EP0711953A2 - Premix burner - Google Patents

Premix burner

Info

Publication number
EP0711953A2
EP0711953A2 EP95810671A EP95810671A EP0711953A2 EP 0711953 A2 EP0711953 A2 EP 0711953A2 EP 95810671 A EP95810671 A EP 95810671A EP 95810671 A EP95810671 A EP 95810671A EP 0711953 A2 EP0711953 A2 EP 0711953A2
Authority
EP
European Patent Office
Prior art keywords
nozzle
burner
conical
fuel
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95810671A
Other languages
German (de)
French (fr)
Other versions
EP0711953A3 (en
EP0711953B1 (en
Inventor
Klaus Dr. Döbbeling
Johannes Santner
Christian Dr. Steinbach
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0711953A2 publication Critical patent/EP0711953A2/en
Publication of EP0711953A3 publication Critical patent/EP0711953A3/en
Application granted granted Critical
Publication of EP0711953B1 publication Critical patent/EP0711953B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/38Nozzles; Cleaning devices therefor
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C7/00Combustion apparatus characterised by arrangements for air supply
    • F23C7/002Combustion apparatus characterised by arrangements for air supply the air being submitted to a rotary or spinning motion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D11/00Burners using a direct spraying action of liquid droplets or vaporised liquid into the combustion space
    • F23D11/36Details, e.g. burner cooling means, noise reduction means
    • F23D11/40Mixing tubes or chambers; Burner heads
    • F23D11/402Mixing chambers downstream of the nozzle
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners

Definitions

  • the invention relates to a low-pollutant premix burner of the double-cone type for operating an internal combustion engine, a combustion chamber of a gas turbine group or firing system with a high-pressure atomization nozzle arranged in the tip of the cone cavity for atomizing liquid fuel, the nozzle being designed with or without turbulence chamber and having at least two nozzle bores with the Interior of the burner communicates.
  • Atomizer burners are known in which the oil which is burned is finely divided mechanically. It is broken down into fine droplets of approximately 10 to 400 ⁇ m in diameter (oil mist), which evaporate and burn in the flame when mixed with the combustion air.
  • pressure atomizers see Lueger - Lexikon dertechnik, Manual Verlags-Anstalt Stuttgart, 1965, Volume 7, p.600
  • the oil is supplied to an atomizing nozzle by an oil pump at a pressure of approx. 4 to 25 bar.
  • the oil enters a swirl chamber via essentially tangential slots and leaves the nozzle via a nozzle bore. It is thereby achieved that the oil particles receive two components of motion, an axial and a radial.
  • Swirl nozzles pressure atomizers
  • air-assisted atomizers of the known types with a pressure of up to approx. 100 bar are hardly suitable for this because they do not allow a small angle of spread, the atomization quality is limited and the impulse of the drop spray is low.
  • This consists of a nozzle body, in which a turbulence chamber is formed, which is connected to an outside space via at least one nozzle bore, and which has at least one supply channel for the liquid to be atomized, which can be supplied under pressure. It is characterized in that the cross-sectional area of the feed channel opening into the turbulence chamber is larger by a factor of 2 to 10 than the cross-sectional area of the nozzle bore.
  • This arrangement makes it possible to generate a high level of turbulence in the turbulence chamber, which does not subside on the way to the point of exit from the nozzle.
  • the fluid jet is caused to decay rapidly by the turbulence generated in front of the nozzle bore in the outside space, that is to say after leaving the nozzle bore, resulting in low angles of propagation of 20 ° and less.
  • the droplet size is also very small. The only disadvantage is the loss of fuel pulse in the turbulence generator, which does not allow directed introduction.
  • the invention tries to avoid all these disadvantages. It is based on the task of creating a low-pollutant premix burner of the double-cone type, which has a high-pressure atomizing nozzle for atomizing liquid fuel, which is of simple construction and with which a very good atomization quality with a high fuel pulse is achieved.
  • the advantages of the invention include in the fact that in the high-pressure atomization nozzle according to the invention, a fine atomization of the fuel is associated with a high fuel pulse and thus rapid evaporation of the fuel and good premixing of the fuel spray with the combustion air are achieved.
  • the high-pressure atomizing nozzle is simple in design, easily accessible inside the burner and is characterized by a small space requirement in the tip of the burner.
  • the fuel can be injected specifically into zones of high air speed. The need to add water to reduce NOx emissions is eliminated, because due to the above fine atomization, rapid evaporation of the fuel and the good premixing of the fuel spray with the combustion air, the NOx emissions are very low.
  • nozzle bores of the high-pressure atomization nozzle are aligned with the air inlet slots of the conical partial bodies, because in this case the premixing of the fuel spray with the incoming combustion air is most intensive.
  • the high-pressure atomization nozzle is a turbulence-assisted high-pressure nozzle with a turbulence chamber arranged in front of the nozzle bores, the turbulence chamber being delimited by a tube, a conical cover of the tube in which the nozzle bores are arranged, and by a filler with at least one feed opening , which is preferably arranged centrally in the filler.
  • the turbulence generated in front of the nozzle bore causes a rapid disintegration of the liquid jet and a particularly fine drop spray achieved.
  • the resulting drop spray is also characterized by small spreading angles.
  • a high-pressure orifice nozzle is advantageously used as the high-pressure atomizing nozzle, which consists of a tube and a conical cover of the tube in which the nozzle openings are arranged.
  • a very high fuel pulse is achieved, which enables the fuel spray to penetrate deeply into the combustion air.
  • nozzle bores are arranged in the outer third of the conical cover near the wall of the tube. Then very good atomization qualities are achieved.
  • the drawing shows two exemplary embodiments of the invention using a double-cone burner for operating a gas turbine.
  • FIG. 1 schematically shows a section through the premix burner, which essentially consists of two partial cone bodies 1, 2 and whose basic structure is described in EP 0 321 809 B1.
  • FIG. 2 and the sections shown in FIGS. 3 to 5 are used at the same time.
  • Fig. 2 shows a perspective view of the double-cone burner with integrated premixing zone.
  • the two partial cone bodies 1, 2 are arranged radially offset from one another with respect to their longitudinal symmetry axes 1b, 2b. This creates tangential air inlet slots on both sides of the partial cone bodies 1, 2 in the opposite inflow arrangement 19, 20, through which the combustion air 15 flows into the interior 14 of the burner, ie into the cone cavity formed by the two partial cone bodies 1, 2.
  • the partial cone bodies 1, 2 expand in a straight line in the direction of flow, ie they have a constant angle ⁇ with the burner axis 5.
  • the two partial cone bodies 1, 2 each have a cylindrical starting part 1a, 2a, which also run offset.
  • this cylindrical starting part 1a, 2a there is a high-pressure atomization nozzle 3 with at least two nozzle openings 11, which are arranged approximately in the narrowest cross section of the conical interior 14 of the burner.
  • the burner can also be designed without a cylindrical initial part, that is to say purely conical.
  • the two partial cone bodies 1, 2 each have a fuel feed line 8, 9 along the air inlet slots 19, 20, which are provided on the long side with openings 17 through which another fuel 13 (gaseous or liquid) flows.
  • This fuel 13 is mixed with the combustion air 15 flowing through the tangential air inlet slots 19, 20 into the interior of the burner, which is represented by the arrows 16. Mixed operation of the burner via the nozzle 3 and the fuel feeds 8, 9 is possible.
  • a front plate 10 is arranged with openings 11, through which dilution air or cooling air can be supplied to the combustion chamber 22 if necessary. In addition, this air supply ensures that flame stabilization takes place at the burner outlet. There is a stable flame front 7 with a backflow zone 6.
  • guide plates 21 a, 21 b can be seen from FIGS. 3 to 5. These can be opened or closed, for example, about a pivot point 23, so that the original gap size of the tangential air inlet slots is thereby 19, 20 is changed. Of course, the burner can also be operated without these baffles 21a, 21b.
  • FIG. 6 shows a turbulence-assisted high-pressure atomization nozzle 3, which, as shown in FIG. 1 or FIG. 2, is arranged in the cone tip of the burner. It consists of a tube 26 which surrounds a feed channel 24 and a turbulence chamber 25. The tube 26 is closed by a conical cover 27 in which there are two nozzle bores 18 in the outer third near the tube wall. These nozzle bores 18 establish the connection between the turbulence chamber 25 located in the tube 26 and the interior 14 (cone cavity) of the burner. The turbulence chamber 25 is delimited next to the pipe 26 by a filler 28 and the cover 27 of the pipe 26.
  • a feed opening 29 for the fuel 12 to be atomized is arranged in the center.
  • This opening can of course also be arranged off-center or there can be a plurality of feed openings 29. It is advantageous if the feed opening 29 has a cross section which narrows in the direction of flow, as shown in FIG. 6.
  • the fuel 12 to be atomized flows under a pressure of greater than 100 bar via the feed line 24 and the opening 29 into the turbulence chamber 25, which has an abruptly widening cross section with respect to the feed opening 29.
  • the fuel jet hits the cone tip of the conical lid 27.
  • a high level of turbulence is generated by intensive shearing and the rebounding of the jets from the surface of the lid, which does not subside on the short path until it emerges from the nozzle.
  • the fluid jet is brought to rapid decay by the turbulence in the burner interior 14 generated in front of the two nozzle bores 18, which results in very small angles of propagation.
  • the fuel 12 is atomized well by the high momentum and the high relative speed to the air. It has a high penetration depth and thus leads to a high level of mixing.
  • the fuel is distributed very well in the combustion air stream 15 along the burner wall. It mixes very well along the cone in the fresh air flow at the end of the burner, so that an excellent premixing is achieved, which has a favorable effect on a low value of the pollutant emissions.
  • Fig. 7 shows a second embodiment.
  • the high-pressure atomizing nozzle 3 is a multi-hole high-pressure orifice nozzle, the structure of which is the same as the above. corresponds to turbulence-assisted nozzle, although of course there is no turbulence chamber in the orifice nozzle.
  • the achievable fuel drop size is somewhat larger under comparable conditions to the first exemplary embodiment (see Fig. 8), but a high fuel pulse can be achieved for this, which also results in the above-mentioned through the targeted injection into zones of high air speed. Advantages leads.
  • the cross section of the nozzle 3, its position and the direction of injection result from the desired throughput (depending on the form) taking into account sufficiently high Reynolds numbers in the nozzle bores 18.
  • the diagram shown in FIG. 8 illustrates the dependence of the droplet diameter d T on the admission pressure p for various Limit diameter of the drop mass distribution.
  • Dx denotes the limit diameter that x mass% of all particles fall below.
  • SMD is the Sauter diameter, i.e. the diameter of a droplet that has the same surface to volume ratio as the total jet.
  • the high pressure atomization nozzle on which the diagram is based was charged with water and had the following parameters: Diameter of the nozzle 10.0 mm Feed channel diameter 8.0 mm Diameter of the feed opening in the filler 1.8 mm Diameter of the nozzle bores 0.6 mm Length of the turbulence chamber 7.0 mm.
  • FIG. 9 shows the dependence of the atmospheric NOx emission values on the flame temperature and the type of nozzle used for atomizing the liquid fuel. Turbulence-assisted two-hole high-pressure nozzles with different angles ⁇ between the fuel injection and the burner axis were examined (11 °, 15 °, 20 °). The cone half angle ⁇ of the burner was 10.95 ° in each case. In comparison to pressure atomizing nozzles (swirl nozzles), when using the high pressure atomizing nozzles 3 according to the invention with two nozzle bores 18 directed towards the air inlet slots 19, 20, premix burners of the double-cone type achieve significantly lower NOx emission values.

Abstract

The burner has nozzle holes (18) in high air speed zones of the burner in two part conical bodies. The nozzle holes (18) connect the interior (14) of the burner and the nozzle body's inflow duct (24) for the liquid fuel (12) being atomised. The burner consists of at least two hollow conical part bodies (1,2). The narrowest cross-section of the conical interior formed by the conical part bodies contains a high pressure atomising nozzle (3) for liquid fuel. The nozzle holes point towards the air inlet slots (19,20) in the conical part bodies, in the burner. The angle ( beta ) between the fuel drop spray (4) and the burner's longitudinal axis (5) is at least as big as the half-cone angle ( alpha ) between the part cone bodies (1,2) and the burner's longitudinal axis.

Description

Technisches GebietTechnical field

Die Erfindung betrifft einen schadstoffarmen Vormischbrenner der Doppelkegelbauart zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage mit einer in der Spitze des Kegelhohlraumes angeordneten Hochdruckzerstäubungsdüse zur Zerstäubung von flüssigem Brennstoff, wobei die Düse mit oder ohne Turbulenzkammer ausgebildet ist und über mindestens zwei Düsenbohrungen mit dem Innenraum des Brenners in Verbindung steht.The invention relates to a low-pollutant premix burner of the double-cone type for operating an internal combustion engine, a combustion chamber of a gas turbine group or firing system with a high-pressure atomization nozzle arranged in the tip of the cone cavity for atomizing liquid fuel, the nozzle being designed with or without turbulence chamber and having at least two nozzle bores with the Interior of the burner communicates.

Stand der TechnikState of the art

Bekannt sind Zerstäuberbrenner, in denen das zur Verbrennung gelangende Öl mechanisch fein verteilt wird. Es wird in feine Tröpfchen von ca. 10 bis 400 µm Durchmesser (Ölnebel) zerlegt, die unter Mischung mit der Verbrennungsluft in der Flamme verdampfen und verbrennen. In Druckzerstäubern (s. Lueger - Lexikon der Technik, Deutsche Verlags-Anstalt Stuttgart, 1965, Band 7, S.600) wird durch eine Ölpumpe das Öl unter einem Druck von ca. 4 bis 25 bar einer Zerstäuberdüse zugeführt. Über im wesentlichen tangential verlaufende Schlitze gelangt das Öl in eine Wirbelkammer und verlässt die Düse über eine Düsenbohrung. Dadurch wird erreicht, dass die Ölteilchen zwei Bewegungskomponenten, eine axiale und eine radiale, erhalten. Der als rotierender Hohlzylinder aus der Düsenbohrung austretende Ölfilm weitet sich aufgrund der Fliehkraft zu einem Hohlkegel aus, dessen Ränder in instabile Schwingungen geraten und zu kleinen Öltröpfchen zerreissen. Das zerstäubte Öl bildet einen Kegel mehr oder weniger grossen Öffnungswinkels.Atomizer burners are known in which the oil which is burned is finely divided mechanically. It is broken down into fine droplets of approximately 10 to 400 µm in diameter (oil mist), which evaporate and burn in the flame when mixed with the combustion air. In pressure atomizers (see Lueger - Lexikon der Technik, Deutsche Verlags-Anstalt Stuttgart, 1965, Volume 7, p.600), the oil is supplied to an atomizing nozzle by an oil pump at a pressure of approx. 4 to 25 bar. The oil enters a swirl chamber via essentially tangential slots and leaves the nozzle via a nozzle bore. It is thereby achieved that the oil particles receive two components of motion, an axial and a radial. The as a rotating hollow cylinder from the Oil film emerging from the nozzle bore expands due to the centrifugal force into a hollow cone, the edges of which get into unstable vibrations and tear into small oil droplets. The atomized oil forms a cone with a more or less large opening angle.

Bei der schadstoffarmen Verbrennung von mineralischen Brennstoffen in modernen Brennern, beispielsweise in Vormischbrennern der Doppelkegelbauart, die in ihrem prinzipiellen Aufbau in EP 0321 809 B1, beschrieben sind, werden aber besondere Anforderungen an die Zerstäubung des flüssigen Brennstoffes gestellt. Diese sind vor allem folgende:

  • 1. Die Tröpfchengrösse muss gering sein, damit die Öltröpfchen vor der Verbrennung vollständig verdampfen können.
  • 2. Der Öffnungswinkel (Ausbreitungswinkel) des Ölnebels soll klein sein.
  • 3. Die Tropfen müssen eine hohe Geschwindigkeit und einen hohen Impuls haben, um weit genug in den verdichteten Verbrennungsluftmassenstrom eindringen zu können, damit sich der Brennstoffdampf vollständig mit der Verbrennungsluft vor Erreichen der Flammenfront vormischen kann.
In the low-pollutant combustion of mineral fuels in modern burners, for example in premix burners of the double-cone type, which are described in their basic structure in EP 0321 809 B1, special requirements are placed on the atomization of the liquid fuel. The main ones are:
  • 1. The droplet size must be small so that the oil droplets can evaporate completely before combustion.
  • 2. The opening angle (angle of spread) of the oil mist should be small.
  • 3. The drops must have a high speed and a high momentum in order to be able to penetrate far enough into the compressed combustion air mass flow so that the fuel vapor can completely premix with the combustion air before reaching the flame front.

Dralldüsen (Druckzerstäuber) und luftunterstützte Zerstäuber der bekannten Bauarten mit einem Druck bis zu ca. 100 bar sind dafür kaum geeignet, weil sie keine kleine Ausbreitungswinkel erlauben, die Zerstäubungsqualität eingeschränkt ist und der Impuls des Tropfensprays gering ist.Swirl nozzles (pressure atomizers) and air-assisted atomizers of the known types with a pressure of up to approx. 100 bar are hardly suitable for this because they do not allow a small angle of spread, the atomization quality is limited and the impulse of the drop spray is low.

Als Folge dieser ungenügenden Verdampfung und Vormischung des Brennstoffes ist deshalb eine Wasserzugabe zum Absenken der Flammentemperatur und damit der NOx-Bildung notwendig. Da das zugeführte Wasser oftmals auch Flammenzonen stört, die zwar an sich wenig NOx erzeugen, aber für die Flammenstabilität sehr wichtig sind, treten häufig Instabilitäten, wie Flammenpulsation und/oder schlechter Ausbrand auf, was zum Anstieg des CO-Ausstosses führt.As a result of this insufficient evaporation and premixing of the fuel, it is necessary to add water to lower the flame temperature and thus NOx formation. Since the water supplied often disturbs flame zones, which in themselves do not generate much NOx, but are very important for flame stability, instabilities such as flame pulsation often occur and / or poor burnout, which leads to an increase in CO emissions.

Eine Verbesserung ist mit der in EP 0 496 016 A1 offenbarten Hochdruckzerstäuberdüse zu erreichen. Diese besteht aus einem Düsenkörper, in welchem eine Turbulenzkammer ausgebildet ist, welche über mindestens eine Düsenbohrung mit einem Aussenraum in Verbindung steht, und welche mindestens einen Zufuhrkanal für die unter Druck zuführbare zu zerstäubende Flüssigkeit aufweist. Sie ist dadurch gekennzeichnet, dass die Querschnittsfläche des in die Turbulenzkammer mündenden Zufuhrkanales um den Faktor 2 bis 10 grösser ist als die Querschnittsfläche der Düsenbohrung. Durch diese Anordnung gelingt es, in der Turbulenzkammer ein hohes Turbulenzniveau zu erzeugen, das auf dem Weg bis zum Austritt aus der Düse nicht abklingt. Der Flüssigkeitsstrahl wird durch die vor der Düsenbohrung erzeugte Turbulenz im Aussenraum, also nach Verlassen der Düsenbohrung zum raschen Zerfall gebracht, wobei sich niedrige Ausbreitungswinkel von 20 ° und weniger ergeben. Die Tröpfchengrösse ist ebenfalls sehr niedrig. Nachteilig ist lediglich der Verlust an Brennstoffimpuls im Turbulenzerzeuger, der keine gerichtete Einbringung erlaubt.An improvement can be achieved with the high pressure atomizing nozzle disclosed in EP 0 496 016 A1. This consists of a nozzle body, in which a turbulence chamber is formed, which is connected to an outside space via at least one nozzle bore, and which has at least one supply channel for the liquid to be atomized, which can be supplied under pressure. It is characterized in that the cross-sectional area of the feed channel opening into the turbulence chamber is larger by a factor of 2 to 10 than the cross-sectional area of the nozzle bore. This arrangement makes it possible to generate a high level of turbulence in the turbulence chamber, which does not subside on the way to the point of exit from the nozzle. The fluid jet is caused to decay rapidly by the turbulence generated in front of the nozzle bore in the outside space, that is to say after leaving the nozzle bore, resulting in low angles of propagation of 20 ° and less. The droplet size is also very small. The only disadvantage is the loss of fuel pulse in the turbulence generator, which does not allow directed introduction.

Darstellung der ErfindungPresentation of the invention

Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, einen schadstoffarmen Vormischbrenner der Doppelkegelbauart zu schaffen, der eine Hochdruckzerstäubungsdüse zur Zerstäubung von flüssigem Brennstoff aufweist, die einfach aufgebaut ist und mit welcher eine sehr gute Zerstäubungsqualität bei gleichzeitig hohem Brennstoffimpuls erreicht wird.The invention tries to avoid all these disadvantages. It is based on the task of creating a low-pollutant premix burner of the double-cone type, which has a high-pressure atomizing nozzle for atomizing liquid fuel, which is of simple construction and with which a very good atomization quality with a high fuel pulse is achieved.

Erfindungsgemäss wird dies bei einem Vormischbrenner der Doppelkegelbauart gemäss Oberbegriff des Patentanspruches 1 dadurch erreicht, dass die Düsenaustrittsbohrungen der Hochdruckzerstäubungsdüse auf die Zonen hoher Luftgeschwindigkeit ausgerichtet sind und der Winkel des Brennstoffsprays zur Achse des Brenners mindestens so gross ist wie der Kegelhalbwinkel des Brenners.According to the invention, this becomes thereby in a premix burner of the double cone type according to the preamble of patent claim 1 achieved that the nozzle outlet bores of the high pressure atomizing nozzle are aligned with the zones of high air velocity and the angle of the fuel spray to the axis of the burner is at least as large as the cone half angle of the burner.

Die Vorteile der Erfindung bestehen u.a. darin, dass bei der erfindungsgemässen Hochdruckzerstäubungsdüse eine feine Zerstäubung des Brennstoffes mit einem hohen Brennstoffimpuls verbunden ist und damit eine schnelle Verdampfung des Brennstoffes sowie eine gute Vormischung des Brennstoffsprays mit der Verbrennungsluft erreicht werden. Die Hochdruckzerstäubungsdüse ist einfach aufgebaut, gut innerhalb des Brenners zugänglich und zeichnet sich durch einen nur geringen Platzbedarf in der Brennerspitze aus. Der Brennstoff kann gezielt in Zonen hoher Luftgeschwindigkeit eingespritzt werden. Die Notwendigkeit der Zugabe von Wasser zwecks Herabsenkung der NOx-Emissionen entfällt, denn aufgrund der o.g. feinen Zerstäubung, schnellen Verdampfung des Brennstoff und der guten Vormischung des Brennstoffsprays mit der Verbrennungsluft sind die NOx-Emissionen sehr gering.The advantages of the invention include in the fact that in the high-pressure atomization nozzle according to the invention, a fine atomization of the fuel is associated with a high fuel pulse and thus rapid evaporation of the fuel and good premixing of the fuel spray with the combustion air are achieved. The high-pressure atomizing nozzle is simple in design, easily accessible inside the burner and is characterized by a small space requirement in the tip of the burner. The fuel can be injected specifically into zones of high air speed. The need to add water to reduce NOx emissions is eliminated, because due to the above fine atomization, rapid evaporation of the fuel and the good premixing of the fuel spray with the combustion air, the NOx emissions are very low.

Es ist besonders zweckmässig, wenn die Düsenbohrungen der Hochdruckzerstäubungsdüse auf die Lufteintrittsschlitze der kegeligen Teilkörper ausgerichtet sind, weil in diesem Falle die Vormischung des Brennstoffsprays mit der eintretenden Verbrennungsluft am intensivsten ist.It is particularly expedient if the nozzle bores of the high-pressure atomization nozzle are aligned with the air inlet slots of the conical partial bodies, because in this case the premixing of the fuel spray with the incoming combustion air is most intensive.

Ferner ist es vorteilhaft, wenn die Hochdruckzerstäubungsdüse eine turbulenzunterstützte Hochdruckdüse mit einer vor den Düsenbohrungen angeordneten Turbulenzkammer ist, wobei die Turbulenzkammer begrenzt wird von einem Rohr, einem kegeligen Deckel des Rohres, in welchem die Düsenbohrungen angeordnet sind, und von einem Füllstück mit mindestens einer Zufuhröffnung, welche vorzugsweise mittig im Füllstück angeordnet ist. Durch die vor der Düsenbohrung erzeugte Turbulenz werden ein rascher Zerfall des Flüssigkeitstrahles und ein besonders feines Tropfenspray erzielt. Das entstehende Tropfenspray zeichnet sich ausserdem durch kleine Ausbreitungswinkel aus.It is also advantageous if the high-pressure atomization nozzle is a turbulence-assisted high-pressure nozzle with a turbulence chamber arranged in front of the nozzle bores, the turbulence chamber being delimited by a tube, a conical cover of the tube in which the nozzle bores are arranged, and by a filler with at least one feed opening , which is preferably arranged centrally in the filler. The turbulence generated in front of the nozzle bore causes a rapid disintegration of the liquid jet and a particularly fine drop spray achieved. The resulting drop spray is also characterized by small spreading angles.

Schliesslich wird mit Vorteil als Hochdruckzerstäubungsdüse eine Hochdruck-Blendendüse verwendet, welche aus einem Rohr und einem kegeligen Deckel des Rohres, in welchem die Düsenöffnungen angeordnet sind, besteht. In diesem Falle wird ein sehr hoher Brennstoffimpuls erreicht, der ein tiefes Eindringen des Brennstoffsprays in die Verbrennungsluft ermöglicht.Finally, a high-pressure orifice nozzle is advantageously used as the high-pressure atomizing nozzle, which consists of a tube and a conical cover of the tube in which the nozzle openings are arranged. In this case, a very high fuel pulse is achieved, which enables the fuel spray to penetrate deeply into the combustion air.

Weiterhin ist es vorteilhaft, wenn die Düsenbohrungen im äusseren Drittel des kegeligen Deckel nahe der Wand des Rohres angeordnet sind. Dann werden sehr gute Zerstäubungsqualitäten erreicht.It is also advantageous if the nozzle bores are arranged in the outer third of the conical cover near the wall of the tube. Then very good atomization qualities are achieved.

Kurze Beschreibung der ZeichnungBrief description of the drawing

In der Zeichnung sind zwei Ausführungsbeispiele der Erfindung anhand eines Doppelkegelbrenners zum Betrieb einer Gasturbine dargestellt.The drawing shows two exemplary embodiments of the invention using a double-cone burner for operating a gas turbine.

Es zeigen:

Fig. 1
eine schematische Ansicht eines Doppelkegelbrenners;
Fig. 2
einen Brenner gemäss Fig. 1 in perspektivischer Darstellung;
Fig. 3
einen vereinfacht dargestellten Schnitt in der Ebene III-III gemäss Fig. 2;
Fig. 4
einen vereinfacht dargestellten Schnitt in der Ebene IV-IV gemäss Fig. 2;
Fig. 5
einen vereinfacht dargestellten Schnitt in der Ebene V-V gemäss Fig. 2;
Fig. 6
einen Längsschnitt der turbulenzunterstützten Hochdruckzerstäubungsdüse in der Ebene der Düsenbohrungen;
Fig. 7
einen Längsschnitt der Hochdruck-Blendendüse in der Ebene der Düsenbohrungen;
Fig. 8
ein Diagramm zur Veranschaulichung der Abhängigkeit der Tropfengrösse vom Druck einer Hochdruckzerstäubungsdüse gemäss Fig. 6 bzw. 7;
Fig. 9
ein Diagramm zur Veranschaulichung der Abhängigkeit der Nox-Emissionen von der Flammentemperatur des Doppelkegelbrenners für verschiedene Düsen.
Show it:
Fig. 1
a schematic view of a double-cone burner;
Fig. 2
a burner according to Figure 1 in a perspective view.
Fig. 3
a simplified section in the plane III-III of FIG. 2;
Fig. 4
a simplified section in the plane IV-IV of FIG. 2;
Fig. 5
a simplified section in the plane VV of FIG. 2;
Fig. 6
a longitudinal section of the turbulence-assisted high-pressure atomization nozzle in the plane of the nozzle bores;
Fig. 7
a longitudinal section of the high-pressure orifice nozzle in the plane of the nozzle bores;
Fig. 8
a diagram to illustrate the dependence of the droplet size on the pressure of a high pressure atomizing nozzle according to Fig. 6 and 7;
Fig. 9
a diagram illustrating the dependence of the NOx emissions on the flame temperature of the double-cone burner for different nozzles.

Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet.Only the elements essential for understanding the invention are shown. The direction of flow of the media is indicated by arrows.

Weg zur Ausführung der ErfindungWay of carrying out the invention

Nachfolgend wird die Erfindung anhand von Ausführungsbeispielen und der Fig. 1 bis 9 näher erläutert.The invention is explained in more detail below on the basis of exemplary embodiments and FIGS. 1 to 9.

Fig. 1 zeigt schematisch einen Schnitt durch den Vormischbrenner, der im wesentlichen aus zwei Teilkegelkörpern 1, 2 besteht und dessen prinzipieller Aufbau in EP 0 321 809 B1 beschrieben ist. Zum besseren Verständnis des Brenneraufbaus ist es vorteilhaft, wenn gleichzeitig Fig. 2 und die darin ersichtlichen Schnitte nach den Fig. 3 bis 5 herangezogen werden.1 schematically shows a section through the premix burner, which essentially consists of two partial cone bodies 1, 2 and whose basic structure is described in EP 0 321 809 B1. For a better understanding of the burner structure, it is advantageous if FIG. 2 and the sections shown in FIGS. 3 to 5 are used at the same time.

Fig. 2 zeigt in perspektivischer Darstellung den Doppelkegelbrenner mit integrierter Vormischzone. Die beiden Teilkegelkörper 1, 2 sind bezüglich ihrer Längssymmetrieachsen 1b, 2b radial versetzt zueinander angeordnet. Dadurch entstehen auf beiden Seiten der Teilkegelkörper 1, 2 in entgegengesetzter Einströmungsanordnung jeweils tangentiale Lufteintrittsschlitze 19, 20, durch welche die Verbrennungsluft 15 in den Innenraum 14 des Brenners, d.h. in den von den beiden Teilkegelkörpern 1, 2 gebildeten Kegelhohlraum strömt. Die Teilkegelkörper 1, 2 erweitern sich geradlinig in Strömungsrichtung, d.h. sie weisen einen konstanten Winkel α mit der Brennerachse 5 auf. Die beiden Teilkegelkörper 1, 2 haben je einen zylindrischen Anfangsteil 1a, 2a, welche ebenfalls versetzt verlaufen. In diesem zylindrischen Anfangsteil 1a, 2a befindet sich eine Hochdruckzerstäubungsdüse 3 mit mindestens zwei Düsenöffnungen 11, welche etwa im engsten Querschnitt des kegelförmigen Innenraums 14 des Brenners angeordnet sind. Selbstverständlich kann der Brenner auch ohne zylindrischen Anfangsteil, also rein kegelig ausgeführt sein.Fig. 2 shows a perspective view of the double-cone burner with integrated premixing zone. The two partial cone bodies 1, 2 are arranged radially offset from one another with respect to their longitudinal symmetry axes 1b, 2b. This creates tangential air inlet slots on both sides of the partial cone bodies 1, 2 in the opposite inflow arrangement 19, 20, through which the combustion air 15 flows into the interior 14 of the burner, ie into the cone cavity formed by the two partial cone bodies 1, 2. The partial cone bodies 1, 2 expand in a straight line in the direction of flow, ie they have a constant angle α with the burner axis 5. The two partial cone bodies 1, 2 each have a cylindrical starting part 1a, 2a, which also run offset. In this cylindrical starting part 1a, 2a there is a high-pressure atomization nozzle 3 with at least two nozzle openings 11, which are arranged approximately in the narrowest cross section of the conical interior 14 of the burner. Of course, the burner can also be designed without a cylindrical initial part, that is to say purely conical.

Die beiden Teilkegelkörper 1, 2 weisen längs der Lufteintrittsschlitze 19, 20 je eine Brennstoffzuleitung 8, 9 auf, welche längsseitig mit Öffnungen 17 versehen sind, durch welche ein weiterer Brennstoff 13 (gasförmig oder flüssig) strömt. Dieser Brennstoff 13 wird der durch die tangentialen Lufteintrittsschlitze 19, 20 in den Brennerinnenraum strömenden Verbrennungsluft 15 zugemischt, was durch die Pfeile 16 dargestellt wird. Ein Mischbetrieb des Brenners über die Düse 3 und die Brennstoffzuführungen 8, 9 ist möglich.The two partial cone bodies 1, 2 each have a fuel feed line 8, 9 along the air inlet slots 19, 20, which are provided on the long side with openings 17 through which another fuel 13 (gaseous or liquid) flows. This fuel 13 is mixed with the combustion air 15 flowing through the tangential air inlet slots 19, 20 into the interior of the burner, which is represented by the arrows 16. Mixed operation of the burner via the nozzle 3 and the fuel feeds 8, 9 is possible.

Brennraumseitig ist eine Frontplatte 10 angeordnet mit Öffnungen 11, durch welche bei Bedarf Verdünnungsluft oder Kühlluft dem Brennraum 22 zugeführt werden. Darüber hinaus sorgt diese Luftzuführung dafür, dass eine Flammenstabilisierung am Ausgang des Brenners stattfindet. Dort stellt sich eine stabile Flammenfront 7 mit einer Rückströmzone 6 ein.On the combustion chamber side, a front plate 10 is arranged with openings 11, through which dilution air or cooling air can be supplied to the combustion chamber 22 if necessary. In addition, this air supply ensures that flame stabilization takes place at the burner outlet. There is a stable flame front 7 with a backflow zone 6.

Aus den Fig. 3 bis 5 ist die Anordnung von Leitblechen 21 a, 21 b zu entnehmen. Diese können beispielsweise um einen Drehpunkt 23 geöffnet oder geschlossen werden, so dass dadurch die ursprüngliche Spaltgrösse der tangentialen Lufteintrittsschlitze 19, 20 verändert wird. Selbstverständlich kann der Brenner auch ohne diese Leitbleche 21a, 21b betrieben werden.The arrangement of guide plates 21 a, 21 b can be seen from FIGS. 3 to 5. These can be opened or closed, for example, about a pivot point 23, so that the original gap size of the tangential air inlet slots is thereby 19, 20 is changed. Of course, the burner can also be operated without these baffles 21a, 21b.

In Fig. 6 ist eine turbulenzunterstütze Hochdruckzerstäubungsdüse 3 abgebildet, welche wie in Fig. 1 bzw. Fig. 2 dargestellt ist, in der Kegelspitze des Brenners angeordnet ist. Sie besteht aus einem Rohr 26, das einen Zufuhrkanal 24 und eine Turbulenzkammer 25 umgibt. Das Rohr 26 wird von einem kegeligen Deckel 27 abgeschlossen, in welchem im äusseren Drittel nahe der Rohrwand zwei Düsenbohrungen 18 vorhanden sind. Diese Düsenbohrungen 18 stellen die Verbindung her zwischen der sich im Rohr 26 befindenden Turbulenzkammer 25 und dem Innenraum 14 (Kegelhohlraum) des Brenners. Die Turbulenzkammer 25 wird neben dem Rohr 26 begrenzt durch ein Füllstück 28 und den Deckel 27 des Rohres 26. Im Füllstück 28 ist mittig eine Zuführöffnung 29 für den zu zerstäubenden Brennstoff 12 angeordnet. Diese Öffnung kann selbst selbstverständlich auch aussermittig angeordnet sein bzw. können mehrere Zufuhröffnungen 29 vorhanden sein. Günstig ist, wenn die Zufuhröffnung 29 einen sich in Strömungsrichtung verengenden Querschnitt aufweist, wie in Fig. 6 dargestellt ist.FIG. 6 shows a turbulence-assisted high-pressure atomization nozzle 3, which, as shown in FIG. 1 or FIG. 2, is arranged in the cone tip of the burner. It consists of a tube 26 which surrounds a feed channel 24 and a turbulence chamber 25. The tube 26 is closed by a conical cover 27 in which there are two nozzle bores 18 in the outer third near the tube wall. These nozzle bores 18 establish the connection between the turbulence chamber 25 located in the tube 26 and the interior 14 (cone cavity) of the burner. The turbulence chamber 25 is delimited next to the pipe 26 by a filler 28 and the cover 27 of the pipe 26. In the filler 28, a feed opening 29 for the fuel 12 to be atomized is arranged in the center. This opening can of course also be arranged off-center or there can be a plurality of feed openings 29. It is advantageous if the feed opening 29 has a cross section which narrows in the direction of flow, as shown in FIG. 6.

Der zu zerstäubende Brennstoff 12 strömt unter einem Druck von grösser 100 bar über die Zufuhrleitung 24 und die Öffnung 29 in die Turbulenzkammer 25, welche einen sich stossartig erweiternden Querschnitt gegenüber der Zufuhröffnung 29 aufweist. Der Brennstoffstrahl trifft auf die Kegelspitze des kegeligen Deckels 27. Durch intensive Scherungen und das Zurückprallen der Strahlen von der Oberfläche des Deckels wird ein hohes Turbulenzniveau erzeugt, welches auf dem kurzen Weg bis zum Austritt aus der Düse nicht abklingt. Der Flüssigkeitsstrahl wird durch die vor den beiden Düsenbohrungen 18 erzeugte Turbulenz im Brennerinnenraum 14 zum raschen Zerfall gebracht, wobei sich sehr kleine Ausbreitungswinkel ergeben.The fuel 12 to be atomized flows under a pressure of greater than 100 bar via the feed line 24 and the opening 29 into the turbulence chamber 25, which has an abruptly widening cross section with respect to the feed opening 29. The fuel jet hits the cone tip of the conical lid 27. A high level of turbulence is generated by intensive shearing and the rebounding of the jets from the surface of the lid, which does not subside on the short path until it emerges from the nozzle. The fluid jet is brought to rapid decay by the turbulence in the burner interior 14 generated in front of the two nozzle bores 18, which results in very small angles of propagation.

Der Brennstoff 12 wird durch den hohen Impuls und die dadurch hohe Relativgeschwindigkeit zur Luft gut zerstäubt. Er hat eine hohe Eindringtiefe und führt somit zu einer hohen Einmischqualität.The fuel 12 is atomized well by the high momentum and the high relative speed to the air. It has a high penetration depth and thus leads to a high level of mixing.

Die Ausrichtung der Düsenbohrungen 18 auf die tangentialen Lufteintrittsschlitze 19, 20, also auf Zonen sehr hoher Luftgeschwindigkeit, führt zu einer direkten Einmischung des in Form eines fein verteilten Tropfensprays 4 vorliegenden Brennstoffes 12. Entlang der Brennerwand verteilt sich der Brennstoff sehr gut im Verbrennungsluftstrom 15. Er mischt sich sehr gut entlang des Kegels in den frischen Luftstrom am Ende des Brenners ein, so dass ein hervorragende Vormischung erzielt wird, was sich günstig auf einen niedrigen Wert der Schadstoffemissionen auswirkt.The alignment of the nozzle bores 18 to the tangential air inlet slots 19, 20, that is to say to zones of very high air velocity, leads to a direct mixing in of the fuel 12 present in the form of a finely distributed drop spray 4. The fuel is distributed very well in the combustion air stream 15 along the burner wall. It mixes very well along the cone in the fresh air flow at the end of the burner, so that an excellent premixing is achieved, which has a favorable effect on a low value of the pollutant emissions.

Fig. 7 zeigt ein zweites Ausführungsbeispiel. Hier ist die Hochdruckzerstäubungsdüse 3 eine Mehrloch-Hochdruck-Blendendüse, die in ihrem Aufbau der o.g. turbulenzunterstützten Düse entspricht, wobei natürlich bei der Blendendüse keine Turbulenzkammer vorhanden ist. Das bedeutet, dass in diesem Falle die erzielbare Brennstofftropfengrösse unter vergleichbaren Bedingungen zum ersten Ausführungsbeispiel zwar etwas grösser ist (s. Fig. 8), dafür kann aber ein hoher Brennstoffimpuls erreicht werden, der durch das gezielte Einspritzen in Zonen hoher Luftgeschwindigkeit ebenfalls zu den o.g. Vorteilen führt.Fig. 7 shows a second embodiment. Here, the high-pressure atomizing nozzle 3 is a multi-hole high-pressure orifice nozzle, the structure of which is the same as the above. corresponds to turbulence-assisted nozzle, although of course there is no turbulence chamber in the orifice nozzle. This means that in this case the achievable fuel drop size is somewhat larger under comparable conditions to the first exemplary embodiment (see Fig. 8), but a high fuel pulse can be achieved for this, which also results in the above-mentioned through the targeted injection into zones of high air speed. Advantages leads.

Der Querschnitt der Düse 3, ihre Position und die Eindüsungsrichtung ergibt sich aus dem gewünschten Durchsatz (in Abhängigkeit von Vordruck) unter Berücksichtigung genügend hoher Reynoldszahlen in den Düsenbohrungen 18.The cross section of the nozzle 3, its position and the direction of injection result from the desired throughput (depending on the form) taking into account sufficiently high Reynolds numbers in the nozzle bores 18.

Das in Fig. 8 dargestellte Diagramm veranschaulicht für eine turbulenzunterstützte Druckzerstäubungsdüse die Abhängigkeit des Tropfendurchmessers dT vom Vordruck p für verschiedene Grenzdurchmesser der Tropfenmassenverteilung. Dx bezeichnet den Grenzdurchmesser, den x Massen% aller Teilchen unterschreiten. SMD ist der Sauterdurchmesser, also der Durchmesser eines Tröpfchens, das dasselbe Verhältnis von Oberfläche zu Volumen besitzt wie der Gesamtstrahl. Die dem Diagramm zugrunde liegende Hochdruckzerstäubungsdüse wurde dabei mit Wasser beaufschlagt und hatte folgende Kenngrössen: Durchmesser der Düse 10,0 mm Durchmesser des Zuführkanals 8,0 mm Durchmesser der Zuführöffnung im Füllstück 1,8 mm Durchmesser der Düsenbohrungen 0,6 mm Länge der Turbulenzkammer 7,0 mm. For a turbulence-assisted pressure atomization nozzle, the diagram shown in FIG. 8 illustrates the dependence of the droplet diameter d T on the admission pressure p for various Limit diameter of the drop mass distribution. Dx denotes the limit diameter that x mass% of all particles fall below. SMD is the Sauter diameter, i.e. the diameter of a droplet that has the same surface to volume ratio as the total jet. The high pressure atomization nozzle on which the diagram is based was charged with water and had the following parameters: Diameter of the nozzle 10.0 mm Feed channel diameter 8.0 mm Diameter of the feed opening in the filler 1.8 mm Diameter of the nozzle bores 0.6 mm Length of the turbulence chamber 7.0 mm.

Fig. 9 zeigt die Abhängigkeit der atmosphärischen NOx-Emissionswerte von der Flammentemperatur und dem eingesetzten Düsentyp zur Zerstäubung des flüssigen Brennstoffes. Es wurden turbulenzunterstützte Zweiloch-Hochdruckdüsen mit unterschiedlichen Winkeln β zwischen Brennstoffeindüsung und Brennerachse untersucht (11 °, 15 °, 20 °). Der Kegelhalbwinkel α des Brenners betrug jeweils 10,95 °. Im Vergleich zu Druckzerstäubungsdüsen (Dralldüsen) werden beim Einsatz der erfindungsgemässen Hochdruckzerstäubungsdüsen 3 mit zwei auf die Lufteintrittsschlitze 19, 20 gerichteten Düsenbohrungen 18 in Vormischbrennern der Doppelkegelbauart wesentlich geringere NOx-Emissionswerte erreicht.FIG. 9 shows the dependence of the atmospheric NOx emission values on the flame temperature and the type of nozzle used for atomizing the liquid fuel. Turbulence-assisted two-hole high-pressure nozzles with different angles β between the fuel injection and the burner axis were examined (11 °, 15 °, 20 °). The cone half angle α of the burner was 10.95 ° in each case. In comparison to pressure atomizing nozzles (swirl nozzles), when using the high pressure atomizing nozzles 3 according to the invention with two nozzle bores 18 directed towards the air inlet slots 19, 20, premix burners of the double-cone type achieve significantly lower NOx emission values.

BezugszeichenlisteReference list

1, 21, 2
TeilkegelkörperPartial cone body
1a, 2a1a, 2a
zylindrischer Ansfangsteilcylindrical starting part
1b, 2b1b, 2b
Mittelachse der TeilkegelkörperCentral axis of the partial cone body
33rd
HochdruckzerstäubungsdüseHigh pressure atomization nozzle
44th
BrennstofftropfensprayFuel drop spray
55
BrennerachseBurner axis
66
Rückströmzone (vortex breakdown)Backflow zone (vortex breakdown)
77
FlammenfrontFlame front
8, 98, 9
BrennstoffzuleitungFuel supply
1010th
FrontplatteFront panel
1111
Öffnungen in der FrontplatteOpenings in the front panel
1212th
flüssiger Brennstoffliquid fuel
1313
weiterer Brennstoff (flüssig oder gasförmig)additional fuel (liquid or gaseous)
1414
Innenraum des BrennersInterior of the burner
1515
VerbrennungsluftstromCombustion air flow
1616
Eindüsung BrennstoffInjection fuel
1717th
Öffnungenopenings
1818th
DüsenbohrungNozzle bore
19, 2019, 20
tangentialer Lufteintrittsschlitztangential air inlet slot
21a,21b21a, 21b
LeitblechBaffle
2222
Brennraum abströmseitig des BrennersCombustion chamber downstream of the burner
2323
Drehpunktpivot point
2424th
ZuführkanalFeed channel
2525th
TurbulenzkammerTurbulence chamber
2626
Rohrpipe
2727
Deckel des RohresCover of the pipe
2828
FüllstückFilling piece
2929
Zufuhröffnung im FüllstückFeed opening in the filler
αα
KegelhalbwinkelCone half angle
ββ
Winkel zwischen Tropfenspray und Längsachse des BrennersAngle between the drop spray and the longitudinal axis of the burner
dT d T
TropfendurchmesserDrop diameter
pp
Druckprint
DxDx
Grenzdurchmesser, den x Massen% aller Teilchen unterschreitenLimit diameter that x mass% of all particles fall below
SMDSMD
SauterdurchmesserSauter diameter

Claims (6)

Vormischbrenner der Doppelkegelbauart zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage, wobei der Brenner im wesentlichen aus mindestens zwei in Strömungsrichtung aufeinander positionierten, hohlen kegelförmigen Teilkörpern (1, 2) mit einem in Strömungsrichtung konstanten Kegelhalbwinkel (α) besteht, deren Längssymmetrieachsen (1a, 1b) zueinander radial versetzt verlaufen, wodurch strömungsmässig entgegengesetzte tangentiale Lufteintrittsschlitze (19, 20) für einen Verbrennungsluftstrom (15) entstehen, wobei im engsten Querschnitt des durch die kegeligen Teilkörper (1, 2) gebildeten Kegelhohlraumes (14) eine Düse (3) zur Zerstäubung eines flüssigen Brennstoffes (12) angeordnet ist und die Brennstoffeindüsung mit der Längsachse des Brenners (5) einen spitzen Winkel (β) bildet, und wobei im Bereich der Lufteintrittsschlitze (19, 20) die kegeligen Teilkörper (1, 2) mit oder ohne Mittel (8, 9, 17) zur Beibringung eines weiteren flüssigen oder gasförmigen Brennstoffes (13) ergänzt sind, und die Düse eine Hochdruckzerstäubungsdüse (3) ist, welche aus einem Düsenkörper besteht, in dem mindestens ein Zufuhrkanal (24) für den zu zerstäubenden und unter einem Druck von grösser 100 bar zuführbaren flüssigen Brennstoff (12) angeordnet ist und dieser Zufuhrkanal (24) mit oder ohne dazwischen angeordneter Turbulenzkammer (25) über mindestens zwei Düsenbohrungen (18) mit dem Innenraum (14) des Brenners in Verbindung steht, dadurch gekennzeichnet, dass die Düsenbohrungen (18) auf die Zonen hoher Luftgeschwindigkeit im Brenner ausgerichtet sind und der Winkel (β) zwischen dem Brennstofftropfenspray (4) und der Längsachse (5) des Brenners mindestens so gross ist wie der Kegelhalbwinkel (α) zwischen den Teilkegelkörpern (1, 2) und der Längsachse (5) des Brenners.Premixing burner of the double-cone type for operating an internal combustion engine, a combustion chamber of a gas turbine group or firing system, the burner essentially consisting of at least two hollow conical partial bodies (1, 2) positioned one on top of the other in the flow direction with a cone half angle (α) constant in the flow direction, the longitudinal symmetry axes ( 1a, 1b) run radially offset from one another, resulting in tangential air inlet slots (19, 20) for a combustion air flow (15), the narrowest cross section of the conical cavity (14) formed by the conical partial body (1, 2) being a nozzle (3 ) is arranged for atomizing a liquid fuel (12) and the fuel injection forms an acute angle (β) with the longitudinal axis of the burner (5), and in the area of the air inlet slots (19, 20) the conical partial bodies (1, 2) or without means (8, 9, 17) for teaching a wide Ren liquid or gaseous fuel (13) are supplemented, and the nozzle is a high-pressure atomizing nozzle (3), which consists of a nozzle body in which at least one supply channel (24) for the atomized and can be supplied under a pressure of greater than 100 bar liquid fuel (12) is arranged and this feed channel (24) with or without a turbulence chamber (25) arranged therebetween is connected to the interior (14) of the burner via at least two nozzle bores (18), characterized in that the nozzle bores (18) on the Zones of high air velocity in the burner are aligned and the angle (β) between the fuel drop spray (4) and the longitudinal axis (5) of the burner is at least as large as the cone half angle (α) between the partial cone bodies (1, 2) and the longitudinal axis (5) of the burner. Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Düsenbohrungen (18) der Hochdruckzerstäubungsdüse (3) auf die Lufteintrittsschlitze (19, 20) der kegeligen Teilkörper (1, 2) ausgerichtet sind.Premix burner according to Claim 1, characterized in that the nozzle bores (18) of the high-pressure atomization nozzle (3) are aligned with the air inlet slots (19, 20) of the conical partial bodies (1, 2). Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Hochdruckzerstäubungsdüse (3) eine turbulenzunterstützte Hochdruckdüse mit einer in Strömungsrichtung vor den Düsenbohrungen (18) angeordneten Turbulenzkammer (25) ist, wobei die Turbulenzkammer (25) begrenzt wird von einem Rohr (26), einem kegeligen Deckel (27) des Rohres (26), in welchem die Düsenbohrungen (18) angeordnet sind, und von einem Füllstück (28) mit mindestens einer Zufuhröffnung (29).Premix burner according to claim 1, characterized in that the high-pressure atomization nozzle (3) is a turbulence-assisted high-pressure nozzle with a turbulence chamber (25) arranged in the flow direction in front of the nozzle bores (18), the turbulence chamber (25) being delimited by a tube (26), one conical cover (27) of the tube (26), in which the nozzle bores (18) are arranged, and of a filler (28) with at least one feed opening (29). Vormischbrenner nach Anspruch 1, dadurch gekennzeichnet, dass die Hochdruckzerstäubungsdüse (3) eine Hochdruck-Blendendüse ist, welche aus einem Rohr (26) und einem kegeligen Deckel (27) des Rohres (26), in welchem die Düsenöffnungen (18) angeordnet sind, besteht.Premix burner according to claim 1, characterized in that the high-pressure atomization nozzle (3) is a high-pressure orifice nozzle which consists of a tube (26) and a conical cover (27) of the tube (26) in which the nozzle openings (18) are arranged, consists. Vormischbrenner nach Anspruch 3 oder 4, dadurch gekennzeichnet, dass die Düsenbohrungen (18) im äusseren Drittel des kegeligen Deckel (27) nahe der Wand des Rohres (26) angeordnet sind.Premix burner according to claim 3 or 4, characterized in that the nozzle bores (18) are arranged in the outer third of the conical cover (27) near the wall of the tube (26). Vormischbrenner nach Anspruch 3, dadurch gekennzeichnet, dass die Zufuhröffnung (29) mittig im Füllstück (28) angeordnet ist.Premix burner according to claim 3, characterized in that the feed opening (29) is arranged centrally in the filler (28).
EP95810671A 1994-11-12 1995-10-30 Premix burner Expired - Lifetime EP0711953B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4440558 1994-11-12
DE4440558A DE4440558A1 (en) 1994-11-12 1994-11-12 Premix burner

Publications (3)

Publication Number Publication Date
EP0711953A2 true EP0711953A2 (en) 1996-05-15
EP0711953A3 EP0711953A3 (en) 1997-09-03
EP0711953B1 EP0711953B1 (en) 2001-07-25

Family

ID=6533228

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810671A Expired - Lifetime EP0711953B1 (en) 1994-11-12 1995-10-30 Premix burner

Country Status (4)

Country Link
US (1) US5586878A (en)
EP (1) EP0711953B1 (en)
JP (1) JPH08210606A (en)
DE (2) DE4440558A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902233A1 (en) 1997-09-15 1999-03-17 Abb Research Ltd. Combined pressurised atomising nozzle
WO2005121648A1 (en) * 2004-06-08 2005-12-22 Alstom Technology Ltd Premix burner comprising a stepped liquid fuel supply system, and method for operating a premix burner
US7694521B2 (en) 2004-03-03 2010-04-13 Mitsubishi Heavy Industries, Ltd. Installation structure of pilot nozzle of combustor
CN103542412A (en) * 2012-07-10 2014-01-29 阿尔斯通技术有限公司 Premix burner of the multi-cone type for a gas turbine

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19736902A1 (en) * 1997-08-25 1999-03-04 Abb Research Ltd Burners for a heat generator
DE10051221A1 (en) * 2000-10-16 2002-07-11 Alstom Switzerland Ltd Burner with staged fuel injection
DE10055408A1 (en) * 2000-11-09 2002-05-23 Alstom Switzerland Ltd Process for fuel injection into a burner
DE10247764A1 (en) * 2002-10-14 2004-04-22 Robert Bosch Gmbh Chemical reforming jet for the production of hydrogen on an industrial scale has dosing chamber with a series of jet apertures under a laser-welded insert
CN100590355C (en) * 2004-02-12 2010-02-17 阿尔斯通技术有限公司 Premix burner with a swirl generator delimiting a conical swirl space and having sensor monitoring
BRPI0507640A (en) * 2004-02-12 2007-07-10 Alstom Technology Ltd premix burner arrangement for operating a combustion chamber and method for operating the combustion chamber
JP2008517241A (en) * 2004-10-18 2008-05-22 アルストム テクノロジー リミテッド Gas turbine burner
US8393891B2 (en) * 2006-09-18 2013-03-12 General Electric Company Distributed-jet combustion nozzle
DE102008015577A1 (en) * 2008-03-18 2009-10-22 Deutsches Zentrum für Luft- und Raumfahrt e.V. Method for low-emission combustion with liquid fuel and combustion chamber device
US8683804B2 (en) * 2009-11-13 2014-04-01 General Electric Company Premixing apparatus for fuel injection in a turbine engine
JP5448762B2 (en) * 2009-12-02 2014-03-19 三菱重工業株式会社 Combustion burner for gas turbine
KR101489579B1 (en) * 2013-05-30 2015-02-03 현대하이스코 주식회사 Liquid fuel reforming apparatus using micro spraying nozzle

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2618928A (en) * 1944-05-19 1952-11-25 Power Jets Res & Dev Ltd Combustion apparatus with vaned fuel injector means
FR2239162A5 (en) * 1973-07-27 1975-02-21 Utilisation Ration Gaz Nozzle for liquified petroleum gas burner - is conical with ring of outlet holes and restricted inlet passage
US4128206A (en) * 1977-05-31 1978-12-05 Delavan Corporation Low drift flat spray nozzle and method
FR2406725A1 (en) * 1977-10-24 1979-05-18 Proizv Ob Combustion method for gas turbines - has flame-holder dividing chamber and split airstream swirling in opposite directions
US4348168A (en) * 1975-04-22 1982-09-07 Christian Coulon Process and apparatus for atomizing and burning liquid fuels
EP0210462A1 (en) * 1985-07-30 1987-02-04 BBC Brown Boveri AG Dual combustor
EP0518072A1 (en) * 1991-06-14 1992-12-16 Asea Brown Boveri Ag Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH674561A5 (en) * 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
CH680467A5 (en) * 1989-12-22 1992-08-31 Asea Brown Boveri
DE59105449D1 (en) * 1991-01-23 1995-06-14 Asea Brown Boveri High pressure atomization nozzle.
CH682952A5 (en) * 1991-03-12 1993-12-15 Asea Brown Boveri Burner for a premixing combustion of a liquid and / or gaseous fuel.
US5307634A (en) * 1992-02-26 1994-05-03 United Technologies Corporation Premix gas nozzle

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2618928A (en) * 1944-05-19 1952-11-25 Power Jets Res & Dev Ltd Combustion apparatus with vaned fuel injector means
FR2239162A5 (en) * 1973-07-27 1975-02-21 Utilisation Ration Gaz Nozzle for liquified petroleum gas burner - is conical with ring of outlet holes and restricted inlet passage
US4348168A (en) * 1975-04-22 1982-09-07 Christian Coulon Process and apparatus for atomizing and burning liquid fuels
US4128206A (en) * 1977-05-31 1978-12-05 Delavan Corporation Low drift flat spray nozzle and method
FR2406725A1 (en) * 1977-10-24 1979-05-18 Proizv Ob Combustion method for gas turbines - has flame-holder dividing chamber and split airstream swirling in opposite directions
EP0210462A1 (en) * 1985-07-30 1987-02-04 BBC Brown Boveri AG Dual combustor
EP0518072A1 (en) * 1991-06-14 1992-12-16 Asea Brown Boveri Ag Burner for an internal combustion engine, a combustion chamber of a gas turbine plant or a furnace

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0902233A1 (en) 1997-09-15 1999-03-17 Abb Research Ltd. Combined pressurised atomising nozzle
US6378787B1 (en) 1997-09-15 2002-04-30 Alstom Combined pressure atomizing nozzle
US7694521B2 (en) 2004-03-03 2010-04-13 Mitsubishi Heavy Industries, Ltd. Installation structure of pilot nozzle of combustor
DE112004002704B4 (en) * 2004-03-03 2011-04-07 Mitsubishi Heavy Industries, Ltd. incinerator
WO2005121648A1 (en) * 2004-06-08 2005-12-22 Alstom Technology Ltd Premix burner comprising a stepped liquid fuel supply system, and method for operating a premix burner
US7997896B2 (en) 2004-06-08 2011-08-16 Alstom Technology Ltd Premix burner with staged liquid fuel supply and also method for operating a premix burner
CN103542412A (en) * 2012-07-10 2014-01-29 阿尔斯通技术有限公司 Premix burner of the multi-cone type for a gas turbine
CN103542412B (en) * 2012-07-10 2016-02-03 阿尔斯通技术有限公司 For many cone types premix burners of gas turbine
US9441837B2 (en) 2012-07-10 2016-09-13 General Electric Technology Gmbh Premix burner of the multi-cone type for a gas turbine

Also Published As

Publication number Publication date
DE4440558A1 (en) 1996-05-15
JPH08210606A (en) 1996-08-20
DE59509445D1 (en) 2001-08-30
US5586878A (en) 1996-12-24
EP0711953A3 (en) 1997-09-03
EP0711953B1 (en) 2001-07-25

Similar Documents

Publication Publication Date Title
EP0892212B1 (en) Pressure spray nozzle
EP0794383B1 (en) Method of operating a pressurised atomising nozzle
EP0433790B1 (en) Burner
EP0503319B1 (en) Burner for a premixing combustion of a liquid and/or a gaseous fuel
EP0902233B1 (en) Combined pressurised atomising nozzle
EP0911583B1 (en) Method of operating a premix burner
EP1802915B1 (en) Gas turbine burner
EP0711953B1 (en) Premix burner
DE60106815T2 (en) Oil atomiser
EP0276696A2 (en) Hybrid burner for premix operation with gas and/or oil, particularly for gas turbine plants
EP2423597A2 (en) Premix burner for a gas turbine
DE3609960A1 (en) DEVICE AND METHOD FOR SPRAYING LIQUID FUEL
EP0924460B1 (en) Two-stage pressurised atomising nozzle
EP0433789A1 (en) Method for a premix burning of a liquid fuel
EP0394800B1 (en) Premix burner for generating a hot gas
EP0718550B1 (en) Injection nozzle
EP0692674A2 (en) Method and device for fuel distribution in a burner suitable for liquid as well as gaseous fuels
EP0742411B1 (en) Air supply for a premix combustor
EP0924461B1 (en) Two-stage pressurised atomising nozzle
EP0911582B1 (en) Method for operating a premix burner and premix burner
EP0496016B1 (en) High pressure spray nozzle
DE2552864A1 (en) PROCEDURE AND BURNER FOR BURNING LIQUID FUEL
DE4033710A1 (en) Combustion chamber for gas turbine - has system to spray water into combustion air to reduce nitrous oxide in exhaust gases
DE19854382B4 (en) Method and device for atomizing liquid fuel for a firing plant
DE19505614A1 (en) Operating method for pre-mixing burner

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980202

17Q First examination report despatched

Effective date: 19991119

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010725

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010725

REF Corresponds to:

Ref document number: 59509445

Country of ref document: DE

Date of ref document: 20010830

EN Fr: translation not filed
GBV Gb: ep patent (uk) treated as always having been void in accordance with gb section 77(7)/1977 [no translation filed]

Effective date: 20010725

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

Effective date: 20101102

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101029

Year of fee payment: 16