,8 (t,1 H), 4,7 (s,2H), 4,6 (s,2H), 4,0 (d,2H), 3,9 (m,1 H), 3,9 (s,3H), 3,5 (s,3H), 3,4 (s,6H), 2,8 (m,1 H), 1 ,5-2,1 (m,8H) ppm.
Beispiel 39
4-[O-Benzyl-N(4-cis(4-but-2-oxy-phenyl)cyclohexyl)-hydroxylamino]-3-methoxy-
2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4(4-But-2-oxy-phenyl)-1-tosyloxy- cyclohexan
Ausbeute: 49,0 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7,1-7,4 (m,9H), 6,8 (d,2H), 4,7
(s,2H), 4,6 (s,2H), 4,3 (m,1 H),3,9 (s,3H), 3,8 (m,1 H), 3,5 (s,3H), 2,8 (m,1 H),
1 ,5-2,3 (m, 10H), 1 ,3 (d,3H), 1 ,0 (t,3H) ppm.
Beispiel 40
4-[O-Benzyl-N(4-cis-4-(2-ethoxyethoxy)phenyl)cyclohexyl)-hydroxylamino]-3- methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4[4(2-ethoxyethoxy)phenyl]-1- tosyloxy-cyclohexan.
Ausbeute: 56,4 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7,2-7,4 (m,9H), 6,8 (d,1 H), 4,6
(s,2H), 4,7 (s,2H), 4,2 (t,2H), 3,9 (s,3H), 3,9 (m,1 H), 3,8 (t,2H), 3,6 (q,2H),
3,5 (s,3H), 2,8 (m, 1 H), 1 ,5-2,2 (m,8H), 1 ,2 (t,3H) ppm. Beispiel 41
O-Benzyl-N-(4-cis{4-[2-(2-methoxy-ethoxy)-ethoxy]-phenyl}-cyclohexyl)-N-(3- methoxy-2-methoxymethyl-pyridin-4-yl)-hydroxylamine
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethyl-pyridin (Beispiel 1 ) und trans-4-[4(2(2-methoxyethoxy)- ethoxy)phenyl]-1 -tosyloxy-cyclohexan.
Ausbeute: 42,4 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7,2 (m,9H), 6,8 (d,1 H),4,7 (s,2H),
4,6 (s,2H), 4, 1 (m,2H), 3,9 (m,2H, 3,9 (s,3H), 3,9-3,8 (m,1 H), 3,8 (m,2H), 3,6
(m,2H), 3,5 (s,3H), 3,4 (s,3H), 2,8 (m,1 H), 1 ,5-2,2 (m,8H) ppm
Beispiel 42
4-[O-Benzyl-N(4-cis-(4-propoxyphenyl)-cyclohexyl)-hydroxylamino]-3-methoxy-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4-(4-Propoxyphenyl)-1 -tosyloxy- cyclohexan. Ausbeute: 50,3 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7,1-7,4 (m,9H), 6,8 (d,1 H), 4,7 (s,2H), 4,6 (s,2H), 3,9 (t,2H), 3,9 (s,3H), 3,8 (m,1 H), 3,5 (s,3H) 2,8 (m,1 H), 1 ,5-2,3 (m,10H), 1 ,1 (t,3H) ppm.
Beispiel 43
4-[O-Benzyl-N(4-cis(4-isopropoxyphenyl)-cyclohexyl)-hydroxylamino]-3-methoxy-
2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethylpyridin (Beispiel 1 ) und trans-4-(4-lsopropoxyphenyl)-1 -tosyloxy- cyclohexan Ausbeute: 54,6 % 1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1H), 7,1-7,4 (m,9H), 6,8 (d,1H), 4,7 (s,2H), 4,6 (s,2H), 4,5 (m,1H), 3,9 (s,3H), 3,5 (s,3H), 2,8 (m,1H), 1,5-2,2 (m,8H), 1,3-1,4 (d,6H) ppm.
Beispiel 44
4-[O-Benzyl-N(4-cis-(4-butoxyphenyl)cyclohexyl)-hydroxylamino]-3-methoxy-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzyl-hydroxylamino-3-methoxy-2- methoxymethyl-pyridin (Beispiel 1) und trans-4-(4-Butoxyphenyl)-1- tosyloxycyclohexan
Ausbeute: 55,6 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d,1H), 7,2-7,4 (m,9H), 6,8 (d,1H), 4,6
(s,2H), 4,7 (s,2H), 3,9 (m,2H), 3,8 (s,3H),3,9 (m,1H), 3,5 (s,3H), 2,8 (m,1H),
1,5-2,3 (m,12H), 1,0 (t,3H) ppm.
Beispiel 45
4-[O-Benzyl-N-(4-cis-tert.-amylcyclohexyl)hydroxylamino]-3-brom-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-brom-2- methoxymethylpyridin (Beispiel 20) und trans-4( 1,1,3, 3-Tetramethylbutyl)-1- tosy loxy-cyclohexan .
Ausbeute: 31 % H-NMR (100 MHz, CDCI3): δ 8,5 (d,1H), 7,4 (q,1H), 7,3 (m,5H), 4,7 (s,2H),
4,6 (s,2H), 3,5 (s,3H),3,5 (m,1H), 1,1-2,0 (m,10H), 0,8 (s,6H), 0,8 (t,3H) ppm. Beispiel 46
4-[O-Benzyl-N(4-cis-tert.-butylcyclohexyl)-hydroxylamino]-3-ethoxy-2- ethoxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-ethoxy-2- ethoxymethylpyridin und 4-trans-tert.-Butyl-1 -tosyloxy-cyclohexan. Ausbeute: 18,7 %
^-NMR (100 MHz, CDCI3): δ: 8,2 (d,1 H), 7,3 (m,6H), 4,6 (d,2H), 4,1 (q,2H), 3,7 (q,2H), 3,8 (m,1 H), 1 ,2-2,1 (m,15H), 0,8 (s,9H) ppm.
Beispiel 47
4-[O-Benzyl-N(4-cis-phenylcyclohexyl)-hydroxyiamino]-3-ethoxy-2- ethoxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-ethoxy-2- ethoxymethylpyridin (Beispiel 19) und trans-4-Phenyl-1 -tosyloxycyclohexan. Ausbeute: 43 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,3 (m, 6H), 4,7 (m, 4H), 4,1 (q, 2H), 3,9 (m, 1 H), 3,7 (q, 2H), 2,9 (m, 1 H), 1 ,1-2,3 (m, 14H)
Beispiel 48
4-[O-Benzyl-N(4-cis(4-ethoxyphenyl)cyclohexyl)-hydroxylamino]-3-ethoxy-2- ethoxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-ethoxy-2- ethoxymethylpyridin (Beispiel 19) und trans-4(4-Ethoxyphenyl)-1 -tosyloxy- cyclohexan Ausbeute: 15,9 %
^-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 6,8-7,4 (m, 10H), 4,7 (m, 4H), 3,9- 4,2 (m, 5H), 3,7 (q, 2H), 2,9 (m, 1 H), 1 ,2-2,5 (m, 17 H) ppm. Beispiel 49
4-[O-Benzyl-N(4-cis-tert.-amylcyclohexyl)-hydroxylamino]-3-ethoxy-2- ethoxymethyl-pyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-ethoxy-2- ethoxymethylpyridin (Beispiel 19) und trans-4-tert.-amyl-1-tosyloxycyclohexan. Ausbeute: 24 %
1H-NMR (100 MHz, CDCI3): δ: 8,3 (d, 1 H), 7,3 (m, 6H), 4,7 (d, 4H), 4,1 (q, 2H), 3,8 (m, 1 H), 3,7 (q, 2H), 0,7-2,1 (m, 26 H) ppm.
Beispiel 50
4-[O-Benzyl-N(4-butylidencyclohexyl-)]hydroxylamino-3-methoxy-2- methoxymethylpyridin
5 g Butyltriphenylphosphoniumchlorid in 25 ml Dimethoxyethan werden bei 0°C mit der äquimolaren Menge Butyllithium in Hexan versetzt. Nach 2 Stunden bei 25 °C gibt man 5,3 g 4[O-Benzyl-N(4-oxocyclohexyl)hydroxylamino]-3-methoxy- 2-methoxymethylpyridin (Beispiel 56) dazu und rührt 6 Stunden. Dann wird eingeengt und der Rückstand mit H2O und CH2CI2 ausgeschüttelt. Säulenreinigung mit Ethylacetat/Aceton an Kieselgel ergibt 3 g = 52,1 % Sirup. 1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,2-7,4 (m, 6H), 5,1 (t, 1 H), 4,7 (s, 2H), 4,6 (s, 2H), 3,8 (s, 3H), 3,7 (m, 1 H), 3,4 (s, 3H), 1 ,1-2,7 (m, 12H), 0,9 (t, 3H) ppm.
Beispiel 51 4-(4-Butylidencyclohexyl)amino-3-methoxy-2-methoxymethylpyridin H ,
3g 4[O-Benzyl-N(4-butylidencyclohexyl-)]hydroxyIamino-3-methoxy-2- methoxymethylpyridin (Beispiel 50) werden in 20 ml Methanol/2 ml Wasser gelöst. Dazu gibt man 3 g Zinkstaub und 12 ml Eisessig. Nach 17 stündigem Rühren wird filtriert und eingeengt. Der Rückstand wird mit 2N Natronlauge und Methylenchlorid ausgeschüttelt. Säulenreinigung der Methylenchloridphase mit Ethylacetat/Methanol 5/1 an Kieselgel ergibt 1 ,8 g = 82,2 % Öl. ^-NMR (100 MHz, CDCI3): δ: 8,0 (d, 1 H), 6,5 (d, 1 H), 5,0-5,3 (m, 1 H), 4,6 (m, 1 H), 4,5 (s, 2H), 3,8 (s, 3H), 3,7 (s, 3H), 3,4 (m, 1 H), 0,8-2,8 (m, 15H) ppm.
Beispiel 52
4-[O-Benzyl-N(4-cis-tert.-butylcyclohexyl)-hydroxylamino]-3-methoxy-2- allyloxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy-2- allyloxymethylpyridin (Beispiel 21 ) und 4-trans-tert.-butyl-1-tosyloxy-cyclohexan. 1 H-NMR (100 MHz, CDCI3): δ: 8,3 (s, 1 H), 7,3 (s, 5H), 7,4 (d, 1 H), 5,8-6,2 (m, 1 H), 5,1 -5,4 (m, 2H), 4,7 (d, 2H), 4,1 (m, 2H), 3,9 (s, 3H), 3,8 m (1 H), 1 ,0-2, 1 (m, 9H), 0,9, (s, 9H) ppm.
Beispiel 53
4-[O-Benzyl-N(4-cis-phenylcyclohexyl)-hydroxylamino]-3-methoxy-2- allyloxymethylpyridin
wurde hergestellt analog Beispiel 2 aus 4-O-Benzylhydroxylamino-3-methoxy-2- allyloxymethylpyridin (Beispiel 21 ) und 4-Phenyl-1 -tosyloxy-cyclohexan. Ausbeute: 33,7 % H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,2 (m, 6H), 5,8-6,2 (m, 1 H), 5,1 -5,4 (m, 2H), 4,7 (d, 2H), 4,1-4,2 (m, 2H), 3,9 (s, 3H), 3,9 (m, 1 H), 2,9 (m, 1 H), 1 ,4-2,3 (m, 8H) ppm. Beispiel 54
4-[O-Benzyl-N(4-oxo-cyclohexyl)hydroxylamino]-3-methoxy-2- methoxymethylpyridin
6g 4fO-Benzyl-N(1 ,4-dioxa-spiro[4,5]-dec-8-yl)hydroxylamino]-3-methoxy-2- methoxymethylpyridin (Beispiel 29) läßt man 5 Stunden mit 98 %iger Ameisensäure stehen. Dann wird im Vakuum eingeengt und der Rückstand mit 2N NaOH und Methylenchlorid ausgeschüttelt. Die Methylenchloridphase wird eingeengt. 5,3 g = 98,6 % Ausbeute.
1H-NMR (100 MHz, CDCI3): δ: 8,3 (d, 1 H), 7,3 (m, 5H), 7,2 (d, 1 H), 4,6 (s, 4H), 4,2 (m, 1 H), 3,7 (s, 3H), 3,4 (s, 3H), 1 ,8-2,5 (m, 8H) ppm.
Beispiel 55
4-[4-(-O-tert.-Butylhydroxylamino)-cyclohexylamino]-3-methoxy-2- methoxymethylpyridin
Zu 1 ,8 g 4[4-(O-Benzyloximino)-cyclohexylamino]-3-methoxy-2- methoxymethylpyridin (Beispiel 57) in 20 ml Methanol werden 0,6 g NaBH3CN gegeben und 1 Spatelspitze Methylorange zugegeben. Dann wird etherische HCI wird in dem Maße zugetropft, daß die Lösung immer rot bleibt, wobei die Temperatur auf 40°C steigt. Nach dem Ende der Reaktion wird eingeengt und der Rückstand mit 2N NaOH und CH2CI2 ausgeschüttelt. Die CH2CI2-Phase wird über Kieselgel gereinigt. 1 ,9 g = 100 % Ausbeute. ηH-NMR (100 MHz, CDCI3): δ: 8,0 (d, 1 H), 6,5 (d, 1 H), 4,7 (d, 1 H), 4,5 (s, 2H), 3,7 (s, 3H), 3,4 (s, 3H), 2,6-2,9 (m, 2H), 1 ,3-2,1 (m, 8H), 1 ,2 (m, 9H)
Beispiel 56 4(4-Oxocyclohexylamino)-3-methoxy-2-methoxymethylpyridin
4,4 g 4(1 ,4-Dioxa-spiro[4,5]-dec-8-yl)amino-3-methoxy-2-methoxymethylpyridin (Beispiel 59) läßt man in 100 ml 98 %iger Ameisensäure 17 Stunden stehen. Dann wird eingeengt und der Rückstand mit 2N NaOH und CH2CI2 ausgeschüttelt. Nach dem Einengen der organischen Phase erhält man 3,4 g = 89,9 % Kristalle.
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,5 (d, 1 H), 4,6 (d, 1 H), 4,5 (s, 2H), 4,1 (m, 1 H), 3,8 (s, 3H), 3,5 (s, 3H), 1 ,8-2,5 (m, 8H) ppm.
Beispiel 57
4-[4-(O-tert.-Butyloximino)-cyclohexylamino]-3-methoxy-2- methoxymethylpyridin
3.4 g 4-(4-Oxocyclohexylamino)-3-methoxy-2-methoxymethylpyridin (Beispiel 56) und 5 g O-tert-Butylhydroxylamin*Hydrochlorid werden in 25 ml Methanol gelöst. Nach dem Zutropfen von 8 ml 30 %iger Natriummethylatlösung läßt man ausreagieren und engt die Lösung dann ein. Der Rückstand wird mit H2O und CH2CI2 geschüttelt. Beim Einengen der CH2CI2-Phase erhält man 4, 1 g =
94,7 % Kristalle.
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,5 (d, 1 H), 4,6 (d, 1 H), 4,5 (s,
2H), 3,8 (s, 3H), 3,5, (s, 3H), 3, 1 (m, 1 H), 1 ,3-2,5 (m, 8H), 1 ,3 (s, 9H) ppm.
Beispiel 58 4-[4-(O-Benzyloximino)-cyclohexylamino]-3-methoxy-2-methoxymethylpyridin
Die Darstellung erfolgte analog Beispiel 57 aus 4-(4-Oxocyclohexylamino)-3- methoxy-2-methoxymethylpyridin (Beispiel 56) und O-Benzylhydroxylamin.
Ausbeute: 100 %, Sirup
1H-NMR (CDCI3, 100 MHz): δ: 8, 1 (d, 2H), 7,4 (m, 5H), 6,5 (d, 2H), 5,1 (s,
2H),
4,6 (d, 1 H), 4,5 (s, 2H), 3,8 (s, 3H), 3,5 (m, 1 H), 3,4 (s, 3H), 2,0-2,5 (m, 8H),
1.5 (m, 2H) ppm. verbraucht ist wird filtriert und eingeengt. Säulenreinigung mit Ethylacetat/Methanol 5/1 an Kieselgel ergibt 3,9 g = 98,3 % Kristalle. ^-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,5 (d, 1 H), 4,6 (d, 1 H), 4,5 (s, 2H), 3,8 (s, 3H), 3,5 (s, 3H), 3,5 (s, 4H), 3,4 (m, 1 H), 1 ,5-2,3 (m, 8H) ppm
Beispiel 60
4-(3,3-Dimethyl-1 ,5-dioxa[5,5]-undecan(9)yl-)amino-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog (Beispiel 59) aus 4[O-Benzyl-N(3,3-dimethyl-1 ,5-dioxa- spiro[5,5]undecan(9)yl)hydroxylamino]-3-methoxy-2-methoxymethyl-pyridin
(Beispiel 30).
Ausbeute 81 ,9 % H-NMR (100 MHz, CDCI3): δ 8, 1 (d, 1 H), 6,5 (d, 1 H), 4,6 (d, 1 H), 4,5 (s,
2H), 3,8 (s, 3H), 3,5 (s, 3H), 3,5 (m, 4H), 3,4 (m, 1 H), 1 ,5-2,3 (m, 8H), 1 ,0
(s, 6H) ppm. Beispiel 61 4-[4-cis(4-Propoxyphenyl)-cyclohexylamino)-3-methoxy-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus 4-[O-Benzyl-N(4-cis-(4-propoxyphenyl)- cyclohexyl)-hydroxyamino]-3-methoxy-2-methoxymethyl-pyridin (Beispiel 42). Ausbeute: 75 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d,2H), 7,0 (m,4H), 6,5 (d,2H), 4,9 (d,2H), 4,5 (s,2H), 3,9 (t,2H), 3,8 (s,3H), 3,8 (m,1 H), 3,5 (s,3H), 2,6 (m,1 H), 1 ,6-2,1 (m,10H), 1 ,0 (t,3H) ppm.
Beispiel 62
4-[4-cis(4-lsopropoxyphenyl)-cyclohexylamino)3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4[O-Benzyl-N(4-cis-(4-isopropoxyphenyl)-cyclohexyl)-hydroxylamino]-3-methoxy-
2-methoxymethylpyridin (Beispiel 43)
Ausbeute: 90 %
1H-NMR (100 MHz, CDCI3): δ: 8, 1 (d,1 H), 7,0 (m,4H), 6,5 (d, 1 H), 4,9 (d,1 H),
4,5 (s,2H), 4,5 (m,1 H), 3,8 (s,3H), 3,7 (m,1 H), 3,5 (s,3H), 2,6 (m,1 H), 1 ,6-2,1
(m,8H), 1 ,3 (s,3H), 1 ,3 (s,3H) ppm.
Beispiel 63
4-[4-cis(4-Butoxyphenyl)-phenyl-cyclohexylamino)-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4[O-Benzyl-N(4-cis-(4-butoxyphenyl)-cyclohexyl)-hydroxylamino]-3-methoxy-2- methoxymethyl-pyridin (Beispiel 44). Ausbeute: 89 % 1H-NMR (100 MHz, CDCI3): δ: 8, 1 (d,2H), 7,0 (m,4H), 6,5 (d,2H), 4,9 (d,1 H), 4,5 (s,2H), 3,9 (t,2H), 3,8 (s,3H), 3,7 (m,1 H), 3,5 (s,3H), 2,6 (m,1 H), 1 ,6-2,1 (m, 12H), 1 ,0 (t,3H) ppm.
Beispiel 64
4-[4-cis(4-But-2-oxyphenyl)-cyclohexylamino]-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[0-Benzyl-N(4-cis(4-but-2-oxyphenyl)-cyclohexyl)-hydroxylamino]-3-methoxy-
2-methoxymethyl-pyridin (Beispiel 39)
Ausbeute: 84 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d,2H), 7,0 (m,4H), 6,5 (d,1 H), 4,9 (d,2H),
4,5 (s,2H), 4,3 (m,1 H), 3,8 (s,3H), 3,8 (m,1 H), 2,6 (m,1 H), 1 ,5-2,1 (m,10H),
1 ,3 (d,3H), 1 ,0 (t,3H) ppm.
Beispiel 65
4-[4-cis(4-(2-Ethoxyethoxy)phenyl]cyclohexyl-amino-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[O-Benzyl-N(4-cis-4(2-ethoxyethoxy)phenyl)cyclohexyl)hydroxylamino]-3- methoxy-2-methoxymethylpyridin (Beispiel 40)
Ausbeute: 68 %
1 H-NMR (100 MHz, CDCI3): δ: 8,1 (d,2H), 7,0 (q,4H), 6,5 (d,2H), 4,9 (d,1 H),
4,5 (s,2H), 4,0 (m,4H), 3,9 (m,1 H), 3,8 (s,3H), 3,6 (q,2H), 3,5 (s,3H), 2,6
(m,1 H), 1 ,6-2,1 (m,8H), 1 ,3 (t,3H) ppm. Beispiel 66
(4-cis-{4-[2-(2-Methoxy-ethoxy)-ethoxy]-phenyl}-cyclohexyl)-(3-methoxy-2- methoxymethyl-pyridin-4-yl)-amin
wurde hergestellt analog Beispiel 5 aus
O-Benzyl-N-(4-cis{4-[2-(2-methoxy-ethoxy)-ethoxy]-phenyl}-cyclohexyl)-N-(3- methoxy-2-methoxymethyl-pyridin-4-yl)-hydroxylamin (Beispiel 41 )
Ausbeute: 81 %
1 H-NMR (100 MHz, CDCI3): δ: 8,1 (d,1 H), 7,0 (m,4H), 6,5 (d,1 H), 4,9 (m,1 H),
4.6 (s,2H), 3,8 (s,3H), 4,0 (m,4H), 3,6 (m,4H), 3,7 (m,1 H), 3,5 (s,3H), 3,4 (s,3H), 2,6 (s,1 H), 1 ,6-2, 1 (m,8H) ppm.
Beispiel 67
4- <4-cis[4-(2,2-Dimethoxyethoxy)-phenyl]-cyclohexylamino >-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[O-Benzyl-N(4-cis(4(2,2-dimethoxyethoxy)phenyl)cyclohexyl)-hydroxylamino]-
3-methoxy-2-methoxymethylpyridin (Beispiel 38).
Ausbeute: 51 %
^-NMR (100 MHz, CDCI3): δ: 8, 1 (d,1 H), 7,0 (m,4H), 6,5 (d, 1 H), 4,9 (d,1 H),
4.7 (t,1 H), 4,5 (s,2H), 4,0 (d,2H), 3,8 (s,3H), 3,7 (m,1 H), 3,5 (s,3H), 3,5 (s,6H), 2,6 (m, 1 H), 1 ,6-2, 1 (m,8H) ppm.
Beispiel 68
4-[4-cis-(4-Dimethyl-tert.-butyl-silyloxy)phenyl]cyclohexylamino-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[O-Benzyl-N(4-cis(4(dimethyl-tert.-butyl-silyloxy)phenyl)cyclohexyl)- hydroxyamino-3-methoxy-2-methoxymethylpyridin (Beispiel 37) Ausbeute: 90,0 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d,2H), 6,9 (m,4H), 6,5 (d,2H), 5,0 (d,2H),
4.5 (s,2H), 3,9 (s,3H), 3,7 (m,1H), 3,5 (s,3H), 2,6 (m,1H), 1,6-2,1 (m,8H), 1,0 (s,9H), 0,2 (s,6H) ppm.
Beispiel 69
4-[4-cis(4-Tetrahydrofur(2)ylmethoxy)phenyl]cyclohexylamino-3-methoxy-2- methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[O-Benzyl-N-4-cis < (4-tetrahydrof ur(2)yl-methoxy)phenyl > -cyclohexylamino]-
3-methoxy-2-methoxymethylpyridin (Beispiel 36)
Ausbeute: 89 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d,2H), 7,0 (m,4H), 6,5 (d,1H), 4,9 (d,1H),
4.6 (s,2H), 4,3 (m,1H), 3,8 (s,3H), 3,8-4,0 (m,4H), 3,7 (m,1H), 3,5 (s,3H), 2,6 (m,1H), 1,6-2,1 (m,12H) ppm.
Beispiel 70 4-(Spiro[5,5]undecan(3)yl)amino-3-chlor-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 51 aus
4-[O-Benzyl-N(Spiro[5,5]undecan(3)yl-hydroxylamino]-3-chlor-2- methoxymethylpyridin (Beispiel 34).
Ausbeute: 84 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d,2H), 6,5 (d,2H), 4,8 (d,2H), 4,6 (s,3H),
3,5 (s,3H), 3,4 (m,1H), 1,2-1,9 (m,18H) ppm. Beispiel 71 4-(Spiro[5,5]undecan(3)yl)amino-3-methoxy-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 5 aus
4-tO-Benzyl-N(spiro[5,5]undecan(3)yl)hydroxylamino]-3-methoxy-2- methoxymethylpyridin (Beispiel 33)
Ausbeute: 50,5 %
1 H-NMR (CDCI3, 100 MHz): δ: 8, 1 (d,2H), 6,5 (d,2H), 4,6 (m,1 H), 4,5 (s,2H),
3,8 (s,3H), 3,5 (s,3H), 3,3 (m, 1 H), 1 ,2-2,0 (m,18H) ppm.
Beispiel 72
4-[cis(4(2(2,5,5-Trimethyl-1 ,5-dioxan-2-yl)ethoxy)phenyl)cyclohexyl]amino-3- methoxy-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[O-Benzyl-N-(4-cis(4(2(2,5,5-trimethyl-1 ,5-dioxan-2- yl)ethoxy)phenyl)cyclohexyl)-hydroxylamino]-3-methoxy-2-methoxymethyl- pyridin (Beispiel 35)
Ausbeute: 100 %
1 H-NMR (100 MHz, CDCI3): δ: 8,1 (d,1 H), 7,0 (m,4H), 6,5 (d,2H), 4,9 (d,1 H),
4,5 (s,2H), 4, 1 (t,2H), 3,8 (s,3H), 3,8 (m,1 H), 3,5 (m,4H), 3,5 (s,3H), 2,6
(m, 1 H), 1 ,6-2,4 (m,10H), 1 ,4 (s,3H), 1 ,0 (s,3H), 0,9 (s,3H) ppm. Beispiel 73
4-[4-cis(4(2-oxoethoxy)phenyl)cyclohexyl]-amino-3-methoxy-2-methoxy- methylpyridin
wurde hergestellt analog Beispiel 56 aus
4-[O-Benzyl-N(4-cis(4(2,2-dimethoxy)phenyl)cyclohexyl)-hydroxylamino]-3- methoxy-2-methoxymethγlpyridin (Beispiel 67).
Ausbeute: 90,4 %
1H-NMR (100 MHz, CDCI3): δ: 9,9 (s,1 H), 8,1 (d, 1 H), 7,0 (m,4H), 6,5 (d,1 H),
4,9 (d,1 H), 4,5 (d,2H), 3,9 (s,3H), 3,8 (m,1 H), 3,5 (s,3H), 2,6 (m,1 H), 1 ,6-2,1
(m,8H) ppm.
Beispiel 74 4-(4-cis-tert.-Butylcyclohexylamino)-3-ethoxy-2-ethoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[O-Benzyl-N(4-cis-tert.-butylcyclohexyl)-hydroxylamino]-3-ethoxy-2- ethoxymethylpyridin (Beispiel 46)
Ausbeute: 80 %
^-NM (100 MHz, CDCI3): δ 8,1 (d,1 H), 6,4 (d,1 H), 4,9 (d, 1 H), 4,5 (s,1 H),
4,0 (q,2H), 3,8 (q,2H), 3,7 (m,1 H), 1 ,1 -2,1 (m,15H), 0,9 (s,3H)
Beispiel 75 4-(4-cis-tert.-Amylcyclohexylamino)-3-ethoxy-2-ethoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus
4-[O-Benzyl-N(4-cis-tert.-amylcyclohexyl)-hydroxylamino]-3-ethoxy-2- ethoxymethylpyridin (Beispiel 49)
Ausbeute: 81 %
1 H-NMR (100 MHz, CDCI3): δ: 8,1 (d,1 H), 6,4 (d,1 H), 4,8 (d,1 H), 4,5 (s,2H),
3,9 (q,2H), 3,7 (m, 1 H), 3,7 (q,2H), 1 ,1 -2,0 (m,18H), 0,8 (s,6H), 0,8 (t,3H) Beispiel 76 4-(4-cis-Phenylcyclohexyl)amino-3-ethoxy-2-ethoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus 4-[O-Benzyl-N(4-cis-Phenylcyclohexyl)- hydroxyl-amino]-3-ethoxy-2-ethoxymethylpyridin (Beispiel 47)
Ausbeute: 53 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 7,1-7,4 (m, 5H), 6,4 (d, 1 H), 5,0
(d, 1 H), 4,5 (s, 2H), 4,0 (q, 2H), 3,8 (m, 1 H), 3,7 (q, 2H), 2,7 (m, 1H), 1 ,5-2,1
(m, 8H), 1 ,2 (t, 3H)ppm, 1 ,5 (t, 3H) ppm.
Beispiel 77 4-[4-cis(4-Ethoxyphenyl)cyclohexylamino]-3-ethoxy-2-ethoxymethylpyridin
wurde hergestellt analog Beispiel 5 aus 4-[O-Benzyl-N(4-cis(4-ethoxyphenyl) cyclohexyl)-hydroxylamino]-3-ethoxy-2-ethoxymethylpyridin (Beispiel 48) Ausbeute: 76,3 %
1 H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,7-7,2 (m, 4H), 6,5 (d, 1 H), 5,0 (d, 1 H), 4,6 (s, 2H), 4,0 (q, 2H), 3,8 (m, 1 H), 3,7 (q, 2H), 2,5 (m, 1 H), 1 ,2-2,1 (m, 17H) ppm.
Beispiel 78 4-(4-cis-Phenylcyclohexylamino)-2-allyloxymethyl-3-methoxy-pyridin
wurde hergestellt analog Beispiel 50 aus 4-[O-Benzyl-N(4-cis-phenylcyclohexyl)- hydroxylamino]-3-methoxy-2-allyloxymethylpyridin (Beispiel 53)
Ausbeute: 99,0 %
1 H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 7,2 (m, 6H), 6,5 (d, 1 H), 5,8-6,2
(m, 1 H), 5, 1-5,4 (m, 2H), 4,9 (d, 1 H), 4,6 (s, 2H), 4,1 -4,2 (m, 2H), 3,8 (s, 3H),
3,7 (m, 1 H), 2,5-2,8 (m, 1 H), 1 ,5-2,1 (m, 8H)ppm. Beispiel 79 4-(4-cis-tert.-Butylcyclohexyiamino)-2-allyloxymethyl-3-methoxy-pyridin
wurde hergestellt analog Beispiel 50 aus 4-[O-Benzyl-N(4-cis-tert.- butylcyclohexyl)-hydroxylamino]-3-methoxy-2-allyloxymethylpyridin (Beispiel 52) Ausbeute: 79,1 %
^-NMR (100 MHz, CDCI3): δ: 8, 1 (d, 1 H), 7,2 (m, 6H), 6,5 (d, 1 H), 5,8-6,2 (m, 1 H), 5,1-5,4 (m, 2H), 4,9 (d, 1 H), 4,6 (s, 2H), 4,1-4,2 (m, 2H), 3,8 (s, 3H), 3,7 (m, 1 H), 2,5-2,8 (m, 1 H), 1 ,5-2,1 (m, 8H) ppm.
Beispiel 80 4-(4-cis-tert.-Butylcyclohexyl)amino-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 50 aus 4-[O-Benzyl-N(4-cis-tert.- butylcyclohexyl)-hydroxylamino]-3-brom-2-methoxymethylpyridin (Beispiel 31 ) Ausbeute: 36 %
1H-NMR (100 MHz, CDCI3): δ: 8, 1 (d, 1 H), 6,6 (d, 2H), 6,4 (q, 1 H), 4,5 (s, 2H), 4,4 (d, 1 H), 3,7 (m, 1 H), 3,5 (s, 3H), 1 ,0-2,0 (m, 8H), 0,8 (s, 9H) ppm.
Beispiel 81 4-(4-cis-Phenylcyclohexylamino)-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 50 aus 4-[O-Benzyl-N(4-cis-phenylcyclohexyl)- hydroxylamino]-3-brom-2-methoxymethylpyridin (Beispiel 32)
Ausbeute: 38 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 7,2 (m, 5H), 6,6 (d, 1 H), 6,4
(q, 1 H), 4,5 (s, 2H), 4,5 (m, 1 H), 3,8 (m, 1 H), 3,5 (s, 3H), 2,6 (m, 1 H), 1 ,6-2,1
(m, 8H) ppm. Beispiel 82 4-[4-cis-(2,2-Diemethylpropyl)-cyclohexylamino]-2-methoxypyridin
wurde hergestellt analog Beispiel 50 aus 4-[O-Benzyl-N(4-cis-tert.- amylcyclohexyl)-hydroxylamino]-3-brom-2-methoxymethylpyridin (Beispiel 45) Ausbeute: 52,3 %
1H-NMR (100 MHz, CDCI3): δ: 8, 1 (d, 1 H), 6,6 (d, 1 H), 6,3 (q, 1 H), 4,5 (s, 2H), 4,4 (d, 1 H), 3,7 (m, 1 H), 3,5 (s, 3H), 1 ,1 -1 ,6 (m, 1 1 H), 0,8 (t, 3H), 0,8 (s, 6H) ppm.
Beispiel 83 3-Brom-4(4-cis-tert.-butyl-cyclohexylamino)-2-methoxymethylpyridin
wurde hergestellt durch Umsetzung von 4-[O-Benzyl-N(4-cis-tert.- butylcyclohexyl)-hydroxylamino]-3-brom-2-methoxymethylpyridin (Beispiel 31 ) mit einer Ti(O)-Lösung analog M. Malinowski und L. Kaczmarek, Journal f. prakt. Chemie 330 (1988) 154.
Ausbeute: 30 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 6,4 (d, 1 H), 5,2 (d, 1 H), 4,6 (s,
2H), 3,6 (s, 3H), 3,8 (m, 1 H), 1 ,1-2,0 (m, 9H), 0,8 (s, 3H) ppm.
Beispiel 84 3-Chlor-4-[cis-(4-tert.-butyl)cyclohexylamino]-2-methoxymethyl-pyridin
1 g 2-Methoxymethyl-3,4-dichlorpyridin und 1 g cis-4-tert.-Butylcyclohexylamin werden zusammen mit 4,3 mg Ammoniumchlorid in 4 ml N-Methylpyrrolidon 3,5 Stunden auf 180°C erhitzt. Dann gießt man den Ansatz auf gesättigte Bicarbonatlösung und versetzt das Produkt mit Ethylacetat. Die Ethylacetatphase wird 3 mal mit Wasser gewaschen und anschließend über Kieselgel chromatographiert mit Ethylacetat/Hexan 1 /1 als Eluent. Ausbeute: 47 %. Öl. 1H-NMR (100 MHz, CDCI3): δ: 8, 1 (d, 1 H), 6,5 (d, 1 H), 5, 1 (d, 1 H), 4,6 (s, 2H), 3,5 (s, 3H), 3,7 (m, 1 H), 1 ,0-2,0 (m, 9H), 0,9 (s, 9H) ppm.
Beispiel 85 3-Chlor-4-[4-cis-but(2)yl-cyclohexylamino]-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4-cis-but(2)yl-cyclohexylamin.
Ausbeute: 40 %
1H-NMR (100 MHz, CDCI3): δ 8,1 (d, 1 H), 6,5 (d, 1 H), 5,1 (d, 1 H), 4,6 (s,
2H), 3,7 (m, 1 H), 3,5 (s, 3H), 1 ,0-2,0 (m, 12H), 0,9 (t, 3H), 0,9 (d, 3H) ppm.
Beispiel 86 3-Chlor-4-[4-trans-but(2)yl-cyclohexylamino]-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4-trans-but(2)-yl-cyclohexylamin.
Ausbeute: 38 %
1 H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,5 (d, 1 H), 5,0 (d, 1 H), 4,6 (s,
2H), 3,7 (m, 1 H), 3,5 (s, 3H), 1 ,0-2,0 (m, 12H), 0,9 (t, 3H), 0,9 (d, 3H) ppm.
Beispiel 87 3-Chlor-4-[4-cis-cyclohexyl-cyclohexylamino]-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4-cis-cyclohexyl-cyclohexylamin.
Ausbeute: 35 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,5 (d, 1 H), 5,1 (d, 1 H), 4,6 (s,
2H), 3,7 (m, 1 H), 3,5 (s, 3H), 0,9-2,0 (m, 20H) ppm. Beispiel 88 3-Chlor-4-[4-trans-cyclohexyl-cyclohexylamino]-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4-trans-Cyclohexyl-cyclohexylamin.
Ausbeute: 17 %
^-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1H), 6,5 (d, 1H), 4,7 (d, 1H), 4,6 (s,
2H), 3,5 (s, 3H), 3,2 (m, 1H), 0,9-2,2 (m, 20H) ppm.
Beispiel 89
3-Chlor-4-[4-cis( 1,1,3, 3-tetramethylbutyl)cyclohexylamino]-2-methoxymethyl- pyridin
und
Beispiel 90
3-Chlor-4-[4-trans( 1,1,3, 3-tetramethylbutyl)-cyclohexylamino]-2- methoxymethylpyridin
wurden hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und Cis/trans-4-Tetramethylbutyl)cyclohexylamin und anschließende Isomerentrennung an Sephadex mit Methanol. Ausbeute (trans-lsomer): 17 % Ausbeute (cis-lsomer): 17 %
1H-NMR (100 MHz, CDCI3) (trans-lsomer): δ 8,1 (d, 1H), 6,5 (d, 1H), 4,7 (d, 1H), 4,6 (s, 2H), 3,5 (s, 3H), 3,2 (m, 1H), 1,1-2,2 (m, 11H), 1,0 (s, 6H), 1,0 (s, 9H) ppm.
^-NMR (100 MHz, CDCI3) (cis-lsomer): δ: 8,1 (d, 1H), 6,5 (d, 1H), 5,1 (d, 1H), 4,6 (s, 2H), 3,8 (m, 1H), 3,5 (s, 3H), 1,2-2,0 (m, 11H), 1,0 (s, 9H), 0,9 (s, 6H) ppm. Beispiel 91 3-Chlor-4-(3-cis-isoamyl-cyclopentyl)amino-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 89 aus 2-Methoxymethyl-3,4-dichlorpyridin und 3-lsoamyl-cyclopentylamin.
Ausbeute: 39 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,5 (d, 1 H), 4,8 (d, 1 H), 4,6 (s,
2H), 3,8 (m, 1 H), 3,4 (s, 3H), 1 ,0-2,2 (m, 9H), 0,8 (t, 3H), 0,8 (s, 6H) ppm.
Beispiel 92
3-Chlor-4-[4-(4-(2-ethoxyethoxy)ethoxy)phenyl]cyclohexylamino-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4-[4-(2-Ethoxyethoxy)ethoxy]phenyl-cyclohexylamin.
Ausbeute: 40 %
1 H-NMR: 8,2 (d, 1 H), 7,0 (m, 4H), 6,5 (d, 1 H), 5, 1 (d, 1 H), 4,6 (s, 2H), 3,4-4,2
(m, 14H), 1 , 1 -2,6 (m, 9H), 1 ,2 (t, 3H) ppm.
Beispiel 93 3-Chlor-4-[2-(2,4-dimethyl)phenoxy]propylamino-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 2-(2,4-Dimethyl)phenoxy-propylamin.
Ausbeute: 34 %
1H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 6,6-7,0 (m, 4H), 6,5 (d, 1 H), 5,3
(m, 1 H), 4,6 (s, 2H), 4,4-4,6 (m, 14H), 3,5 (s, 3H), 3,3-3,5 (m, 2H), 2,2
(d, 6H), 1 ,4 (d, 3H) ppm. Beispiel 94 3-Chlor-4-[1 -(4-difluormethoxyphenyl)]-propylamino-2-methoxymethylpyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 1-(4-Difluormethoxyphenyl)-propylamin.
Ausbeute: 27 %
1H-NMR (100 MHz, CDCI3): δ: 8,0 (d, 1 H), 7,2 (q, 4H), 6,5 (t, 1 H), 6,2 (d, 1 H),
5.2 (d, 1 H), 4,6 (s, 2H), 4,3 (m, 1 H), 3,5 (s, 3H), 1 ,9 (m, 2H), 1 ,0 (t, 3H) ppm.
Beispiel 95
3-Chlor-4-[2-methyl-3-(4-tert.-butylphenyl)]-propylamino-2-methoxymethyl- pyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 2-Methyl-3-(4-tert.-Butylphenyl)-propylamin.
Ausbeute: 54 %
1H-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 7,2 (m, 4H), 6,3 (d, 1 H), 4,9 (m,
1 H), 4,6 (s, 2H), 3,5 (s, 3H), 3,1 (m, 2H), 2,5-2,7 (m, 2H), 1 ,9-2,2 (m, 1 H),
1.3 (s, 9H), 1 ,0 (d, 3H) ppm.
Beispiel 96
3-Chlor-4-[2-(2,3-dimethyl-4-ethoxyethylphenoxy)]-ethylamino-2- methoxymethyl-pyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 2(2,3-Dimethyl-4-ethoxyethyl)phenoxy-ethylamin.
Ausbeute: 13 %
1 H-NMR (100 MHz, CDCI3): δ: 8,2 (d, 1 H), 6,8 (q, 2H), 6,3 (d, 1 H), 5,4
(m, 1 H), 4,6 (s, 2H), 4,2 (t, 2H), 3,4-3,7 (m, 8H), 3,5 (s, 3H), 2,8-3,0 (m, 2H),
2,2 (s, 3H), 2,2 (s, 3H), 1 ,2 (t, 3H) ppm. Beispiel 97 3-Chlor-4-[cis-4-butyl-cyclohexyl]amino-2-methoxymethylpyridin
und
Beispiel 98 3-Chlor-4-[trans-4-butyl-cyclohexyl]amino-2-methoxymethyl-pyridin
wurden hergestellt analog Beispiel 89/90 aus 2-Methoxymethyl-3,4-dichlor- pyridin und 4-cis/trans-Butyl-cyclohexylamin.
Ausbeute: 12 % (cis-lsomer)
^-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 6,4 (d, 1 H), 5,0 (d, 1 H), 4,6 (s,
2H), 3,7 (m, 1 H), 3,5 (s, 3H), 1 ,0-1 ,9 (m, 15H), 0,9 (t, 3H) ppm und
Ausbeute: 9 % (trans-lsomer)
1H-NMR (100 MHz, CDCI3): δ 8,1 (d, 1 H), 6,5 (d, 1 H), 4,7 (d, 1 H), 4,6 (s,
2H),3,5 (s, 3H), 3,2 (m, 1 H), 1 ,0-2,2 (m, 15H), 0,9 (t, 3H) ppm.
Beispiel 99 3-Chlor-4-[2-methyl-3(4-isopropylphenyl)]propylamino-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 2-Methyl-3(4-isopropylphenyl)propylamin.
Ausbeute: 33 %
1H-NMR (100 MHz, CDCI3): δ: 8, 1 (d, 2H), 7,1 (m, 4H), 6,3 (d, 1 H), 4,9 (m,
1 H), 4,6 (s, 2H), 3,5 (s, 3H), 2,0-3,2 (m, 6H), 1 ,2 (d, 6H), 1 ,0 (d, 3H) ppm. Beispiel 100 3-Chlor-4-[4-(4-fluorbenzyliden)cyclohexyl]amino-2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 84 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4[4(4-Fluorbenzyliden)]cyclohexylamin.
Ausbeute: 39 %
^-NMR (100 MHz, CDCI3): δ: 8,1 (d, 1 H), 7, 1 (m, 4H), 6,5 (d, 1 H), 6,3 (s,
1 H), 4,8 (d, 1 H), 4,6 (s, 2H), 3,6 (m, 1 H), 3,5 (s, 3H), 1 ,2-2,9 (m, 8H) ppm.
Beispiel 101
3-Chlor-4-[4-cis(1-cyclohexyl-1-trifluormethyl-2,2,2-trifluorethyl)cyclohexyloxy]-
2-methoxymethyl-pyridin
wurde hergestellt analog Beispiel 1 1 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4-cis(1-cyclohexyl-1-trifluormethyl-2,2,2-trifluorethyl)cyclohexanol. Ausbeute: 1 1 %
1 H-NMR (100 MHz, CDCI3): δ: 8,3 (d, 1 H), 6,9 (d, 1 H), 4,7 (m, 1 H), 4,7 (s, 2H), 3,5 (s, 3H), 1 ,1 -2,3 (m, 20H) ppm.
Beispiel 102
3-Chlor-4-[4-cis-(1 -cyclohexyl- 1-methyl-ethyl)-cyclohexyloxy]-2-methoxymethyl- pyridin
wurde hergestellt analog Beispiel 1 1 aus 2-Methoxymethyl-3,4-dichlorpyridin und 4-cis-(1-cyclohexyl-1-methyl-ethyl)-cyclohexyloxy]-2-methoxymethyl-pyridin Ausbeute: 23 % 1H-NMR (100 MHz, CDCI3): δ: 8,3 (d, 1 H), 6,8 (d, 1 H), 4,7 (m, 1 H), 4,6 (s, 2H), 3,5 (s, 3H), 0,8-2, 1 (m, 20H), 0,8 (s, 6H) ppm.
Beispiel 103
2-Methoxy-3-cyano-4-(cis 4-tert. butyl-cyclohexylamino)pyridin
1 ,63 g (5,96 mMol) 3-Cyano-4-(cis-4-tert. butyl-cyclohexylamino)-pyridon-(2) in 30 ml Methylenchlorid werden mit 0,93 g (6,26 in Mol) Trimethyloxoninium- tetrafluoroborat versetzt und 75 Minuten bei Raumtemperatur gerührt. Nach der Zugabe von 10 g Eis, 5 ml 2N Natriumhydroxy und dem Abdampfen des Methylenchlorids wird das Reaktionsprodukt mit Ethylacetat extrahiert. Die Reinigung erfolgt durch Säulenchromatographie. Ausbeute: 1 ,25 g (73 %); Rf = 0,51 (Diisopropylether) Fp. 1 13°C
1H-NMR (CDCI3): δ: 7,90 (d, 1 H), 6,22 (d, 1 H), 5,16 (d, 1 H), 3,80 (m, 1 H), 4,0 (s, 3H), 1 ,0-2,0 (m, 9H), 0,90 (s, 9H) ppm.
Beispiel 104
2-Chlor-3-cyano-4-(cis 4-tert. butyl-cyclohexylamino)-pyridin
Zu 0,4 g (1 ,46 mMol) 3-Cyano-4-(cis 4-tert. butyl-cyclohexylamino)-pyridin-(2) werden 5 ml Phosphoroxychlond und 3 Tropfen Dimethylformamid gegeben und
3 Stunden bis zum Rückfluß erwärmt. Anschließend wird das überschüssige
Phosphoroxychlorid im Vakuum abdestilliert, der Rückstand mit Eiswasser versetzt, die wäßrige Lösung mit 32 %iger Natriumhydroxidlösung auf pH 7,5-8 gestellt und mit Ethylacetat das Reaktionsprodukt extrahiert. Die Reinigung erfolgt durch Säulenchromatographie.
Ausbeute: 0,24 g (56 %); Rf = 0,35 (Diisopropylether)
Fp. 150°C
1H-NMR (CDCI3): δ 8,06 (d, 1 H), 6,48 (d, 1 H), 5,34 (d, 1 H), 3,80 (m, 1 ),
1 ,0-2,0 (m, 9H), 0,88 (s, 9H) ppm Beispiel 105 2-Methoxy-3-cyano-4-n-octylamino-pyridin
wie Beispiel 103 aus 3-Cyano-4-n-octylaminopyridon-(2)
Ausbeute: 55 %; Fp. = 104°C
1H-NMR (CDCI3): δ: 7,91 (d, 1 H, 6,22 (d, 1 H), 5,00 (m, 1 H), 3,98 (s, 3H),
3,23 (m, 2H), 1 ,2 bis 1 ,8 (m, 12H), 0,88 (t, 3H) ppm
Beispiel 106 2-Chlor-3-cyano-4-n-octylamino-pyridin
wie Beispiel 104 aus 3-Cyano-4-n-octylaminopyridon-(2)
Ausbeute: 87 %; Fp. = 85 °C
^-NMR (CDCI3): δ: 8,06, (d, 1 H), 6,50 (d, 1 H, 5,45 (m, 1 H), 3,28 (m, 2H),
1 ,2 bis 1 ,8 (m, 12H), 0,88 (t, 3H)
Beispiel 107 2-Methoxy-3-cyano-4-(cis-4-phenyl-cyclohexylamino)-pyridin
wie Beispiel 103 aus 3-Cyano-4-(cis-4-phenyl-cyclohexylamino)pyridon-(2) Ausbeute: 80 %
1H-NMR (CDCI3): δ: 7,92 (d, 1 H), 7,18 bis 7,38 (m, 5H), 6,28 (d, 1 H), 5,24 (d, 1 H), 3,98 (s, 3H), 3,87 (m, 1 H), 2,63 (m, 1 H), 1 ,6 bis 2,05 (m, 8H) ppm
Beispiel 108 2-Chlor-3-cyano-4-(cis-4-phenyl-cyclohexylamino)-pyridin
wie Beispiel 104 aus 3-Cyano-4-(cis-4-phenyl-cyclohexylamino)pyridon-(2) Ausbeute: 85 %
1H-NMR (CDCI3): δ: 8,08 (d, 1 H), 7, 16 bis 7,36 (m, 5H), 6,55 (d, 1 H), 5,40 (d, 1 H), 3,88 (m, 1 H), 2,66 (m, 1 H), 1 ,60 bis 2,10 (m, 8H) ppm B. Formulierungsbeispiele
a) Ein Stäubemittel wird erhalten, indem man 10 Gew. -Teile Wirkstoff und 90 Gew. -Teile Talkum als Inertstoff mischt und in einer Schlagmühle zerkleinert.
b) Ein in Wasser leicht dispergierbares, benetzbares Pulver wird erhalten, indem man 25 Gew. -Teile Wirkstoff, 65 Gew. -Teile kaolinhaltigen Quarz als Inertstoff, 10 Gew. -Teile ligninsulfonsaures Kalium und 1 Gew. -Teil oleylmethyltaurinsaures Natrium als Netz- und Dispergiermittel mischt und in einer Stiftmühle mahlt.
c) Ein in Wasser leicht dispergierbares Dispersionskonzentrat stellt man her, indem man 40 Gew. -Teile Wirkstoff mit 7 Gew. -Teilen eines sulfobernsteinsäurehalbesters, 2 Gew. -Teilen eines Ligninsulfonsäure-Natriumsalzes und 51 Gew. -Teilen Wasser mischt und in einer Reibkugelmühle auf eine Feinheit von unter 5 Mikron vermahlt.
d) Ein emulgierbares Konzentrat läßt sich herstellen aus 15 Gew. -Teilen Wirkstoff, 75 Gew. -Teilen Cyclohexanon als Lösungsmittel und
10 Gew. -Teilen oxethyliertem Nonylphenol (10 EO) als Emulgator.
e) Ein Granulat läßt sich herstellen aus 2 bis 15 Gew.-Teilen Wirkstoff und einem inerten Granulatträgermaterial wie Attapulgit, Bimsgranulat und/oder Quarzsand. Zweckmäßigerweise verwendet man eine Suspension des Spritzpulvers aus Beispiel b) mit einem Feststoffanteil von 30 und spritzt diese auf die Oberfläche eines Attapulgitgranulats, trocknet und vermischt innig. Dabei beträgt der Gewichtsanteil des Spritzpulvers ca. 5 und der des inerten Trägermaterials ca. 95 % des fertigen Granulats. C. Biologische Beispiele
Beispiel 1 : Phytophthora infestans
Tomatenpflanzen der Sorte "Rheinlands Ruhm" wurden im 3 bis 4 Blattstadium mit wäßrigen Suspensionen der beanspruchten Verbindungen gleichmäßig tropfnaß benetzt. Nach dem Antrocknen wurden die Pflanzen mit einer Zoosporangien-Suspension von Phytophthora infestans inokuliert und für 2 Tage unter optimalen Infektionsbedingungen in einer Klimakammer gehalten. Danach wurden die Pflanzen bis zur Symptomausprägung im Gewächshaus weiterkultiviert. Die Befallsbonitur erfolgte ca. 1 Woche nach Inokulation. Der Befallsgrad der Pflanzen wurden in % befallener Blattfläche im Vergleich zu den unbehandelten, zu 100 % infizierten Kontrollpflanzen ausgedrückt.
Bei 250 mg Wirkstoff/I Spritzbrühe zeigt die folgende Substanz eine vollständige Befallsunterdrückung:
Verbindung aus Beispiel 6
Beispiel 2: Plasmopara viticola
Weinsämlinge der Sorten "Riesling/Ehrenfelder" wurden ca. 6 Wochen nach der Aussaat mit wäßrigen Suspensionen der beanspruchten Verbindungen tropfnaß behandelt. Nach dem Antrocknen des Spritzbelages wurden die Pf lanzen mit einer Zoosporangiensuspension von Plasmopara viticola inokuliert und tropfnaß für 4 bis 5 Stunden in eine Klimakammer mit 23°C und 80 bis 90 % rel. Luftfeuchte gestellt.
Nach einer Inkubationszeit von 7 Tagen im Gewächshaus wurden die Pflanzen nochmals über Nacht in die Klimakammer gestellt, um die Sporulation des Pilzes anzuregen. Anschließend erfolgte die Befallsauswertung. Der Befallsgrad wurde in % befallener Blattfläche im Vergleich zu den unbehandelten, zu 100 % infizierten Kontrollpflanzen ausgedrückt.
Bei 250 mg Wirkstoff/I Spritzbrühe zeigt die folgende Substanz eine vollständige Befallsunterdrückung:
Verbindung aus Beispiel 5
Beispiel 3: Pyrenophora teres
Gerstenpflanzen der Sorte "Igri" wurden im 2-Blatt-Stadium mit einer wäßrigen Suspension der beanspruchten Verbindungen tropfnaß behandelt. Nach dem Antrocknen des Spritzbelages wurden die Pflanzen mit einer wäßrigen Sporensuspension von Pyrenophora teres inokuliert und für 16 Stunden in einer Klimakammer bei 100 % rel. Luftfeuchte inkubiert. Anschließend wurden die infizierten Pflanzen im Gewächshaus bei 25 °C und 80 % rel. Luftfeuchte weiterkultiviert.
Ca. 1 Woche nach Inokulation wurde der Befall ausgewertet und der Befallsgrad in % befallener Blattfläche im Vergleich zu unbehandelten, zu 100 % infizierten Kontrollen bonitiert.
Bei 250 mg/l Spritzbrühe zeigt die folgende Substanz eine vollständige Befallsunterdrückung:
Verbindugn aus Beispiel 18
Beispiel 4: Erysiphe graminis
Gerstenpflanzen wurden im 3-Blattstadium mit Konidien des Gerstenmehltaus (Erysiphe graminis f. sp. hordei) stark inokuliert und in einem Gewächshaus bei 20°C und einer relativen Luftfeuchte von 90 bis 95 % aufgestellt. 24 Stunden nach Inokulation wurden die Pflanzen mit den nachfolgend aufgeführten Verbindungen in den angegebenen Wirkstoffkonzentrationen gleichmäßig benetzt. Nach einer Inkubationszeit von 10 Tagen wurden die Pflanzen auf Befall mit Gerstenmehltau untersucht. Der Befallsgrad wurde in % befallener Blattfläche im Vergleich zu unbehandelten, zu 100 % infizierten Kontrollpflanzen ausgedrückt.
Bei 250 mg Wirkstoff/I Spritzbrühe zeigen die folgenden Substanzen eine vollständige Befallsunterdrückung:
Verbindung aus Beispiel 6 und Beispiel 5
Beispiel 5:
Mit Bohnenspinnmilben (Tetranychus urticae, Vollpopulation) stark befallene Bohnenpflanzen (Phaseolus v.) wurden mit der wässrigen Verdünnung eines Spritzpulverkonzentrates, das 250 ppm des jeweiligen Wirkstoffes enthielt, gespritzt.
Die Mortalität der Milben wurde nach 7 Tagen kontrolliert. 100 % Abtötung wurde mit den Verbindungen gemäß Beispiel 5 und 1 1 erreicht.
Beispiel 6:
Mit Schwarzer Bohnenblattlaus (Aphis fabae) stark besetzte Ackerbohnen (Vicia faba) werden mit wäßrigen Verdünnungen von Spritzpulverkonzentraten mit 250 ppm Wirkstoffgehalt bis zum Stadium des beginnenden Abtropfens besprüht. Die Mortalität der Blattläuse wird nach 3 Tagen bestimmt. Eine 100 %ige Abtötung kann mit den Verbindungen gemäß Beispiel 6 und 5 erzielt werden. Beispiel 7:
Mit Weißer Fliege (Trialeurodes vaporariorum) stark besetzte Bohnenpflanzen wurden mit wäßrigen Suspensionen von Spritzpuiverkonzentraten (250 ppm Wirkstoffgehalt) bis zum beginnenden Abtropfen gespritzt. Nach Aufstellung der Pflanzen im Gewächshaus erfolgte nach 14 Tagen die mikroskopische Kontrolle mit dem Ergebnis jeweils 100 %iger Mortalität bei den Präparaten mit den Wirkstoffen der Beispiele 6, 5 und 1 1.
Beispiel 8:
L3-Larven der Käferart Diabrotica undecimpunctata wurden auf Filterpapierscheiben gesetzt, die mit je 2 ml einer wäßrigen Verdünnung eines Spritzpulverkonzentrates das 250 ppm Wirkstoff enthielt, getränkt waren und in verschlossenen Petrischalen bei Raumtemperatur (23 °C) 3 Tage aufbewahrt. Danach wurde die Mortalität der Larven kontrolliert.
Eine 100 %ige Abtötung wurde mit Verbindungen gemäß den Beispielen 6 und 5 erreicht.
Beispiel 9:
24 Stunden alte Imagines der Stubenfliege (Musca domestica) wurden in Glasspetrischalen gesetzt. Boden und Deckel waren mit je 2 ml einer wäßrigen Verdünnung eines Spritzpulverkonzentrates, das 250 ppm Wirkstoff enthielt beschichtet worden. Durch Abtrocknen an der Luft war er als Belag auf den Glasflächen vorhanden.
3 Stunden nach dem Aufsetzen der Tiere und dem Verschließen der Schalen wurde die Mortalität kontrolliert.
Ein 100 %ige Abtötung wurde mit der Verbindung aus Beispiel 18 erreicht. Patentansprüche:
1. Verbindungen der Formel 1 und deren Salze,
worin
(1 ) die Anzahl x der Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt wird aus der Gruppe bestehend aus
R-O-CH2-,
R-O-CO-,
Halogen-(C1-C4)-alkoxymethyl,
Halogen-(C.,-C4)-alkenyloxymethyl,
Halogen-(C1-C )-alkoxycarbonyl,
Halogen-(C,-C4)-alkenyloxycarbonyl und Cyano; und x 1 , 2, 3 oder 4 ist;
und die übrigen 4-x Reste R1, R2, R3 und R4, die gleich oder verschieden sind, ausgewählt werden aus der Gruppe bestehend aus
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
(CrC4)-Alkoxy,
(C2-C4)-Alkenyloxy,
Halogen-(CrC4)-alkyl,
Halogen-(C2-C4)-alkenyl,
Halogen-(C.|-C4)-alkoxy,
Halogen-(C2-C4)-alkenyloxy
(CrC4)-Alkylthio,

Claims

(CrC4)-Alkylsulfinyl,
(CrC4)-Alkylsu.fonyl.
Aryl, substituiertes Amino,
Halogen und
Wasserstoff;
(1 ) (CrC10)-Alkyl,
(C2-C10)-Alkenyl,
(C2-C10)-Alkinyl,
(C3-C8)-Cycloalkyl oder
Aralkyl bedeutet;
Aryl wie unten unter (5a) definiert ist; Arylkyl Aryl-(CrC4)-alkyl bedeutet;
(2) X O, S, NH, NR oder NOR bedeutet und R wie oben unter (1 ) definiert ist.
(3) Y - Z zusammen einen (C5-C ) Kohlenwasserstoff rest bedeutet, der unverzweigt oder verzweigt ist und bei dem eine oder mehrere, vorzugsweise bis zu drei CH2 durch Heteroatomgruppen wie O, NR5, S, SO, SO2 oder SiR6R7 ersetzt sein können, wobei R5 Wasserstoff, (C-,-C4)- Alkyl oder (C-|-C4)-Acyl, und R6 und R7, die gleich oder verschieden sind, unabhängig voneinander (C1-C4)-Alkyl, Phenyl oder substituiertes Phenyl bedeuten, und wobei dieser (C5-C12)-Kohlenwasserstoffrest mit den möglichen vorgenannten Variationen (Ersatz durch Heteroatomrest(e)) gegebenenfalls mit einer oder mehreren, gleichen oder verschiedenen Resten aus der Reihe
(CrC7)-Alkyl,
(C2-C4)-Alkenyl,
(C2-C4)-Alkinyl,
(C3-C7)-Cycloalkyl,
(C3-C7)-Cycloalkenyl,
Halogen, Halogen-(CrC4)-alkyl, Halogen-(C1-C4)-alkoxy, Hydroxy und
(C1-C4)-Acyl, substituiert ist; oder, falls von den vorstehenden Definitionen nicht umfaßt,
(4) Y eine Bindung oder ein bivalenter Kohlenwasserstoffrest mit 1 bis 6 C-Atomen ist, der mit einer oder mehreren, gleichen oder verschiedenen Resten aus der Reihe
(CrC7)-Alkyl,
(C2-C4)-Alkenyl,
(C3-C7)-Alkinyl,
(C3-C7)-Cycloalkyl,
(C3-C7)-Cycloalkenyl,
Halogen,
Halogen-(CrC4)-alkyl,
Halogen-fC- C^-alkoxy,
Hydroxy und
(C,-C4)-Acyl substituiert ist; und
(5) Z
(a) Aryl, O-Aryl oder Aryl-(C C4)-alkyl bedeutet, wobei Aryl eine Phenylgruppe ist, die gegebenenfalls mit einem oder mehreren, gleichen oder verschiedenen Resten aus der Reihe
Halogen,
(C3-C8)-Cycloalkyl,
(C3-C8)-Cycloalkenyl,
Phenoxy, substituiertes Phenoxy,
Phenylthio, substituiertes Phenylthio,
Phenyl, substitutiertes Phenyl, NO2, O
-C-R8,
Acetoxy,
Hydroxy,
Cyano,
SiR9R10R1 1 ,
O-SiR9R10R1 1,
NR12R13
S(O)R14,
SO2R14,
(CrC12)-Alkyl,
(C2-C12)-Alkenyl,
(CrC12)-Alkoxy und
(C.,-C12)-Alkylthio substituiert ist; und
R8 (CrC7)-Alkyl, Halogen-(CrC7)-alkyl, (C3-C7)-Cycloalkyl,
Halogen-(C3-C7)-cycloalkyl, (C1-C7)-Alkoxy, Phenyl oder substituiertes Phenyl bedeutet;
R9, R10 und R1 1 gleich oder verschieden sind und unabhängig voneinander (C,-C4)-Alkyl, Phenyl und/oder substituiertes Phenyl bedeuten;
R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C,-C4)-Alkyl und/oder (C1-C4)-Acyl bedeuten;
R14 (Cr0)-Alkyl, Phenyl oder substituiertes Phenyl bedeutet; wobei in (C.,-C12)-Alkyl, (C2-C12)-Alkenyl, (CrC12)-Alkoxy und
(Cι-(C 2)-Alkylthio gegebenenfalls eine oder mehrere CH2-Gruppen durch CO und/oder Heteroatome/Gruppen, wie O, S, SO, SO2, NR5 oder SiR6R7 ersetzt sind;
R5, R6 und R7 haben die Bedeutung wie oben unter (3); der (CrC12)-Alkylrest, der (CrC12)-Alkoxyrest und der (CrC12)- Alkylthiorest mit oder ohne den vorgenannten Variationen (Ersatz durch Heteroatomrest(e) bzw. CO) außerdem mit einer oder mehreren gleichen oder verschiedenen der nachstehenden Resten aus der Reihe Halogen, Halogen-(C1-C4)-alkoxy, Hydroxy, (C3-C8)- Cycloalkyl, (C3-C8)-Cycloalkenyl, (C1-C4)-Acyl, Phenoxy, substituiertes Phenoxy, Phenyl, substituiertes Phenyl, Phenylthio und substituiertes Phenylthio substituiert sein können; oder (b) (C3-C8)-Cycloalkyl oder (C5-C8)-Cycloalkenyl bedeutet, wobei eine CH2-Gruppe des Carbocyclus durch NR15 ersetzt sein kann; R15 Phenyl oder substituiertes Phenyl bedeutet und der (C3-C8)- Cycloalkyl- oder (C5-C8)-Cycloalkenyl-Rest gegebenenfalls mit einem oder mehreren gleichen oder verschiedenen Resten aus der Reihe
(CrC18)-Alkyl,
(C2-C18)-Alkenyl,
(CrC12)-Alkoxy,
(C2-C12)-Acyl,
(C^C^J-Alkyl-oxycarbonyl,
SiR9R10R1 1 ,
NR16R17,
Hydroxyl,
Oxo,
Halogen,
Aryl,
(CrC18)-Alkandiyl,
(C,-C18)-Alkandiyldioxy
(C|-C.| 3)-Alkyl-oximino,
Aryl-(C1-C4)-alkyloximino und
(C2-C18)-Alkyliden substituiert sind und in den genannten
(CrC18)-, (C2-C18)-, (CrC12)-, (C2-C12)- und (CrC13)-
Kohlenwasserstoff-Resten eine oder mehrere CH2-Gruppen durch Heteroatome/Gruppen, wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5, R6 und R7 die Bedeutung wie unter (3) haben und darüber hinaus 3 bis 8, vorzugsweise 3 bis 6 C-Atome und gegebenenfalls Heteroatomreste dieser Kohlenwasserstoff-Reste einen Cyclus bilden können und diese Kohlenwasserstoff-Reste mit oder ohne den Variationen (Ersatz durch Heteroatomrest(e) und/oder Cyclusbildung) gegebenenfalls mit einem oder mehreren, vorzugsweise bis zu drei, im Falle von Halogen bis zur Maximalanzahl an gleichen oder verschiedenen Resten aus der Reihe Halogen, Halogenalkyl, Cycloalkyl, Acyl, Phenoxy, substituiertes Phenoxy, Phenyl, substituiertes Phenyl, Phenylthio und substituiertes Phenylthio substituiert sind; R9, R10, R1 1 und Aryl die Bedeutungen wie unter (5 a) haben; und R16 und R17 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C.|-C6)-Alkyl, (C-|-C6)- Alkoxy, (CrC4)-Acyl, (C3-C6)-Cycloalkyl, Phenyl und substituiertes Phenyl bedeuten.
2. Verbindungen der Formel 1 gemäß Anspruch 1 und deren Salze, worin (1 ) die Anzahl x der Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt wird aus der Gruppe bestehend aus
R-O-CH2-,
R-O-CO-,
Halogen-(C1-C4)-alkoxymethyl,
Halogen-(C1-C4)-alkenyloxymethyl,
Halogen-(C|-C4)-alkoxycarbonyl,
Halogen-(C1-C4)-alkenyloxycarbonyl und Cyano; und x 1 , 2, 3 oder 4 ist; und die übrigen 4-x Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt werden aus der Gruppe bestehend aus
(CrC4)-Alkyl,
(C2-C4)-Alkenyl,
(CrC4)-Alkoxy,
(C2-C4)-Alkenyloxy,
Halogen-(CrC4)-alkyl,
Halogen-(C2-C4)-alkenyl,
Halogen-(CrC4)-alkoxy,
Halogen-(C2-C4)-alkenyloxy
(CrC4)-Alkylthio,
(CrC4)-Alkylsulfinyl,
(CrC4)-Alkylsulfonyl,
Aryl, substituiertes Amino,
Halogen und
Wasserstoff; R (CrC7)-Alkyl,
(C2-C7)-Alkenyl,
(C2-C7)-Alkinyl,
(C3-C6)-Cycloalkyl bedeutet;
(2) X O, S, NH, NR oder NOR bedeutet und R wie oben unter (1 ) definiert ist.
(3) Y - Z zusammen wie im Anspruch 1 definiert ist und gegebenenfalls mit einer oder mehreren gleichen oder verschiedenen Resten aus der Reihe
(CrC7)-Alkyl, Halogen,
Halogen-(CrC4)-alkyl, Halogen-(C1-C4)-alkoxy und (C1-C4)-Acyl substituiert ist; oder, falls von den vorstehenden Definitionen nicht umfaßt, (4) Y eine Bindung oder ein bivalenter Kohlenwasserstoffrest mit 1 bis 6 C-Atomen ist, der mit einer oder mehreren gleichen oder verschiedenen Resten aus der Reihe
(CrC7)-Alkyl, Halogen,
Halogen-(C1-C4)-alkyl und Halogen-(C1-C4)-alkoxy substituiert ist; und
(5) Z
(a) Aryl, O-Aryl oder Aryl-(C1-C4)-alkyl bedeutet, wobei Aryl eine Phenylgruppe ist, die gegebenenfalls mit einem oder mehreren gleichen oder verschiedenen Resten aus der Reihe
Halogen,
(C3-C8)-Cycloalkyl,
(C3-C8)-Cycloalkenyl,
Phenoxy, substituiertes Phenoxy,
Phenyl, substitutiertes Phenyl, O
-C-R8,
SiR9R10R1 1 ,
O-SiR9R10R1 1 ,
NR12R13
(C1-Cl 2)-Alkyl,
(C2-C12)-Alkenyl und
(C,-C12)-Alkoxy substituiert ist; und
R8 (CrC7)-Alkyl, Halogen-(CrC7)-alkyl, (C5-C6)-Cycloalkyl, (Cr
C7)-Alkoxy, Phenyl oder substituiertes Phenyl bedeutet;
R9, R10 und R1 1 gleich oder verschieden sind und unabhängig voneinander (C1-C4)-Alkyl, Phenyl und/oder substituiertes Phenyl bedeuten;
R12 und R13 gleich oder verschieden sind und unabhängig voneinander Wasserstoff, (C1-C4)-Alkyl und/oder (C1-C4)-Acyl bedeuten; wobei in (C C12)-Alkyl, (C2-C12)-Alkenyl und (C.,-C12)- Alkoxy gegebenenfalls eine oder mehrere CH2-Gruppen durch CO und/oder Heteroatome/Gruppen, wie O, S, SO, SO2, NR5 oder SiR6R7 ersetzt sind;
R5, R6 und R7 haben die Bedeutung wie oben unter (3); der (C.,-Cι2)-Alkylrest und der (C^C^J-Alkoxyrest mit oder ohne den vorgenannten Variationen (Ersatz durch Heteroatomrest(e) bzw. CO) außerdem mit einer oder mehreren gleichen oder verschiedenen der nachstehenden Resten aus der Reihe Halogen, Halogen-(C C4)-alkoxy, (C3-C6)-Cycloalkyl, (C1-C4)-Acyl, Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl substituiert sein kann; oder Halogen F oder Cl bedeutet; (b) (C3-C6)-Cycloalkyl oder (C5-C8)-Cycloalkenyl bedeutet, wobei eine CH2-Gruppe des Carbocyclus durch NR15 ersetzt sein kann; R15 Phenyl oder substituiertes Phenyl bedeutet und der (C3-C8)- Cycloalkyl- oder (C5-C8)-Cycloalkenyl-Rest gegebenenfalls mit einem oder mehreren gleichen oder verschiedenen Resten aus der Reihe
(CrC18)-Alkyl,
(C2-C18)-Alkenyl,
(CrC12)-Alkoxy,
(C2-C12)-Acyl,
(C-| -C-, 2)-Alkyl-oxycarbony I,
SiR9R10R1 1 ,
Hydroxyl,
Oxo,
Halogen, Aryl,
(CrC18)-Alkandiyl, (Cj-C, 8)-Alkandiyldioxy (C-|-C13)-Alkyl-oximino, Aryl-(C1-C4)-alkyloximino und
(C2-C18)-Alkyliden substituiert sind und in den genannten (C C18)-, (C2-C18)-, (C C12)-, (C2-C12)- und (Cj-C^)- Kohlenwasserstoff-Resten eine oder mehrere CH2-Gruppen durch Heteroatome/Gruppen, wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5, R6 und R7 die Bedeutung wie unter (3) haben und darüber hinaus 3 bis 6 C-Atome und gegebenenfalls Heteroatomreste dieser Kohlenwasserstoff- Reste einen Cyclus bilden können und diese Kohlenwasserstoff-Reste mit oder ohne den Variationen (Ersatz durch Heteroatomrest(e) und/oder Cyclusbildung) gegebenenfalls mit einem oder mehreren gleichen oder verschiedenen Resten aus der Reihe Halogen, Halogenalkyl, Cycloalkyl, Acyl, Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl substituiert sind; R9, R10, R1 1 und Aryl die Bedeutungen wie unter (5 a) haben.
3. Verbindungen der Formel 1 gemäß Anspruch 1 oder 2 und deren Salze, worin
(1 ) die Anzahl x der Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt wird aus der Gruppe bestehend aus
R-O-CH2-,
R-O-CO-,
Halogen-(C1-C4)-alkoxymethyl,
Halogen-(C1-C4)-alkenyloxymethyl,
Halogen-(C1-C4)-alkoxycarbonyl,
Halogen-(C-,-C4)-alkenyloxycarbonyl und Cyano; und x 1 , 2, 3 oder 4 ist;
und die übrigen 4-x Reste R1 , R2, R3 und R4, die gleich oder verschieden sind, ausgewählt werden aus der Gruppe bestehend aus
(CrC3)-Alkyl,
(C2-C3)-Alkenyl,
(C,-C3)-Alkoxy,
(C2-C5)-Alkenyloxy,
Halogen-(C1-C3)-alkyl,
Halogen-(C2-C9)-alkenyl,
Halogen-(C1-C3)-alkoxy,
Halogen-(C2-C3)-alkenyloxy
Halogen und
Wasserstoff; R (CrC5)-Alkyl,
(C2-C5)-Alkenyl,
(C3-C6)-Cycloalkyl bedeutet;
(2) X O oder NH bedeutet;
(3) Y - Z zusammen einen (C5-C12) Kohlenwasserstoffrest bedeutet, der unverzweigt oder verzweigt ist und bei dem eine oder mehrere, vorzugsweise bis zu drei CH2 durch Heteroatomgruppen wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5 (CrC4)-Acyl, und R6 und R7, die gleich oder verschieden sind, unabhängig voneinander (C,-C4)-Alkyl, Phenyl oder substituiertes Phenyl bedeuten, und wobei dieser (C5-C12)- Kohlenwasserstoffrest mit den möglichen vorgenannten Variationen (Ersatz durch Heteroatomrest(e)) gegebenenfalls mit einer oder mehreren gleichen oder verschiedenen Resten aus der Reihe
(CrC5)-Alkyl, Fluor, Chlor, Halogen-(C.,-C4)-alkyl und Halogen-(C1-C3)-alkoxy substituiert ist; oder, falls von den vorstehenden Definitionen nicht umfaßt,
(4) Y eine Bindung oder ein bivalenter Kohlenwasserstoffrest mit 1 bis 6 C-Atomen ist, der mit einer oder mehreren gleichen oder verschiedenen Resten aus der Reihe
(CrC5)-Alkyl, Fluor, Chlor
Halogen-(C|-C3)-alkyl und Halogen-(C1-C4)-alkoxy substituiert ist; und
(5) Z
(a) Aryl oder O-Aryl bedeutet, wobei Aryl eine Phenylgruppe ist, die gegebenenfalls mit einem oder mehreren gleichen oder verschiedenen Resten aus der Reihe
Halogen,
(C3-C6)-Cycloalkyl,
(C3-C8)-Cycloalkenyl,
Phenoxy, substituiertes Phenoxy,
Phenyl, substituiertes Phenyl,
SiR9R10R1 1,
O-SiR9R10R1 1,
(CrC6)-Alkyl und
(C-|-C7)-Alkoxy substituiert ist; und
R9, R10 und R1 1 gleich oder verschieden sind und unabhängig voneinander (C1-C4)-Alkyl, Phenyl und/oder substituiertes Phenyl bedeuten; wobei (C- CgJ-Alkyl und (C-|-C7)-Alkoxy gegebenenfalls eine oder mehrere CH2-Gruppen durch Heteroatome/Gruppen, wie O, S, NR5 oder SiR6R7 ersetzt sind;
R5, R6 und R7 haben die Bedeutung wie oben unter (3); der (Cι-C6)-Alkylrest und der (C-,-C7)-Alkoxyreste mit oder ohne den vorgenannten Variationen (Ersatz durch Heteroatomrest(e)) außerdem mit einer oder mehreren gleichen oder verschiedenen der nachstehenden Resten aus der Reihe Halogen, (C5-C6)-Cycloalkyl, Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl, substituiert sein kann; Halogen Fluor oder Chlor ist; oder (b) (C3-C6)-Cycloalkyl bedeutet, wobei eine CH2-Gruppe des Carbocyclus durch NR15 ersetzt sein kann; R15 Phenyl oder substituiertes Phenyl bedeutet und der (C3-C8)- Cycloalkyl-Rest gegebenenfalls mit einem oder mehreren gleichen oder verschiedenen Resten aus der Reihe:
(CrC12)-Alkyl,
(C2-C18)-Alkenyl,
(CrC12)-Alkoxy,
(C2-C12)-Acyl,
(C1-Cl 2)-Alkyl-oxycarbonyl,
SiR9R10R1 1,
Hydroxyl,
Oxo,
Halogen,
Aryl,
(C,-C18)-Alkandiyl,
(C C18)-Alkandiyldioxy
(C, -C8)-Alkyl-oximino,
Aryl-(C1-C4)-alkyloximino und
(C2-C12)-Alkyliden substituiert sind und in den genannten
(CrC12)-, (C2-C12)- und (CrC8)- Kohlenwasserstoff-Resten eine oder mehrere CH2-Gruppen durch Heteroatome/Gruppen, wie O, NR5 oder SiR6R7 ersetzt sein können, wobei R5, R6 und R7 die Bedeutung wie unter (3) haben und darüber hinaus 3 bis 6 C-Atome und/oder Heteroatomrest(e) dieser Kohlenwasserstoff-Reste einen Cyclus bilden können und diese Kohlenwasserstoff-Reste mit oder ohne den Variationen (Ersatz durch Heteroatomrest(e) und/oder Cyclusbildung) gegebenenfalls mit einem oder mehreren gleichen oder verschiedenen Resten aus der Reihe Halogen, Halogenalkyl, Cycloalkyl, Acyl, Phenoxy, substituiertes Phenoxy, Phenyl und substituiertes Phenyl substituiert sind; R9, R10, R1 1 und Aryl die Bedeutungen wie unter (5 a) haben.
4. Verbindungen der Formel 1 gemäß einem der Ansprüche 1 bis 3 und deren Salze, worin die unter (5b) definierten Substituenten von Cycloalkyl oder Cycloalkenyl bezüglich Y cis-orientiert sind.
5. Verbindung gemäß Anspruch 4, die einen unter (5b) definierten Substituenten tragen, der sich in der 4-Position von Cyclohexyl befindet.
6. Verfahren zur Herstellung von Verbindungen der Formel 1 , dadurch gekennzeichnet, daß man Verbindungen der Formel 2
in der R1 , R2, R3 und R4 wie oben definiert sind und L eine Abgangsgruppe ist, mit den entsprechenden Aminen, Alkoholen, Phenolen oder Mercaptanen umsetzt, oder unter Bildung von Verbindungen der Formel 1 , worin Z wie unter (5b) definiert ist, solche Verbindungen der Formel 1 , worin R1 , R2, R3, R4, X und Y wie oben definiert sind und Z für einen ungesättigten carbocyclischen, wie Cycloalkyl oder Cycloalkenyl unter (5b) definiert substituierten Rest steht, hydriert, und die so erhaltenen Verbindungen der Formel 1 gegebenenfalls in ihr Salz überführt.
7. Mittel enthaltend mindestens eine Verbindung gemäß einem der Ansprüche 1 bis 5 und mindestens ein Formulierungsmittel.
8. Fungizides Mittel gemäß Anspruch 7, enthaltend eine fungizid wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 zusammen mit den für diese Anwendung üblichen Zusatz- oder Hilfsstoffen.
9. Insektizides, akarizides oder nematizides Mittel gemäß Anspruch 7, enthaltend eine wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 zusammen mit den für diese Anwendung üblichen Zusatz¬ oder Hilfsstoffen.
10. Pflanzenschutzmittel, enthaltend eine fungizid, insektizid, akarizid oder nematizid wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 und mindestens einem weiteren Wirkstoff, vorzugsweise aus der Reihe der Fungizide, Insektizide, Lockstoffe, Sterilantien, Akarizide, Nematizide und Herbizide zusammen mit den für diese Anwendung üblichen Hilfs- und Zusatzstoffen.
1 1 . Mittel zur Anwendung im Holzschutz oder als Konservierungsmittel in Dichtmassen, in Anstrichfarben, in Kühlschmiermitteln für die Metallbearbeitung oder in Bohr- und Schneidölen, enthaltend eine wirksame Menge mindestens einer Verbindung gemäß einem der Ansprüche 1 bis 5 zusammen mit den für diese Anwendungen üblichen Hilfs- und Zusatzstoffen.
12. Verbindung gemäß einem der Ansprüche 1 bis 5 oder Mittel gemäß Anspruch 7, zur Anwendung als Tierarzneimittel, vorzugsweise bei der Bekämpfung von Endo- oder Ektoparasiten.
13. Verfahren zur Herstellung eines Mittels gemäß einem der Ansprüche 7 bis 12, dadurch gekennzeichnet, daß man den Wirkstoff und die weiteren Zusätze zusammen gibt und in eine geeignete Anwendungsform bringt.
14. Verwendung einer Verbindung gemäß einem der Ansprüche 1 bis 5 oder Mittels gemäß einem der Ansprüche 7, 8, 10 und 1 1 als Fungizid.
15. Verwendung einer Verbindung der Formel 1 gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 8 und 1 1 als Holzschutzmittel oder als Konservierungsmittel in Dichtmitteln, in Anstrichfarben, in Kühlschmiermitteln für die Metallbearbeitung oder in Bohr- und Schneidölen.
16. Verfahren zur Bekämpfung von phytopathogenen Pilzen, dadurch gekennzeichnet, daß man auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate oder auf Saatgut eine fungizid wirksame Menge einer Verbindung gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 8, 10 und 1 1 appliziert.
17. Verfahren zur Bekämpfung von Schadinsekten, Acarina und Nematoden, bei welchem man auf diese oder die von ihnen befallenen Pflanzen, Flächen oder Substrate eine wirksame Menge einer Verbindung gemäß einem der Ansprüche
1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 9 und 10 appliziert.
18. Verwendung von Verbindungen gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 8 und 10 zur Bekämpfung von Schadinsekten, Acarina und Nematoden.
19. Saatgut, behandelt oder beschichtet mit einer wirksamen Menge einer Verbindung gemäß einem der Ansprüche 1 bis 5 oder eines Mittels gemäß einem der Ansprüche 7, 8, 10 und 1 1.
EP94926234A 1993-09-14 1994-09-02 Substituierte pyridine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide Withdrawn EP0719255A1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4331181 1993-09-14
DE4331181A DE4331181A1 (de) 1993-09-14 1993-09-14 Substituierte Pyridine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
PCT/EP1994/002930 WO1995007890A1 (de) 1993-09-14 1994-09-02 Substituierte pyridine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide

Publications (1)

Publication Number Publication Date
EP0719255A1 true EP0719255A1 (de) 1996-07-03

Family

ID=6497688

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94926234A Withdrawn EP0719255A1 (de) 1993-09-14 1994-09-02 Substituierte pyridine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide

Country Status (12)

Country Link
US (1) US5650417A (de)
EP (1) EP0719255A1 (de)
JP (1) JPH09506591A (de)
KR (1) KR960704848A (de)
CN (1) CN1130902A (de)
AU (1) AU7615194A (de)
BR (1) BR9407497A (de)
DE (1) DE4331181A1 (de)
IL (1) IL110922A0 (de)
TR (1) TR28673A (de)
WO (1) WO1995007890A1 (de)
ZA (1) ZA947039B (de)

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4436509A1 (de) * 1994-10-13 1996-04-18 Hoechst Schering Agrevo Gmbh Substituierte Spiroalkylamino- und alkoxy-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
TW334337B (en) * 1994-11-07 1998-06-21 Novartis Ag Preparation and composition for a compound of controlling and preventing phytopathogenic fungi
US6281221B1 (en) 1996-06-27 2001-08-28 Hoechst Scering Agrevo Gmbh Substituted 1,3-dioxan-5-ylamino-hererocyclic compounds, processes for their preparation and their use as pest control compositions
DE19647413A1 (de) * 1996-11-15 1998-05-20 Hoechst Schering Agrevo Gmbh Substituierte Stickstoff-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
DE19647317A1 (de) * 1996-11-15 1998-05-20 Hoechst Schering Agrevo Gmbh Substituierte Stickstoff-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
DE19647402A1 (de) * 1996-11-15 1998-05-20 Hoechst Schering Agrevo Gmbh Substituierte Stickstoff-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
DE19719590A1 (de) * 1997-05-09 1998-11-12 Hoechst Schering Agrevo Gmbh Substituierte Stickstoff-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
DE19815026A1 (de) * 1998-04-03 1999-10-07 Hoechst Schering Agrevo Gmbh Substituierte Piperidine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
GB9810860D0 (en) * 1998-05-20 1998-07-22 Hoechst Schering Agrevo Gmbh Substituted pyridine and pyrimidines, processes for their preparation and their use as pesticides
GB0910766D0 (en) * 2009-06-22 2009-08-05 Syngenta Ltd Chemical compounds
CN103664761A (zh) * 2013-12-06 2014-03-26 常熟市联创化学有限公司 一种4-吡啶酚的制备方法
CN103802583B (zh) * 2014-02-20 2017-01-04 兴文县石海竹木制品有限公司 一种竹簧工艺品的生产方法
JP2017197433A (ja) * 2014-09-12 2017-11-02 石原産業株式会社 ニコチン酸エステル化合物、農園芸用殺菌剤及び植物病害の防除方法

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3682936A (en) * 1970-10-02 1972-08-08 Dow Chemical Co Certain 6-(trifluoromethyl)-pyridinols
DE3205150A1 (de) * 1982-02-13 1983-08-18 Celamerck Gmbh & Co Kg, 6507 Ingelheim Pyridinderivate, ihre herstellung und verwendung
US4835279A (en) * 1984-11-06 1989-05-30 Monsanto Company 2,6-substituted pyridine compounds
US4698093A (en) * 1984-11-06 1987-10-06 Monsanto Company Herbicidal (2 or 6)-fluoroalkyl-4-amino pyridine derivatives
DE3731626A1 (de) * 1987-09-19 1989-03-30 Bayer Ag 4,6-dimethyl-2-phenylaminopyridin-3- carbonitrile
DE4029772A1 (de) * 1990-09-20 1992-03-26 Basf Ag 2-anilino-cyanopyridine und ihre verwendung zur bekaempfung von schaedlingen
DE4032147A1 (de) * 1990-10-10 1992-04-16 Bayer Ag Verwendung von substituierten 2-mercaptonicotinsaeurederivaten zur bekaempfung von endoparasiten, neue substituierte 2-mercaptonicotinsaeurederivate und verfahren zu ihrer herstellung
US5399564A (en) * 1991-09-03 1995-03-21 Dowelanco N-(4-pyridyl or 4-quinolinyl) arylacetamide and 4-(aralkoxy or aralkylamino) pyridine pesticides

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9507890A1 *

Also Published As

Publication number Publication date
JPH09506591A (ja) 1997-06-30
WO1995007890A1 (de) 1995-03-23
AU7615194A (en) 1995-04-03
TR28673A (tr) 1996-12-20
DE4331181A1 (de) 1995-03-16
ZA947039B (en) 1995-05-02
US5650417A (en) 1997-07-22
CN1130902A (zh) 1996-09-11
KR960704848A (ko) 1996-10-09
BR9407497A (pt) 1996-06-25
IL110922A0 (en) 1994-11-28

Similar Documents

Publication Publication Date Title
EP0631575B1 (de) Substituierte pyrimidine und ihre verwendung als schädlingsbekämpfungsmittel
US5821244A (en) Condensed nitrogen heterocycles and their use as pesticides, fungicides and antimycotics
DE4131924A1 (de) Substituierte 4-alkoxypyrimidine, verfahren zu ihrer herstellung und ihre verwendung als schaedlingsbekaempfungsmittel
WO1996010016A1 (de) Substituierte pyridine als schädlingsbekämpfungsmittel und fungizide
EP0519211A1 (de) Substituierte 4-Aminopyrimidine, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel
US5723450A (en) Substituted pyridines, their preparation, and their use as pesticides and fungicides
DE4436509A1 (de) Substituierte Spiroalkylamino- und alkoxy-Heterocyclen, Verfahren zu ihrer Herstellung und ihre Verwendung als Schädlingsbekämpfungsmittel und Fungizide
EP0719259B1 (de) Substituierte pyridine und pyrimidine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide
US5650417A (en) Substituted pyridines, their preparation, and their use as pesticides and fungicides
EP0759909A1 (de) Heterocyclylamino- und heterocyclyloxy-cycloalkyl-derivate, ihre herstellung und ihre verwendung als schädlingsbekämpfungsmittel und fungizide
EP0892798A1 (de) Substituierte pyridine/pyrimidine, verfahren zu ihrer herstellung und ihre verwendung als schädlingsbekämpfungsmittel
EP0325983A2 (de) N-Phenylbenzamide und N-Phenylbenzamidoxime, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel
US5877322A (en) Substituted pyridines, their preparation, and their use as pesticides and fungicides
EP0386715B1 (de) Heteroaryl-aryl-buten- und -butanderivate, Verfahren zu ihrer Herstellung, sie enthaltende Mittel und ihre Verwendung als Schädlingsbekämpfungsmittel
DE3903404A1 (de) Pyrimidintrionderivate, verfahren zu ihrer herstellung, sie enthaltende mittel und ihre verwendung als schaedlingsbekaempfungsmittel
WO1997019924A1 (de) Cyclohexylmethyl- und cyclohexylidenmethyl-pyridine, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung als schädlingsbekämpfungsmittel und fungizide
WO1997019923A1 (de) Cyclohexylmethyl- und cyclohexylidenmethyl-pyridine, verfahren zu ihrer herstellung, diese enthaltende mittel und ihre verwendung als schädlingsbekämpfungsmittel und fungizide

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960415

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB GR IT NL

17Q First examination report despatched

Effective date: 19960605

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION HAS BEEN WITHDRAWN

18W Application withdrawn

Withdrawal date: 19980117