EP0715582B1 - Procede de localisation des mines marines et de deminage sous-marin - Google Patents

Procede de localisation des mines marines et de deminage sous-marin Download PDF

Info

Publication number
EP0715582B1
EP0715582B1 EP95925762A EP95925762A EP0715582B1 EP 0715582 B1 EP0715582 B1 EP 0715582B1 EP 95925762 A EP95925762 A EP 95925762A EP 95925762 A EP95925762 A EP 95925762A EP 0715582 B1 EP0715582 B1 EP 0715582B1
Authority
EP
European Patent Office
Prior art keywords
mine
sonar
transponders
towing
towing vessel
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95925762A
Other languages
German (de)
English (en)
Other versions
EP0715582A1 (fr
Inventor
Heiko Schlieter
Lüder HOGREFE
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wartsila Elac Nautik GmbH
Original Assignee
AlliedSignal Elac Nautik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by AlliedSignal Elac Nautik GmbH filed Critical AlliedSignal Elac Nautik GmbH
Publication of EP0715582A1 publication Critical patent/EP0715582A1/fr
Application granted granted Critical
Publication of EP0715582B1 publication Critical patent/EP0715582B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B63SHIPS OR OTHER WATERBORNE VESSELS; RELATED EQUIPMENT
    • B63GOFFENSIVE OR DEFENSIVE ARRANGEMENTS ON VESSELS; MINE-LAYING; MINE-SWEEPING; SUBMARINES; AIRCRAFT CARRIERS
    • B63G7/00Mine-sweeping; Vessels characterised thereby
    • B63G7/02Mine-sweeping means, Means for destroying mines
    • B63G7/08Mine-sweeping means, Means for destroying mines of acoustic type

Definitions

  • the invention relates to a method for locating and clearing sea mines according to the preamble of claim 1. It uses a search and measurement sonar device, which is pulled by an unmanned towing vehicle at an adjustable towing depth, for the detection and localization of the mines, an unmanned, remote-controlled from a floating guide platform Clearing vehicle; and a data connection between the towing vehicle and the guide platform for transmitting the position data of the mines determined by the sonar device to the guide platform.
  • a search and measurement sonar device which is pulled by an unmanned towing vehicle at an adjustable towing depth, for the detection and localization of the mines, an unmanned, remote-controlled from a floating guide platform Clearing vehicle; and a data connection between the towing vehicle and the guide platform for transmitting the position data of the mines determined by the sonar device to the guide platform.
  • an unmanned, remotely controlled towing vehicle of the seahorse type pulls a search and measurement sonar device VDS through a route to be cleared of mines, whereby the search sonar detects and locates the mines to be removed.
  • the position data of the mine are passed on to the towing vehicle via cable, which forwards this data over a radio link to a guide platform remotely steering the towing vehicle.
  • this guide platform brings a Seewolf control drone to the mine in order to render it harmless.
  • search sonar can only determine the relative position of the mine in relation to its own position, an exact and continuous determination of the position of the search sonar on the one hand with respect to the towing vehicle and on the other hand with regard to the geographic position of the towing vehicle itself is necessary, so that ultimately the position of the mine in geographic coordinates determined and made available to the command platform for the combat drone.
  • the magazine also shows Soldier and technology in issue 3/1994 on page 150 a further development of the system Mine defense 2000 , in which a position beacon is placed near a located mine on the water's bottom, the sound signals of the mine-fighting drone of the type Seewolf signal the location of a mine.
  • the invention is based on this prior art.
  • DE 36 09 307 C1 describes a method for locating and destroying Known aquatic mines, in which an unmanned platform carrying a launcher on the Mine is pulled past and behind it a localization device at a predetermined distance follows. Behind the localization device there is in turn a predetermined distance Relocalization device and a destruction device following this. Between the First contact with the mine by the localization facility and subsequent relocalization At least two transponders are brought to the mine near the mine. At the The location of the mine relative to the transponders is then relocated, and the Measured data determined are either used to activate a destruction device used mine hunting torpedoes that drop an explosive charge near the mine, or they are fed to a fire control system, which is a facility that fires at the mine controls.
  • a major advantage of the invention is that complex tug body tracking from the towing vehicle can be omitted. Nevertheless, the location and control of the mines remain completely independent feasible from each other.
  • the process is divided into three phases, namely that Laying the transponder, locating the mines and locating them in with regard to the transponders and the introduction of the combat drone to the Transponder and the mine, the drone in one by the transponder certain coordinate system moves.
  • the transponders can either be operated from a helicopter or with the help of a Laying vehicle are exposed, for example of the same type or is the same as it later used for search and towing Survey sonar device is used.
  • This sonar is at a given depth hauled, but its geographic position does not need to be accurately determined and to be determined continuously.
  • the VDS Vehicle Depth Sonar
  • the VDS includes a sonar sensor for ground mines and Anchor mines as well as a sediment sonar for the detection of flooded sea mines. It measures the mine position in relation to at least three neighboring transponders. A compass in the sonar indicates its direction.
  • a depth sensor determines the Distance of the sonar above the water floor.
  • a measures Tug provided the relative distance between the Towing vehicle and at least three selected transponders.
  • An inertial system on the towing vehicle determines between the transponder measurements traveled path vectors.
  • the Velocity of sound measured in the individual water layers In this way you get the position of the individual transponders in a transponder-related Coordinate system. If you link this information with, for example, a GPS system determined geographic position of the towing vehicle, so you get the geographic position of the transponder. From this information and The determined position of the mine in the transponder coordinate system can be determine the geographic position of the mine, which is used for the initial control of the mine combat drone is needed. For an exact start of the mine, however the combat drone does not need to know its geographic position.
  • the drone is oriented in the transponder coordinate system and is based on the transponder-related mine data determined by the towing sonar headed.
  • the drone contains a transducer that opposes its relative position measures the transponders adjacent to the mine and in this way the drone Mine leads and destroyed.
  • the geographic position of the The towing vehicle can also be transmitted to the guidance platform and displayed there will. It is advantageous that the combat drone has neither its own inertial system needed, their respective position must still be determined. It is oriented rather in the transponder coordinate system. This will make for her Target control required device-related effort in the drone itself Minimum reduced so that these are trained for single use and nevertheless the proceedings can be carried out at reasonable costs.
  • Figure 1 shows in the right part an arrangement for locating and measuring a Mine 1 lying in the water, while in the left part fighting this Mine is shown.
  • the laying of the time takes place before the measurement Transponders, of which only three transponders 2, 3 and 4 are shown here. They were on either side of a fairway to be cleared of mines, for example at a distance of 1.5 km, deposited on the seabed. If necessary, the same towing vehicle 5 are used, which later the search and Surveying sonar 6 drags.
  • the geographic position of the Towing vehicle 5 is by a satellite-based navigation system GPS determined, of which only two of the satellites 7 are shown.
  • the towing vehicle 5 is determined on the towing vehicle installed inertial system 8, which is equipped with laser gyros, for example. This means that the position, direction and speed of the towing vehicle lie firmly. This data becomes a guide platform 10 by means of a radio link 9 transfer. The unmanned towing vehicle 5 is simultaneously via the radio link 9 remote controlled.
  • a mapping converter 11 extended from the keel of the towing vehicle 5 has the task, by measuring the transit time and thus by determining the distance between the towing vehicle 5 and the transponders 2 to 4 the position of the Transponders 2 to 4 in a suitable transponder coordinate system determine.
  • the same transponders 2 to 4 are from the mapping converter 12 Drag sonars 6 reasonable.
  • This drag sonar 6, also as VDS (Variable Depth Sonar) measures the distances to the transponders 2 to 4 and on the other hand, with the mine search sonar 12a, the position of the mine 1 with respect to the Towing sonar VDS.
  • the position of the mine 1 in relation to the transponder 2 determined to 4.
  • the corresponding data are via the trailing cable 13 to Transfer navigation computer of the towing vehicle 5.
  • the tow body 6 is further equipped with a depth sensor to its respective diving depth and thus the height distance on the one hand to the towing vehicle 5 and on the other hand to the To determine transponders. It also has a compass for orientation in the towing direction, as it may due to the flow conditions can be inclined to the towing direction.
  • the mine detection sonar 12a and the towing vehicle sonar 11 is the position of Mine 1 is clearly defined in the coordinate system of transponders 2 to 4. This Position data of the mine in relation to the transponder coordinate system via the radio link 9 to the guide platform 10.
  • the navigation converter 21 of the drone 20 constantly measures the distance to the Transponders 2 'to 4' and thus the position of the drone 20 with respect to the Mine 1 '.
  • the data is transmitted to the guide platform via the steering cable 22, which transmits corresponding steering signals for the drone 20 to it bring the drone 20 closer to the mine 1 '. That way she needs Drone 20 does not have its own navigation computer.
  • the drone is located 20 above the mine 1 ', it is lowered onto the mine and ignited. Is the drone equipped with a special explosive device 23, this is immediately adjacent set down mine 1, guided the drone out of the danger area and then the Explosive device 23 detonated and the mine destroyed.
  • the Transponders can be equipped with depth sensors that record their values at Transfer vehicle 5. If the towing vehicle is not with a Inertial system is equipped, you can also use the transponder basic measurement by measuring the transit time between the transponders and the towing vehicle carry out such a survey at different positions of the Towing vehicle.
  • Each of the transponders is a specific frequency assigned, for example the one laid out on the left edge of the fairway Transponders are the even multiples of a basic frequency and the one on the transponders on the right are the odd multiples of the Can assign fundamental frequency.
  • FIG. 2 shows schematically the individual components of a system for Implementation of the location and clearing procedure.
  • the transponders Only one of the transponders is used 2 to 4, namely the transponder 2, shown.
  • it contains 24 a battery 25 for the power supply, an anchor 26, a transmission / reception switch 27, a preamplifier and filter circuit 28, a signal detector 29 and a transmission signal generator 30.
  • the mode of operation of Transponders are known.
  • the incoming signal is after preamplification and Filtering is fed to the detector 29, which determines whether it is a valid one Interrogation signal is. If this is the case, the transmission signal generator 30 generates a corresponding response signal, which via the transmission / reception switch 27 to now serves as a transmitter converter 24 and is emitted.
  • the transponders 2 to 4 are queried by the Mapping converter 12 of the towed body 6 and the mapping converter 11 of the Towing vehicle 5, which query the individual transponders one after the other.
  • the response signal arrives if it is in the pass band a filter circuit 31 falls to the transmission / reception switch shown in the same block and from there to a transit time measuring circuit 32
  • Output signal is together with the output signals of a depth sensor 33 and a compass 34 digitally to the towing vehicle 5 via the trailing cable 13 transfer.
  • the navigation computer 35 of the towing vehicle 5 thus receives three via the cable 13 Runtime values, namely the running distances between the mapping converter 12 on the one hand and the three transponders 2 to 4 on the other hand, as well as the depth and Direction signals from the depth sensor 33 and the compass 34. Furthermore, the Mine detection sonar 12a of the towed body 6 the position of the mine 1 with respect to the Tow body 6 determined. For this purpose, the circuits 31 and 32 are corresponding - in Figure 2 not separately drawn - circuits on the converter 12a of Mine detection sonars connected. These signals also reach the cable 13 Navigation computer 35 of the towing vehicle 5, which determines the location of the mine 1 in with reference to transponders 2 to 4.
  • the towing vehicle 5 is also how already explained above, with a location determination system 7 and with a Inertial system 8 equipped.
  • the satellite-based positioning system 7 is usually a GPS system.
  • the mapping converter 11 of the towing vehicle 5 also works with the transmission / reception converter 24 of the transponders 2 to 4 together by passing them through a Query frequency activated and the response time to the individual via the response frequency Transponders determined. For this purpose it is via a filter bank and a transmit / receive switch 36 connected to a transit time measuring circuit 37, the Output signals go to the navigation computer 35 of the towing vehicle 5.
  • This The navigation computer thus determines the data transmitted via the cable 13 Position of mine 1 in relation to transponders 2 to 4.
  • the Mapping converters 11 generated distance data between the towing vehicle 5 and the transponders 2 to 4 it calculates the spatial position of the transponders related to the towing vehicle 5. By taking the own position data into account it calculates the geographic from the GPS 7 and the inertial system 8 Position data of the transponders 2 to 4 and transmits them via the radio bridge 9 to Management platform 10.
  • the guide platform 10 is equipped with a navigation computer 38 and controls the control drone 20. For this purpose, it is connected to the drone via a cable 22. This can be a light guide, for example. The same applies to the cable connection 13.
  • the drone 20 is also expediently equipped with a compass 40 and uses its navigation converter 21 to measure the distances to the transponders 2 'to 4'. The drone 20 is steered from the guide platform 10 in such a way that the distances to the three transponders assume the value which corresponds to the projection of the connecting lines of the mine 1 with the transponders 2 to 4.
  • the navigation converter 21 is connected via a filter bank with a subsequent transmission / reception switch 41 to a transit time measurement circuit 42 which supplies the transit time signals via the cable 22 to the navigation computer 38 of the guide platform 10.
  • the drone itself does not need its own navigation computer.
  • Appropriate steering signals via the cable 22 control the drone 20 such that the projection of the connecting lines between its navigation converter 21 and the transponders 2 'to 4' corresponds to the connecting lines between the mine 1 and the transponders 2 to 4.
  • the drone 20 is located exactly above the mine 1 '. If it itself is equipped with an explosive charge, it is lowered onto the mine 1 'and detonated.

Claims (5)

  1. Procédé de localisation de mines marines et de déminage, utilisant
    a) un sonar de recherche et de mesure (6), qui est traíné par un vaisseau de remorquage (5) sans équipage, à une profondeur de remorquage mesurée et réglable, et qui est destiné à détecter et à localiser les mines (1);
    b) des repères de position déposés sur le fond marin;
    c) un vaisseau de déminage (20) sans équipage, téléguidé à partir d'une plate-forme de navigation flottante (10); ainsi
    d) qu'une liaison de transmission de données (9) prévue entre le vaisseau de remorquage (5) et la plate-forme de navigation (10) et destinée à transmettre à la plate-forme de navigation, les données de position des mines, déterminées par le sonar, caractérisé par les étapes opératoires suivantes:
    e) de part et d'autre d'un chenal de navigation à déminer, on dépose sur le fond marin, selon des intervalles de longueur (A) relativement grands, en guise de repères de position, des transpondeurs de navigation (2 à 4);
    f) le vaisseau de remorquage (5) traíne le sonar remorqué (6, 12, 12a) à travers le chenal de navigation,
    f1) le sonar (11) du vaisseau de remorquage déterminant, dans différentes positions du vaisseau de remorquage (5), les distances respectives à au moins trois transpondeurs (2 à 4), et transmettant celles-ci au système de traitement de données (35) du vaisseau de remorquage (5); et
    le sonar remorqué (6)
    f2) mesurant sa propre profondeur de remorquage et la communiquant continuellement au système de traitement de données (35) se trouvant à bord du vaisseau de remorquage (5);
    f3) déterminant ses distances à au moins trois transpondeurs (2 à 4) et transmettant ces données au système de traitement de données (35);
    f4) déterminant à l'aide d'un sonar de recherche de mines (12a), la position de la mine (1) par rapport au sonar remorqué (6) et communiquant ces coordonnées de la mine au système de traitement de données (35);
    g) le système de traitement de données (35) calcule:
    g1) à partir des données du sonar (11) du vaisseau de remorquage, la position mutuelle des transpondeurs (2 à 4) ou la position des transpondeurs dans un système de coordonnées des transpondeurs approprié;
    g2) à partir de la profondeur de remorquage du sonar remorqué (6) et des distances des transpondeurs au sonar remorqué (6), la position du sonar remorqué (12a) dans le système de coordonnées des transpondeurs, et
    g3) à partir des coordonnées de la mine (1) fournies par le sonar de recherche de mines (12a), la position relative de la mine par rapport aux transpondeurs (2 à 4);
    h) le vaisseau de remorquage (5) transmet les données de position des transpondeurs (2 à 4) ainsi que les données de position de la mine (1), dans le système de coordonnées des transpondeurs, à la plate-forme de navigation (10) pour le vaisseau de déminage (20);
    i) la plate-forme de navigation (10) conduit le vaisseau de déminage (20) dans le voisinage des transpondeurs (2 à 4) et, de là, en direction de la mine (1) dont la position a été déterminée dans l'étape h);
    j) le vaisseau de déminage (20) met la mine (1) hors d'état de nuire.
  2. Procédé selon la revendication 1, caractérisé en ce que, pour déposer les transpondeurs (2 à 4), on utilise un vaisseau du même type que celui qui sert ultérieurement comme vaisseau de remorquage (5) pour le sonar remorqué (6).
  3. Procédé selon la revendication 1 ou 2, caractérisé en ce que le système de traitement de données (35) du vaisseau de remorquage (5), en utilisant des moyens (7, 8) destinés à la détermination de la position géographique propre, calcule la position géographique de la mine (1) et la communique à la plate-forme de navigation (10).
  4. Procédé selon la revendication 3, caractérisé en ce que les moyens de détermination de la position propre du vaisseau de remorquage (5) comportent un récepteur GPS.
  5. Procédé selon la revendication 3 ou 4, caractérisé en ce que sur le vaisseau de remorquage (5), est prévu un dispositif de détection inertiel, de préférence un système à gyroscope laser (8), pour la détermination de la direction et/ou de la vitesse du vaisseau de remorquage.
EP95925762A 1994-07-02 1995-06-26 Procede de localisation des mines marines et de deminage sous-marin Expired - Lifetime EP0715582B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4423235 1994-07-02
DE4423235A DE4423235C2 (de) 1994-07-02 1994-07-02 Verfahren zum Orten und Räumen von Seeminen
PCT/EP1995/002476 WO1996001206A1 (fr) 1994-07-02 1995-06-26 Procede de localisation des mines marines et de deminage sous-marin

Publications (2)

Publication Number Publication Date
EP0715582A1 EP0715582A1 (fr) 1996-06-12
EP0715582B1 true EP0715582B1 (fr) 1998-05-20

Family

ID=6522095

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95925762A Expired - Lifetime EP0715582B1 (fr) 1994-07-02 1995-06-26 Procede de localisation des mines marines et de deminage sous-marin

Country Status (3)

Country Link
EP (1) EP0715582B1 (fr)
DE (2) DE4423235C2 (fr)
WO (1) WO1996001206A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019005870A1 (de) * 2019-08-20 2021-02-25 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr System zur Treibminenvernichtung

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19750853C2 (de) * 1997-11-17 2001-08-16 Stn Atlas Elektronik Gmbh Schiffsgestützte Auslaufvorrichtung für ein Verbindungskabel zu einem eigengetriebenen Unterwasserfahrzeug
GB9928220D0 (en) 1999-11-30 2000-05-24 Roke Manor Research Autonomous off-board defensive aids system
DE102005014555B4 (de) * 2005-03-31 2010-07-29 Atlas Elektronik Gmbh Minenjagdsystem und Verfahren zur Minenjagd
CN112099523B (zh) * 2020-08-18 2022-02-22 武汉理工大学 基于无人机的船舶操纵性能检测方法、系统和存储介质
CN116625180A (zh) * 2023-05-10 2023-08-22 中国舰船研究设计中心 一种测量悬浮式深弹弹阵相邻落点间隔距离的方法

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3609307C1 (de) * 1986-03-20 1987-08-13 Licentia Gmbh Verfahren zum Detektieren und Orten,Lokalisieren,Relokalisieren und Vernichten einer Mine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102019005870A1 (de) * 2019-08-20 2021-02-25 Bundesrepublik Deutschland, vertreten durch das Bundesministerium der Verteidigung, dieses vertreten durch das Bundesamt für Ausrüstung, Informationstechnik und Nutzung der Bundeswehr System zur Treibminenvernichtung

Also Published As

Publication number Publication date
EP0715582A1 (fr) 1996-06-12
DE59502245D1 (de) 1998-06-25
WO1996001206A1 (fr) 1996-01-18
DE4423235A1 (de) 1996-01-04
DE4423235C2 (de) 1997-05-28

Similar Documents

Publication Publication Date Title
DE69113462T3 (de) Verfahren und vorrichtung zum suchen eines gegenstands.
EP2830934B1 (fr) Système sous-marine et méthodo pour l'operation du même
DE10156827B4 (de) System zur Positionsbestimmung von Unterwasserobjekten
EP2768725A1 (fr) Véhicule sous-marin sans équipage et procédé de localisation et d'inspection d'un objet situé au fond de l'eau, et système doté du véhicule sous-marin sans équipage
EP1791754B1 (fr) Procede et systeme pour detruire une mine localisee
EP1827964B1 (fr) Procede pour detecter et neutraliser des objets sous-marins
EP1827965A1 (fr) Dispositif et procede de suivi d'un sous-marin
EP3616018A1 (fr) Système de navigation pour des véhicules sous-marins
EP0396590B1 (fr) Procedure a suivre et dispositif pour la protection contre les catastrophes naturelles et la pollution
EP1766430B1 (fr) Procede de verification pour methode d'acquisition passive de parametres de cible
DE3843043A1 (de) Leitverfahren und einrichtung fuer den katastrophen- und umweltschutz
EP0715582B1 (fr) Procede de localisation des mines marines et de deminage sous-marin
EP1863702B1 (fr) Systeme et procede de chasse aux mines
EP3572840A1 (fr) Véhicule sans pilote de guidage doté d'un radar au sol
DE2143116C1 (fr)
EP2133648B1 (fr) Missile sans equipage et procédé de conduite de vol
DE102019005870A1 (de) System zur Treibminenvernichtung
Paglia et al. DARPA'S autonomous minehunting and mapping technologies (AMMT) program an overview
DE10151279C2 (de) Verfahren zum Bestimen des Kurses eines Fahrzeugs
DE2532479C3 (de) Verfahren zur Bekämpfung von Erdzielen mittels eines zur Luftaufklärung ausgerüsteten fernlenkbaren Fluggerätes und eines weiteren mit Waffen ausgerüsteten fernlenkbaren Fluggerätes sowie zweier ortsfester Sendestationen
EP0887657B1 (fr) Procédé pour aligner horizontalement le plan de réception d'un sonar actif
DE2636062A1 (de) Zielsuchlenkvorrichtung fuer einen fernlenkbaren flugkoerper
DE2445478A1 (de) Verfahren und vorrichtung zur autonomen zielselektion
DE3609307C1 (de) Verfahren zum Detektieren und Orten,Lokalisieren,Relokalisieren und Vernichten einer Mine
Andrews Search Operations in the Thresher Area 1964 Section I

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19960207

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19970522

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59502245

Country of ref document: DE

Date of ref document: 19980625

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980609

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: BARZANO' E ZANARDO ROMA S.P.A.

REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080620

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20080624

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080626

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20080630

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090626

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20100226

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090630

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090626

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090626