EP0710797B1 - Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners - Google Patents

Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners Download PDF

Info

Publication number
EP0710797B1
EP0710797B1 EP95810645A EP95810645A EP0710797B1 EP 0710797 B1 EP0710797 B1 EP 0710797B1 EP 95810645 A EP95810645 A EP 95810645A EP 95810645 A EP95810645 A EP 95810645A EP 0710797 B1 EP0710797 B1 EP 0710797B1
Authority
EP
European Patent Office
Prior art keywords
burner
fuel
gas
pilot
air
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95810645A
Other languages
English (en)
French (fr)
Other versions
EP0710797A2 (de
EP0710797A3 (de
Inventor
Timothy Dr. Griffin
Peter Dr. Senior
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Original Assignee
ABB Research Ltd Switzerland
ABB Research Ltd Sweden
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ABB Research Ltd Switzerland, ABB Research Ltd Sweden filed Critical ABB Research Ltd Switzerland
Publication of EP0710797A2 publication Critical patent/EP0710797A2/de
Publication of EP0710797A3 publication Critical patent/EP0710797A3/de
Application granted granted Critical
Publication of EP0710797B1 publication Critical patent/EP0710797B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C13/00Apparatus in which combustion takes place in the presence of catalytic material
    • F23C13/08Apparatus in which combustion takes place in the presence of catalytic material characterised by the catalytic material
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/02Premix gas burners, i.e. in which gaseous fuel is mixed with combustion air upstream of the combustion zone
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D14/00Burners for combustion of a gas, e.g. of a gas stored under pressure as a liquid
    • F23D14/12Radiant burners
    • F23D14/18Radiant burners using catalysis for flameless combustion
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23DBURNERS
    • F23D17/00Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel
    • F23D17/002Burners for combustion conjointly or alternatively of gaseous or liquid or pulverulent fuel gaseous or liquid fuel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23RGENERATING COMBUSTION PRODUCTS OF HIGH PRESSURE OR HIGH VELOCITY, e.g. GAS-TURBINE COMBUSTION CHAMBERS
    • F23R3/00Continuous combustion chambers using liquid or gaseous fuel
    • F23R3/40Continuous combustion chambers using liquid or gaseous fuel characterised by the use of catalytic means
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/07002Premix burners with air inlet slots obtained between offset curved wall surfaces, e.g. double cone burners
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F23COMBUSTION APPARATUS; COMBUSTION PROCESSES
    • F23CMETHODS OR APPARATUS FOR COMBUSTION USING FLUID FUEL OR SOLID FUEL SUSPENDED IN  A CARRIER GAS OR AIR 
    • F23C2900/00Special features of, or arrangements for combustion apparatus using fluid fuels or solid fuels suspended in air; Combustion processes therefor
    • F23C2900/13002Catalytic combustion followed by a homogeneous combustion phase or stabilizing a homogeneous combustion phase

Definitions

  • the invention relates to a method and an apparatus for Operation of a premix burner, in particular an agent vortex breakdown stabilized double cone type burner, which operated in particular with gaseous fuels and preferably used in gas turbine combustors becomes.
  • the device relates to the fuel supply.
  • premix burners are used for typical gas turbine operations Usually designed so that their fuel / air ratio the lowest NOx emissions when operating under Full load delivers. You will therefore be close to the lean extinguishing limit operated, their control range is very limited.
  • the premix burner is the additional one that is located close to the axis Injection of pilot gas so that the fuel gases are enriched.
  • DE-A-43 06 956 describes a fuel supply for a vortex breakdown stabilized low pollutant premix burner, especially one Double cone burner known in which the main gas pipe for the gaseous Fuel is integrally connected to the burner and a fuel lance Supply means for pilot gas and pilot air and with a supply channel for Liquid fuel is arranged in the main gas pipe.
  • the fuel lance serves the Injection of gaseous and liquid fuels in the center of the Double cone burner.
  • the disadvantage of this solution is that the fuel is cold in the Burner enters and does not react with the air. If liquid fuel is used, so it is mixed with the air and atomized before being injected into the burner. Also there is no reaction between fuel and air within the lance.
  • WO 93/10400 describes the use of a catalyst in a gas turbine burner.
  • a separate partial oxidation reactor is used to control the pilot gas, e.g. B. methane, in a fuel with a low calorific value, for. B. H 2 or CO to convert.
  • the invention tries to avoid all these disadvantages. you the task is based on a vortex breakdown stabilized, operated with gaseous fuels Premix burner for a gas turbine combustor with simple Means to enlarge the area of flame stability, so that the premix burner can also be used without problems under partial load conditions or in the case of very lean main fuel / combustion air mixtures is working.
  • this is the case with a method according to the preamble of claim 1 achieved in that the Pilot gas / air mixture at one inside the fuel lance arranged at the top of the burner arranged catalyst is ignited and burned there and the hot gas flow then the colder main burner flow inside the burner is added.
  • this is for a fuel supply for a low-pollutant stabilized by vortex breakdown Premix burner, in particular a burner of the double cone type, achieved according to the preamble of claim 4, that the supply means for the pilot gas and the pilot air are connected to a jet pump arranged in the fuel lance to form a pilot gas / air mixture and that at the end of the fuel lance at the burner tip Catalyst ring-shaped between the feed channel for the liquid fuel and the main gas pipe for igniting and burning the supplied pilot gas / air mixture is arranged.
  • the advantages of the invention include that the area of flame stability for one by means of vortex breakdown stabilized premix burner towards lean Fuel / air mixtures are shifted and the efficiency the plant is increased.
  • the catalyst sets the Combustion without NOx generation in progress and the resulting hot flow mixes with the colder main burner flow. This delays a further homogeneous reaction.
  • the catalytic ignition is therefore stabilized with a hot flow flame connected.
  • Another advantage of the invention is that Because of the arrangement of the catalyst in the interchangeable Fuel lance also replaced the catalytic converter very quickly if operational safety problems occur. In addition, a fuel lance can already work for you burner in operation in a gas turbine plant can be easily retrofitted with the catalyst.
  • pilot gas is under pressure by means of a jet pump integrated in the fuel lance is introduced and its pressure energy is used to a sufficient amount of combustion air from the plenum outside the burner hood into the fuel lance and pre-mix it with the pilot gas, because that’s one good mixing of pilot fuel and combustion air achieved and a cheap high pressure combustion of the gaseous Fuel / air mixture is reached.
  • an active catalyst preferably palladium oxide PdO, platinum, metal oxide mixtures or barium hexaaluminates
  • the catalyst support a honeycomb body with a suitable cell density or Pellets can be used.
  • Fig. 1 shows a partial longitudinal section of a gas turbine combustion chamber 1 with a premix burner 2.
  • This premix burner is a low-pollution double-cone burner, which in its basic structure described for example in EP-B1-0 321 809 becomes. It essentially consists of two hollow Partial conical bodies complementing a body with tangential ones Air inlet slots, the central axes of the Partial cone body widening in the direction of flow Have a taper and offset in the longitudinal direction to each other run.
  • the two partial cone bodies each have one Fuel line 3 for supplying the main gaseous fuel 4 on which of the through the tangential air inlet slots flowing combustion air 5 is mixed.
  • the combustion air 5 is used before mixing with the Main fuel gas 4 as cooling air from the combustion chamber 1. This collects then in turn within the burner hood 6 located plenum 7 before starting with the main fuel is mixed. The mixture formation with the combustion air takes place directly at the end of the air inlet slots.
  • the fuel lance 8 is easily exchangeable and contains supply means 9 for the gaseous pilot fuel 10, supply means 11 for a possibly usable liquid fuel 12 through a nozzle 13, for example a swirl nozzle or a pressure atomizer into the burner interior 14 is dusted, and feed means 15 for from a plenum 16th pilot air 17 supplied outside the burner hood 6.
  • the main fuel 4 flows in the feed line 3 in the Double cone burner and mixes with the combustion air 15, which are formed by the partial cone bodies 18, 19 Air inlet slots 20 in the burner interior of the double-cone burner 2 flows. Ignition of the fuel / air mixture occurs only at the top of the backflow zone, so that there is a stable flame front. The flame strikes not back inside the burner.
  • a catalyst 21 within the fuel lance 8 is at the top of the cone arranged a catalyst 21 according to the invention. He is is annular between the feed channel 11 for liquid fuel 12 and the feed channel 3 for the main fuel 4. Upstream of the catalyst 21 is a jet pump 22 in the Fuel lance 8 arranged. By means of this into the fuel lance 8 integrated jet pump 22 becomes the pilot gas 10 introduced into the lance under pressure. At the same time, his Pressure energy used a sufficient amount of pilot air 17 to be introduced from the plenum 16 outside the burner hood 6 and mix it well with the pilot fuel. By Installation of vortex elements in the feed channel 15 of the pilot air 17 a further advantageous mixing can be achieved become. The pilot fuel / air mixture 25 then flows to the catalyst located at the top of the double cone burner 21 to. The catalyst now initiates the combustion, whereby Hardly measurable NOx emissions arise. The through the Hot gas flow generated by the catalyst mixes in the interior of the burner 14 with the colder main burner flow and improved thereby the stability of the main flame.
  • the area of flame stability is expanded significantly, by catalytic ignition with hot gas flow flame stabilization is linked.
  • a material is used as the catalyst 21, which a the highest possible catalytic activity with sufficient thermal Stability guaranteed. It is particularly advantageous the use of palladium oxide PdO as catalyst 21 because it is the most active material for igniting methane oxidation is.
  • thermally stable compared to PdO catalytic somewhat less active materials are used, for example Platinum, metal oxide mixtures (such as perovskite, spinels) or barium hexaaluminate.
  • the catalyst 21 is in a honeycomb body 24 arranged, the cell density of the honeycomb body 24 different Stress conditions can be adjusted.
  • the design must be such that a sufficiently large one Catalyst area is available.
  • the catalyst 21 can be replaced quickly and easily become.
  • the fuel lances 8 can already be existing burner 2 well with this catalyst 21 and the Retrofit jet pump 22.
  • the previous embodiment referred to a burner 2, which is operated with gaseous fuels 4, 10.
  • the invention can also be used for combined operation or for operation with liquid fuel 12.
  • pilot gas 10 into the fuel lance 8 not necessary, but this will be 22 additional with the jet pump Air 17 pumped in, for example, at part-load operation in addition to atomizing the liquid fuel 12 can be used.
  • the catalyst then has 21 lost its actual function; but it bothers not even the operational process.

Description

Technisches Gebiet
Die Erfindung betrifft ein Verfahren und eine Vorrichtung zum Betrieb eines Vormischbrenners, insbesondere eines mittels vortex breakdown stabilisierten Brenners der Doppelkegelbauart, welcher insbesondere mit gasförmigen Brennstoffen betrieben und vorzugsweise in Gasturbinenbrennkammern eingesetzt wird. Die Vorrichtung bezieht sich dabei auf die Brennstoffzuführung.
Stand der Technik
Bei Vormischbrennern, wie beispielsweise dem Doppelkegelbrenner nach EP 0 321 809, wird das aerodynamische Phänomen des vortex breakdown benutzt, um die heissen Abgase zu rezirkulieren und damit das Brennstoff/Luft-Gemisch für eine schadstoffarme Verbrennung zu stabilisieren. Ein vortex breakdown entsteht dann, wenn ein axial-symmetrischer, sich vorwärts ausbreitender Wirbel instabil wird und eine Rückströmzone in der Achse schafft.
Die Vormischbrenner werden für typische Gasturbinenarbeitsweisen üblicherweise so ausgelegt, dass ihr Brennstoff/LuftVerhältnis die geringsten NOx-Emissionen beim Betrieb unter Vollast liefert. Sie werden deshalb nahe der mageren Löschgrenze betrieben, ihr Regelbereich ist stark eingeschränkt.
Bei Teillast der Gasturbine oder bei geringerer Brennstoffzufuhr ist es deshalb zur Aufrechterhaltung der Verbrennung erforderlich, einzelne Brenner abzuschalten, damit die restlichen Brenner weiter stabil betrieben werden können oder es muss eine Reduktion des Verbrennungsluftmassenstromes erfolgen.
Eine Erhöhung des Gebietes der Flammenstabilität würde die Notwendigkeit bzw. die erforderliche Genauigkeit solcher Massnahmen verringern und dabei die Leistung der Gasturbine beträchtlich erhöhen.
Eine Möglichkeit zur Erweiterung des Stabilitätsbereiches der Vormischbrenner ist das in Achsnähe erfolgende zusätzliche Eindüsen von Pilotgas, so dass die Brenngase angefettet werden.
Zum wahlweisen Betrieb eines Brenners mit gasförmigem oder flüssigem Brennstoff ist ein Verfahren bekannt, bei dem das alternativ zum Pilotgas verwendete Brennöl durch Eindüsung von Luft in Achsnähe des Brenners zerstäubt wird. Die Lufteindüsung erfolgt auch beim Pilotbetrieb mit Gas, bei dem aber keine Zerstäubung notwendig ist. Diese zusätzliche Luft destabilisiert die Pilotgasflamme und setzt damit die magere Löschgrenze der Flamme herab. Deshalb wurden ein Verfahren und eine Vorrichtung zum Betreiben eines kombinierten Brenners für flüssige und gasförmige Brennstoffe entwickelt, bei welchem die Zerstäubung des flüssigen Brennstoffes in einer Airblast-Düse erfolgt und der gasförmige Brennstoff im Brennerinnerraum in Achsnähe des Brenners durch die Zuführung von Pilotgas angefettet wird, bei denen der Zustrom der Gebläseluft in den Brennerinnenraum gesteuert wird. So wird beim Betrieb mit gasförmigen Brennstoff der Zustrom der Gebläseluft in den Brennerinnenraum abgedrosselt, beispielsweise durch das Einführen von Pilotgas in die Gebläseluft.
Aus DE-A-43 06 956 ist eine Brennstoffzuführung für einen mittels vortex breakdown stabilisierten schadstoffarmen Vormischbrenner, insbesondere einen Doppelkegelbrenner bekannt, bei welchem das Hauptgasrohr für den gasförmigen Brennstoff mit dem Brenner stoffschlüssig verbunden ist und eine Brennstofflanze mit Zuführmitteln für Pilotgas und Pilotluft und mit einem Zufuhrkanal für Flüssigbrennstoff im Hauptgasrohr angeordnet ist. Die Brennstofflanze dient der Injektion von gasförmigen und flüssigen Brennstoffen in das Zentrum des Doppelkegelbrenners. Nachteilig an dieser Lösung ist, dass der Brennstoff kalt in den Brenner eintritt und nicht mit der Luft reagiert. Wird flüssiger Brennstoff verwendet, so wird dieser mit der Luft vor der Injektion in den Brenner gemischt und zerstäubt. Auch hier tritt keine Reaktion zwischen Brennstoff und Luft innerhalb der Lanze auf.
In WO 93/10400 wird die Anwendung eines Katalysators in einem Gasturbinenbrenner beschrieben. Hierzu wird ein separater Teiloxidationsreaktor benutzt, um das Pilotgas, z. B. Methan, in einen Brennstoff mit niedrigem Heizwert, z. B. H2 oder CO, umzuwandeln.
Darstellung der Erfindung
Die Erfindung versucht, all diese Nachteile zu vermeiden. Ihr liegt die Aufgabe zugrunde, bei einem mittels vortex breakdown stabilisierten, mit gasförmigen Brennstoffen betriebenen Vormischbrenner für eine Gasturbinenbrennkammer mit einfachen Mitteln das Gebiet der Flammenstabilität zu vergrössern, so dass der Vormischbrenner auch problemlos unter Teillastbedingungen bzw. bei sehr mageren Hauptbrennstoff/Verbrennungsluft-Gemischen arbeitet.
Erfindungsgemäss wird dies bei einem Verfahren gemäss Oberbegriff des Patentanspruches 1 dadurch erreicht, dass das Pilotgas/Luft-Gemisch einem innerhalb der Brennstofflanze an der Spitze des Brenners angeordneten Katalysator zugeführt wird, dort gezündet und verbrannt wird und die Heissgasströmung danach der kälteren Hauptbrennerströmung im Brennerinnenraum zugemischt wird.
Erfindungsgemäss wird das bei einer Brennstoffzuführung für einen mittels vortex breakdown stabilisierten schadstoffarmen Vormischbrenner, insbesondere einem Brenner der Doppelkegelbauart, gemäss Oberbegriff des Patentanspruches 4 dadurch erreicht, dass die Zuführmittel für das Pilotgas und die Pilotluft mit einer in der Brennstofflanze angeordneten Strahlpumpe zur Bildung eines Pilotgas/Luft-Gemisches verbunden sind und dass am Ende der Brennstofflanze an der Brennerspitze ein Katalysator ringförmig zwischen dem Zuführkanal für den Flüssigbrennstoff und dem Hauptgasrohr zum Zünden und Verbrennen des zugeführten Pilotgas/Luft-Gemisches angeordnet ist.
Die Vorteile der Erfindung sind unter anderem darin zu sehen, dass das Gebiet der Flammenstabilität für einen mittels vortex breakdown stabilisierten Vormischbrenner in Richtung magerer Brennstoff/Luft-Gemische verschoben wird und der Wirkungsgrad der Anlage erhöht wird. Der Katalysator setzt die Verbrennung ohne NOx-Erzeugung in Gang und die entstehende heisse Strömung mischt sich mit der kälteren Hauptbrennerströmung. Dadurch wird eine weitere homogene Reaktion verzögert. Die katalytische Zündung wird also mit einer Heissströmungsflammenstabilisierung verbunden.
Ein weiterer Vorteil der Erfindung besteht darin, dass auf Grund der Anordnung des Katalysators in der austauschbaren Brennstofflanze auch der Katalysator sehr schnell ersetzt werden kann, falls Betriebssicherheitsprobleme auftreten. Ausserdem kann auch eine Brennstofflanze für einen sich bereits in Betrieb befindenden Brenner einer Gasturbinenanlage problemlos mit dem Katalysator nachgerüstet werden.
Es ist besonders zweckmässig, wenn das Pilotgas unter Druck mittels einer in die Brennstofflanze integrierten Strahlpumpe eingebracht wird und seine Druckenergie dazu benutzt wird, eine ausreichende Menge Verbrennungsluft aus dem Plenum ausserhalb der Brennerhaube in die Brennstofflanze einzubringen und diese mit dem Pilotgas vorzumischen, weil dadurch eine gute Vermischung von Pilotbrennstoff und Verbrennungsluft erzielt wird und eine günstige Hochdruckverbrennung des gasförmigen Brenstoff/Luft-Gemisches erreicht wird.
Ferner ist es vorteilhaft, wenn die Verbrennungsluft der Brennstofflanze verdrallt zugeführt wird, weil dadurch ebenfalls die Vermischung zwischen Pilotbrennstoff und Verbrennungsluft besser stattfindet.
Schliesslich sind mit Vorteil zwischen dem Katalysator und dem Zuführkanal für den Flüssigbrennstoff bzw. zwischen dem Katalysator und dem Hauptgaskanal Kühlringräume angeordnet. Dadurch wird eine Überhitzung des Katalysators und der Brennstofflanze bzw. des Brenners verhindert.
Weiterhin ist es zweckmässig, wenn ein aktiver Katalysator, vorzugsweise Palladiumoxid PdO, Platin, Metalloxidgemische oder Bariumhexaaluminate verwendet werden, wobei als Katalysatorträger ein Wabenkörper mit geeigneter Zellendichte oder Pellets einsetzbar ist.
Kurze Beschreibung der Zeichnung
In der Zeichnung ist ein Ausführungsbeispiel der Erfindung anhand eines Vormischbrenners der Doppelkegelbauart für eine Gasturbinenbrennkammer dargestellt.
Es zeigen:
Fig. 1
einen Teillängsschnitt der Brennkammer und des Doppelkegelbrenners;
Fig. 2
einen vergrösserten Teillängsschnitt des Doppelkegelbrenners im Bereich der Kegelspitze und der Brennstofflanze;
Fig. 3
einen vergrösserten Teillängsschnitt der Brennstofflanze im Düsenbereich;
Fig. 4
einen Teilquerschnitt gemäss Fig. 3.
Es sind nur die für das Verständnis der Erfindung wesentlichen Elemente gezeigt. Die Strömungsrichtung der Medien ist mit Pfeilen bezeichnet.
Weg zur Ausführung der Erfindung
Nachfolgend wird die Erfindung anhand eines Ausführungsbeispieles und der Zeichnungen näher erläutert.
Fig. 1 zeigt einen Teillängsschnitt einer Gasturbinenbrennkammer 1 mit einem Vormischbrenner 2. Dieser Vormischbrenner ist ein schadstoffarmer Doppelkegelbrenner, der in seinem prinzipiellen Aufbau beispielsweise in EP-B1-0 321 809 beschrieben wird. Er besteht im wesentlichen aus zwei hohlen, sich zu einem Körper ergänzenden Teilkegelkörpern mit tangentialen Lufteintrittsschlitzen, wobei die Mittelachsen der Teilkegelkörper eine sich in Strömungsrichtung erweiternde Kegelneigung aufweisen und in Längsrichtung zueinander versetzt verlaufen. Die beiden Teilkegelkörper weisen je eine Brennstoffleitung 3 zur Zuführung des gasförmigen Hauptbrennstoffes 4 auf, welcher der durch die tangentialen Lufteintrittsschlitze strömenden Verbrennungsluft 5 zugemischt wird.
Die Verbrennungsluft 5 dient vor ihrer Mischung mit dem Hauptbrenngas 4 als Kühlluft der Brennkammer 1. Diese sammelt sich dann wiederum in einem sich innerhalb der Brennerhaube 6 befindenden Plenum 7 an, bevor sie mit dem Hauptbrennstoff vermischt wird. Die Gemischbildung mit der Verbrennungsluft erfolgt direkt am Ende der Lufteintrittsschlitze.
Die Brennstofflanze 8 ist leicht austauschbar und enthält Zuführmittel 9 für den gasförmigen Pilotbrennstoff 10, Zuführmittel 11 für einen eventuell einsetzbaren flüssigen Brennstoff 12, der durch eine Düse 13, beispielsweise eine Dralldüse oder einen Druckzerstäuber, in den Brennerinnenraum 14 gestäubt wird, und Zuführmittel 15 für aus einem Plenum 16 ausserhalb der Brennerhaube 6 zugeführte Pilotluft 17.
Fig. 2 zeigt zwecks genauerer Darstellung einen vergrösserten Teillängsschnitt des Doppelkegelbrenners im Bereich der Kegelspitze und der Brennstofflanze.
Der Hauptbrennstoff 4 strömt in der Zuführleitung 3 in den Doppelkegelbrenner und mischt sich mit der Verbrennungsluft 15, die durch die von den Teilkegelkörpern 18, 19 gebildeten Lufteintrittsschlitze 20 in den Brennerinnenraum des Doppelkegelbrenners 2 strömt. Die Zündung des Brennstoff/Luft-Gemisches erfolgt erst an der Spitze der Rückströmzone, so dass dort eine stabile Flammenfront entsteht. Die Flamme schlägt nicht ins Innere des Brenners zurück.
Innerhalb der Brennstofflanze 8 ist an der Spitze des Kegels erfindungsgemäss ein Katalysator 21 angeordnet. Er befindet sich ringförmig zwischen dem Zuführkanal 11 für Flüssigbrennstoff 12 und dem Zuführkanal 3 für den Hauptbrennstoff 4. Stromauf des Katalysators 21 ist eine Strahlpumpe 22 in der Brennstofflanze 8 angeordnet. Mittels dieser in die Brennstofflanze 8 integrierten Strahlpumpe 22 wird das Pilotgas 10 unter Druck in die Lanze eingebracht. Gleichzeitig wird seine Druckenergie dazu benutzt, eine ausreichende Menge Pilotluft 17 aus dem Plenum 16 ausserhalb der Brennerhaube 6 einzubringen und diese mit dem Pilotbrennstoff gut vorzumischen. Durch Einbau von Wirbelelementen in den Zuführkanal 15 der Pilotluft 17 kann eine weitere vorteilhafte Vermischung erreicht werden. Das Pilotbrennstoff/Luft-Gemisch 25 strömt danach dem an der Spitze des Doppelkegelbrenners angeordeten Katalysator 21 zu. Der Katalysator initiert nunmehr die Verbrennung, wobei kaum messbare NOx-Emissionen entstehen. Die durch den Katalysator erzeugte Heissgasströmung mischt sich im Brennerinnenraum 14 mit der kälteren Hauptbrennerströmung und verbessert dadurch die Stabilität der Hauptflamme.
Das Gebiet der Flammenstabilität wird wesentlich erweitert, indem die katalytische Zündung mit einer Heissgasströmungsflammenstabilisierung verknüpft wird.
Wie deutlich aus den Fig. 2 bis 4 zu erkennen ist, sind zwischen dem Katalysator 21 und dem Zuführkanal 11 für einen eventuell benutzten Flüssigbrennstoff 12, sowie zwischen dem Katalysator 21 und dem Zuführkanal 3 des Hauptgases 4 schmale Kühlringräume 23 angeordnet. Diese dienen dazu, eine Überhitzung des Katalysators 21 und der Brennstofflanze 8 zu verhindern.
Als Katalysator 21 wird ein Material eingesetzt, welches eine möglichst hohe katalytische Aktivität bei ausreichender thermischer Stabilität gewährleistet. Besonders vorteilhaft ist die Verwendung von Palladiumoxid PdO als Katalysator 21, da es das aktivste Material für die Zündung der Methanoxidation ist.
Selbstverständlich können in anderen Ausführungsbeispielen auch andere thermisch stabile, im Vergleich zu PdO katalytisch etwas weniger aktive Materialien verwendet werden, beispielsweise Platin, Metalloxidgemische (wie Perovskite, Spinelle) oder Bariumhexaaluminate.
Aus Fig. 4 ist eine mögliche Struktur des Katalysatortägers zu entnehmen. Der Katalysator 21 ist in einem Wabenkörper 24 angeordnet, wobei die Zellendichte des Wabenkörpers 24 unterschiedlichen Beanspruchungsbedingungen angepasst werden kann. Die Auslegung hat so zu erfolgen, dass eine genügend grosse Katalysatorfläche zur Verfügung steht.
Der Katalysator 21 kann schnell und problemlos ausgewechselt werden. Ausserdem lassen sich die Brennstofflanzen 8 bereits vorhandener Brenner 2 gut mit diesem Katalysator 21 und der Strahlpumpe 22 nachrüsten.
Das bisherige Ausführungsbeispiel bezog sich auf einen Brenner 2, der mit gasförmigen Brennstoffen 4, 10 betrieben wird. Die Erfindung ist aber auch einsetzbar für den Kombi-Betrieb bzw. für den Betrieb mit flüssigem Brennstoff 12. Dann ist zwar das Einbringen von Pilotgas 10 in die Brennstofflanze 8 nicht notwendig, aber dafür wird mit der Strahlpumpe 22 zusätzliche Luft 17 eingepumt, die beispielsweise bei Teillastbetrieb zusätzlich zur Zerstäubung des flüssigen Brennstoffes 12 eingesetzt werden kann. Allerdings hat dann der Katalysator 21 seine eigentliche Funktion verloren; er stört aber auch nicht den Betriebsablauf.
Bezugszeichenliste
1
Brennkammer
2
Brenner
3
Brennstoffleitung
4
gasförmiger Hauptbrennstoff
5
Verbrennungsluft
6
Brennerhaube
7
Plenum innerhalb der Brennerhaube
8
Brennstofflanze
9
Zuführmittel für gasförmigen Pilotbrennstoff
10
gasförmiger Pilotbrennstoff
11
Zuführmittel für flüssigen Brennstoff
12
flüssiger Brennstoff
13
Düse
14
Brennerinnenraum
15
Zuführmittel für Pilotluft
16
Plenum ausserhalb der Brennerhaube
17
Pilotluft
18
Teilkegelkörper
19
Teilkegelkörper
20
Lufteintrittsschlitz
21
Katalysator
22
Strahlpumpe
23
Kühlringraum
24
Wabenkörper
25
Pilotgas/Luft-Gemisch

Claims (8)

  1. Verfahren zum Betrieb eines mittels vortex breakdown stabilisierten schadstoffarmen Vormischbrenners (2), insbesondere eines Brenners der Doppelkegelbauart, mit gasförmigen Brennstoffen (4, 10), wobei dem Brenner (2) das Hauptbrenngas (4) über ein stoffschlüssig mit dem Brenner (2) verbundenes Hauptgasrohr (3) und das Pilotgas (10) in Achsnähe des Brenners (2) über eine separate Zuführleitung (9) mittels einer austauschbar eingeschobenen Brennstofflanze (8) zugeführt werden und wobei das Pilotgas (10) innerhalb der Brennstofflanze (8) mit aus einem Plenum (16) ausserhalb der Brennerhaube (6) zugeführter Luft (17) vermischt wird, dadurch gekennzeichnet, dass das Pilotgas/Luft-Gemisch (25) einem innerhalb der Brennstofflanze (8) an der Spitze des Brenners (2) angeordneten Katalysator (21) zugeführt wird, dort gezündet und verbrannt wird und die Heissgasströmung danach der kälteren Hauptbrennerströmung im Brennerinnenraum (14) zugemischt wird.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, dass das Pilotgas (10) unter Druck mittels einer in die Brennstofflanze (8) integrierten Strahlpumpe (22) eingebracht wird und und seine Druckenergie dazu benutzt wird, eine ausreichende Menge Verbrennungsluft (17) aus dem Plenum (16) ausserhalb der Brennerhaube (6) in die Brennstofflanze (8) einzubringen und diese mit dem Pilotgas (10) vorzumischen.
  3. Verfahren nach Anspruch 2, dadurch gekennzeichnet, dass die Verbrennungsluft (17) der Brennstofflanze (8) verdrallt zugeführt wird.
  4. Brennstoffzuführung für einen mittels vortex breakdown stabilisierten schadstoffarmen Vormischbrenner (2), insbesondere Doppelkegelbrenner, wobei das Hauptgasrohr (3) für den gasförmigen Brennstoff (4) mit dem Brenner (2) stoffschlüssig verbunden ist und eine leicht austauschbare Brennstofflanze (8) mit Zuführmitteln (9, 15) für Pilotgas (10) und Pilotluft (17) und mit einem Zuführkanal (11) für Flüssigbrennstoff (12) im Hauptgasrohr (3) angeordnet ist, dadurch gekennzeichnet, dass die Zuführmittel (9, 15) für das Pilotgas (10) und die Pilotluft (17) mit einer in der Brennstofflanze (8) angeordneten Strahlpumpe (22) zur Bildung eines Pilotgas/Luft-Gemisches verbunden sind und dass am Ende der Brennstofflanze (8) an der Brennerspitze ein Katalysator (21) ringförmig zwischen dem Zuführkanal (11) für den Flüssigbrennstoff (12) und dem Hauptgasrohr (3) zum Zünden und Verbrennen des zugeführten Pilotgas/Luft-Gemisches angeordnet ist.
  5. Brennstoffzuführung nach Anspruch 4, dadurch gekennzeichnet, dass zwischen dem Katalysator (21) und dem Zuführkanal (11) für den Flüssigbrennstoff (12) bzw. zwischen dem Katalysator (21) und dem Hauptgaskanal (3) Kühlringräume (23) angeordnet sind.
  6. Brennstoffzuführung nach Anspruch 4, dadurch gekennzeichnet, dass als Katalysator (21) aktives Material, vorzugsweise Palladiumoxid, Platin, Metalloxidgemische oder Bariumhexaaluminate verwendet werden.
  7. Brennstoffzuführung nach Anspruch 6, dadurch gekennzeichnet, dass als Katalysatorträger ein Wabenkörper (24) mit geeigneter Zellendichte verwendet wird.
  8. Brennstoffzuführung nach Anspruch 6, dadurch gekennzeichnet, dass als Katalysatorträger Pellets verwendet werden.
EP95810645A 1994-11-05 1995-10-17 Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners Expired - Lifetime EP0710797B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4439619A DE4439619A1 (de) 1994-11-05 1994-11-05 Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
DE4439619 1994-11-05

Publications (3)

Publication Number Publication Date
EP0710797A2 EP0710797A2 (de) 1996-05-08
EP0710797A3 EP0710797A3 (de) 1997-12-29
EP0710797B1 true EP0710797B1 (de) 2001-08-16

Family

ID=6532614

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95810645A Expired - Lifetime EP0710797B1 (de) 1994-11-05 1995-10-17 Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners

Country Status (3)

Country Link
US (1) US5569020A (de)
EP (1) EP0710797B1 (de)
DE (2) DE4439619A1 (de)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6609905B2 (en) 2001-04-30 2003-08-26 Alstom (Switzerland) Ltd. Catalytic burner
US6679061B2 (en) 2000-12-11 2004-01-20 Alstom Technology Ltd. Premix burner arrangement for operating a combustion chamber
WO2004020901A1 (de) 2002-08-30 2004-03-11 Alstom Technology Ltd Hybridbrenner und zugehöriges betriebsverfahren

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19523094A1 (de) * 1995-06-26 1997-01-02 Abb Management Ag Brennkammer
NL1004051C2 (nl) * 1996-09-17 1998-03-18 Gastec Nv Katalytische stralingsbrander.
DE19719197A1 (de) * 1997-05-09 1998-11-12 Abb Research Ltd Verfahren und Vorrichtung zum Betreiben der Brennkammer einer Gasturbinenanlage mit Flüssigbrennstoff
DE19737997A1 (de) * 1997-08-30 1999-03-04 Asea Brown Boveri Plenum
EP0903540B1 (de) * 1997-09-19 2003-04-09 ALSTOM (Switzerland) Ltd Brenner für den Betrieb eines Wärmeerzeugers
DE59709446D1 (de) * 1997-10-31 2003-04-10 Alstom Switzerland Ltd Brenner für den Betrieb eines Wärmeerzeugers
EP0918191B1 (de) * 1997-11-21 2003-07-02 Alstom Brenner für den Betrieb eines Wärmeerzeugers
EP0931980B1 (de) * 1998-01-23 2003-04-09 ALSTOM (Switzerland) Ltd Brenner für den Betrieb eines Wärmeerzeugers
DE19948674B4 (de) * 1999-10-08 2012-04-12 Alstom Verbrennungseinrichtung, insbesondere für den Antrieb von Gasturbinen
DE10049203A1 (de) * 2000-10-05 2002-05-23 Alstom Switzerland Ltd Verfahren zur Brennstoffeinleitung in einen Vormischbrenner
US7121097B2 (en) 2001-01-16 2006-10-17 Catalytica Energy Systems, Inc. Control strategy for flexible catalytic combustion system
US6718772B2 (en) 2000-10-27 2004-04-13 Catalytica Energy Systems, Inc. Method of thermal NOx reduction in catalytic combustion systems
US6532743B1 (en) 2001-04-30 2003-03-18 Pratt & Whitney Canada Corp. Ultra low NOx emissions combustion system for gas turbine engines
EP1286112A1 (de) * 2001-08-09 2003-02-26 Siemens Aktiengesellschaft Vormischbrenner und Verfahren zu dessen Betrieb
US6796129B2 (en) 2001-08-29 2004-09-28 Catalytica Energy Systems, Inc. Design and control strategy for catalytic combustion system with a wide operating range
WO2004020902A1 (de) * 2002-08-30 2004-03-11 Alstom Technology Ltd Verfahren und vorrichtung zum vermischen von fluidströmungen
WO2004020905A1 (de) 2002-08-30 2004-03-11 Alstom Technology Ltd Verfahren und vorrichtung zum verbrennen eines brennstoff-oxidator-gemischs
US20040255588A1 (en) * 2002-12-11 2004-12-23 Kare Lundberg Catalytic preburner and associated methods of operation
BRPI0406806A (pt) * 2003-01-17 2005-12-27 Catalytica Energy Sys Inc Sistema e método de controle dinâmico para multicombustor catalìtico para motor de turbina a gás
US6993912B2 (en) * 2003-01-23 2006-02-07 Pratt & Whitney Canada Corp. Ultra low Nox emissions combustion system for gas turbine engines
DE10329162A1 (de) 2003-06-27 2005-01-13 Alstom Technology Ltd Katalytischer Reaktor und zugehöriges Betriebsverfahren
US7975489B2 (en) * 2003-09-05 2011-07-12 Kawasaki Jukogyo Kabushiki Kaisha Catalyst module overheating detection and methods of response
CA2561255A1 (en) * 2004-03-30 2005-10-13 Alstom Technology Ltd. Device and method for flame stabilization in a burner
US7303388B2 (en) * 2004-07-01 2007-12-04 Air Products And Chemicals, Inc. Staged combustion system with ignition-assisted fuel lances
JP2008534896A (ja) * 2005-03-23 2008-08-28 アルストム テクノロジー リミテッド 前混合バーナにおいて水素を燃焼する方法と装置
US20070089417A1 (en) * 2005-10-06 2007-04-26 Khanna Vivek K Catalytic reformer with upstream and downstream supports, and method of assembling same
DE102005061486B4 (de) 2005-12-22 2018-07-12 Ansaldo Energia Switzerland AG Verfahren zum Betreiben einer Brennkammer einer Gasturbine
CN100439798C (zh) * 2005-12-23 2008-12-03 中国科学院工程热物理研究所 一种燃气预混高速烧嘴
EP1843098A1 (de) * 2006-04-07 2007-10-10 Siemens Aktiengesellschaft Gasturbinenverbrennungskammer
JP2010230257A (ja) * 2009-03-27 2010-10-14 Dainichi Co Ltd 燃焼装置
EP2299178B1 (de) * 2009-09-17 2015-11-04 Alstom Technology Ltd Verfahren und Gasturbinenverbrennungssystem zum sicheren Mischen von H2-reichen Brennstoffen mit Luft
WO2011159887A1 (en) * 2010-06-16 2011-12-22 Algas-Sdi International Llc Heater for liquefied petroleum gas storage tank
US8893500B2 (en) 2011-05-18 2014-11-25 Solar Turbines Inc. Lean direct fuel injector
US8919132B2 (en) 2011-05-18 2014-12-30 Solar Turbines Inc. Method of operating a gas turbine engine
US9182124B2 (en) 2011-12-15 2015-11-10 Solar Turbines Incorporated Gas turbine and fuel injector for the same
US10018305B2 (en) 2013-01-25 2018-07-10 Algas-Sdi International Llc Heater with replaceable cartridge
US11187408B2 (en) * 2019-04-25 2021-11-30 Fives North American Combustion, Inc. Apparatus and method for variable mode mixing of combustion reactants

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2970439A (en) * 1949-09-13 1961-02-07 Walter G Berl Catalytic igniter for ram-jet burner
FR89711E (fr) * 1965-05-05 1967-08-04 Air Liquide Dispositif de craquage des hydrocarbures gazeux
US4825658A (en) * 1987-12-11 1989-05-02 General Electric Company Fuel nozzle with catalytic glow plug
CH674561A5 (de) 1987-12-21 1990-06-15 Bbc Brown Boveri & Cie
GB9027331D0 (en) * 1990-12-18 1991-02-06 Ici Plc Catalytic combustion
US5318436A (en) * 1991-11-14 1994-06-07 United Technologies Corporation Low NOx combustion piloted by low NOx pilots
GB9212794D0 (en) * 1992-06-16 1992-07-29 Ici Plc Catalytic combustion
DE59208831D1 (de) * 1992-06-29 1997-10-02 Abb Research Ltd Brennkammer einer Gasturbine
DE4306956A1 (de) * 1993-03-05 1994-09-08 Abb Management Ag Brennstoffzuführung für eine Gasturbine
US5361586A (en) * 1993-04-15 1994-11-08 Westinghouse Electric Corporation Gas turbine ultra low NOx combustor
DE4330083A1 (de) * 1993-09-06 1995-03-09 Abb Research Ltd Verfahren zum Betrieb eines Vormischbrenners

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6679061B2 (en) 2000-12-11 2004-01-20 Alstom Technology Ltd. Premix burner arrangement for operating a combustion chamber
US6609905B2 (en) 2001-04-30 2003-08-26 Alstom (Switzerland) Ltd. Catalytic burner
WO2004020901A1 (de) 2002-08-30 2004-03-11 Alstom Technology Ltd Hybridbrenner und zugehöriges betriebsverfahren
US7717700B2 (en) 2002-08-30 2010-05-18 Alstom Technology Ltd. Hybrid burner and associated operating method

Also Published As

Publication number Publication date
US5569020A (en) 1996-10-29
EP0710797A2 (de) 1996-05-08
DE4439619A1 (de) 1996-05-09
DE59509509D1 (de) 2001-09-20
EP0710797A3 (de) 1997-12-29

Similar Documents

Publication Publication Date Title
EP0710797B1 (de) Verfahren und Vorrichtung zum Betrieb eines Vormischbrenners
EP2116766B1 (de) Brenner mit Brennstofflanze
DE4446945B4 (de) Gasbetriebener Vormischbrenner
DE19533055B4 (de) Doppelbrennstoffmischer für eine Gasturbinenbrennkammer
EP1817526B1 (de) Verfahren und vorrichtung zur verbrennung von wasserstoff in einem vormischbrenner
EP0576697B1 (de) Brennkammer einer Gasturbine
EP0610722B1 (de) Brenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
DE69724502T2 (de) Gasturbinenbrennkammer
EP0387532B1 (de) Brennkammer einer Gasturbine
EP0592717B1 (de) Gasbetriebener Vormischbrenner
EP0625673B1 (de) Vormischbrenner zum Betrieb einer Brennkraftmaschine, einer Brennkammer einer Gasturbogruppe oder Feuerungsanlage
EP0401529B1 (de) Brennkammer einer Gasturbine
EP2257736B1 (de) Verfahren zum erzeugen von heissgas
DE10050248A1 (de) Brenner
EP1828684A1 (de) Vormischbrenner mit mischstrecke
EP0995066B1 (de) Brenneranordnung für eine feuerungsanlage, insbesondere eine gasturbinenbrennkammer
DE4411624A1 (de) Brennkammer mit Vormischbrennern
EP1568942A1 (de) Vormischbrenner sowie Verfahren zur Verbrennung eines niederkalorischen Brenngases
DE19750310A1 (de) Dual-Brennstoffeinspritzverfahren und -vorrichtung mit Mehrfach-Luftstrahlsprühvorrichtungen für flüssigen Brennstoff
EP1217297A1 (de) Brenner mit hoher Flammenstabilität
DE4446842A1 (de) Verfahren und Vorrichtung zum Zuleiten eines gasförmigen Brennstoffs in einen Vormischbrenner
EP0816759B1 (de) Vormischbrenner und Verfahren zum Betrieb des Brenners
EP1754937B1 (de) Brennkopf und Verfahren zur Verbrennung von Brennstoff
EP1999410A1 (de) Brenner für den betrieb eines wärmeerzeugers
EP0276397B1 (de) Brennkammer für Gasturbine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A2

Designated state(s): DE FR GB

PUAL Search report despatched

Free format text: ORIGINAL CODE: 0009013

AK Designated contracting states

Kind code of ref document: A3

Designated state(s): DE FR GB

17P Request for examination filed

Effective date: 19980520

17Q First examination report despatched

Effective date: 19991108

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20010816

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20010914

Year of fee payment: 7

REF Corresponds to:

Ref document number: 59509509

Country of ref document: DE

Date of ref document: 20010920

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20011005

Year of fee payment: 7

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20011116

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20021017

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20030501

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20021017