EP0697520B1 - Kugelkopf zur Abstützung eines Kolbens einer hydrostatischen Axial- oder radialkolbenmaschine an deren Hubkörper - Google Patents

Kugelkopf zur Abstützung eines Kolbens einer hydrostatischen Axial- oder radialkolbenmaschine an deren Hubkörper Download PDF

Info

Publication number
EP0697520B1
EP0697520B1 EP95112878A EP95112878A EP0697520B1 EP 0697520 B1 EP0697520 B1 EP 0697520B1 EP 95112878 A EP95112878 A EP 95112878A EP 95112878 A EP95112878 A EP 95112878A EP 0697520 B1 EP0697520 B1 EP 0697520B1
Authority
EP
European Patent Office
Prior art keywords
piston
ball head
bearing surface
plane
bearing
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95112878A
Other languages
English (en)
French (fr)
Other versions
EP0697520A1 (de
Inventor
Ludwig Wagenseil
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Brueninghaus Hydromatik GmbH
Original Assignee
Brueninghaus Hydromatik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Brueninghaus Hydromatik GmbH filed Critical Brueninghaus Hydromatik GmbH
Publication of EP0697520A1 publication Critical patent/EP0697520A1/de
Application granted granted Critical
Publication of EP0697520B1 publication Critical patent/EP0697520B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01BMACHINES OR ENGINES, IN GENERAL OR OF POSITIVE-DISPLACEMENT TYPE, e.g. STEAM ENGINES
    • F01B3/00Reciprocating-piston machines or engines with cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F01B3/0082Details
    • F01B3/0085Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/122Details or component parts, e.g. valves, sealings or lubrication means
    • F04B1/124Pistons
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B1/00Multi-cylinder machines or pumps characterised by number or arrangement of cylinders
    • F04B1/12Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis
    • F04B1/20Multi-cylinder machines or pumps characterised by number or arrangement of cylinders having cylinder axes coaxial with, or parallel or inclined to, main shaft axis having rotary cylinder block
    • F04B1/2014Details or component parts

Definitions

  • the invention relates to a ball head according to the preamble of claim 1.
  • Ball heads of this type are known for example from DE-PS 4 024 319, which describes a swash plate pump, the pistons of which are supported on the swash plate indirectly via piston rods.
  • Each piston rod has at its opposite ends a spherical head, which in a hollow spherical section in the piston or in the lifting body, i.e. in the swashplate.
  • ball heads of the type mentioned at the outset are known from DE-OS 2 307 641, which describes a radial piston machine, the pistons of which are supported indirectly via sliding shoes on the lifting body designed in the form of an outer ring.
  • the ball heads are formed on the slide shoes and are received in corresponding hollow ball sections in the piston.
  • the known ball heads described above each have a larger diameter than the circular openings of the associated hollow ball sections, in which they are rotatably mounted and in which they can only be used with the aid of the cylinder surfaces, provided that the corresponding inclination of the respective piston rod or the slide shoe Plane of the cylinder surface is brought into a position parallel to the plane of the circular opening.
  • the ball heads are hydrostatically relieved in the hollow ball sections in a known manner.
  • a so-called pressure pocket in the form of a recess is formed in the spherical caps or in the bearing surfaces, to which pressure oil is supplied, which flows out through the bearing gap between the spherical cap and the bearing surface, forming a hydrostatic pressure field to the leakage oil chamber of the axial piston machine.
  • the swash plate 1 exerts a normal force F N on the ball head K, which acts in the center of gravity S of the pressure field or the spherical cap KK and in the ball head K into a piston force F K and a radial - or transverse force F R is broken down.
  • the radial force F R is proportional to the distance x between said surface center of gravity S and the piston axis L K and can move the ball head K in the hollow spherical section KA to the left in FIG.
  • the swivel angle of the axial or radial piston machine has no influence on the magnitude of the radial force and thus the pressure field if the relief groove is formed in the spherical cap.
  • the relief groove preferably runs in a plane perpendicular to the piston axis.
  • Other options for the course of the relief groove are also conceivable, for example in a plane perpendicular to the plane mentioned or to the plane of the equator line.
  • the axial piston machine shown in FIG. 1 is designed in an inclined-axis design with an adjustable displacement volume and, in a known manner, comprises, as known components, a hollow cylindrical housing 10 with an open end on the front side, a housing end plate 11 closing this open end, a drive shaft 12 with a drive disk 13 formed in one piece , a control body 14 with an associated adjusting device 15 and a cylinder drum 16.
  • the drive shaft 12 passes through a through hole formed in the housing end wall 17 opposite the housing end plate 11 and is rotatably mounted in the latter.
  • the drive pulley 13 is in the interior of the housing arranged and rotatably supported on its inner surface on the inner surface of the housing end wall 17.
  • the control body 14 is a so-called control lens of biconvex shape, which can be displaced in a circular support and pivot bearing 18 in the housing end plate 11 and can be fixed within this bearing by means of the adjusting device 15 in any desired position.
  • two opposing control kidneys, not shown, are formed in a known manner, which are connected to the pressure port and the suction port (also not shown) of the inclined axis machine.
  • the adjusting device 15 is provided for changing the displacement volume of the inclined axis machine and comprises a pin 19 and an actuating rod 20 which is guided in a bore 21 perpendicular to the drive shaft 12 in the housing end plate 11.
  • the pin 19 is fastened to the actuating rod 20 and engages in a bore 22 in the control body 14.
  • the cylinder drum 16 is arranged between the drive pulley 13 and the control body 14 and is supported for the purpose of self-centering mounting with a concave bearing surface on the convex control surface of the control body 14 facing it.
  • cylindrical bores 23 are formed, which open out via outlet channels 24 on the concave bearing surface of the cylinder drum 16 and connect the cylinder bores 23 via the control kidneys with the pressure and suction nozzle when the latter rotates .
  • pistons 25 are arranged so that they can be moved back and forth. Their free ends are rotatably connected to the drive pulley 13 via ball joints.
  • Each ball joint consists of a ball head K formed at the free end of the associated piston 25 and a hollow ball section KA formed in the drive disk 13 (see FIG. 2), in which the ball head K is accommodated in a rotatable manner.
  • the hollow spherical sections KA are arranged on a pitch circle that is slightly smaller or larger than the pitch circle of the Cylinder rooms 23 is.
  • a compression spring 26 which supports a central pin 27 on the cylinder drum 16, which is also supported by a ball and socket joint in the drive pulley 13, projects into the stepped bore and guides the cylinder drum 16, and thus supports it when no oil pressure forces occur , in contact with the control body 14.
  • each piston 25 essentially correspond to the pistons described in DE-AS 2 358 870 and are therefore not described in more detail here. It should only be mentioned that each piston 25 has a piston ring 28 received in a groove, to which a section in the form of a spherical zone connects in the direction of the piston head. The piston sections between this spherical zone and the piston crown and above the piston ring 28 are frustoconical.
  • Each hollow spherical section KA is delimited by a circular opening 29 which lies in a plane E 1 which is parallel to the end face 30 of the drive pulley 13 and is set back to it by a small amount.
  • a conical surface 31 connects the hollow spherical section KA at the level of the circular opening 29 with the end face 30 of the drive pulley 13.
  • the diameter of the circular opening 29 is smaller than that of the hollow spherical section KA and the spherical head K accommodated therein.
  • the spherical head K is formed with a cylindrical surface 32 which runs symmetrically on both sides of a spherical head equatorial line Q which, with the piston axis L K, includes an angle ⁇ deviating from 90 ° and one has a smaller diameter than the circular opening 29.
  • the assembly and disassembly of the ball head K can only take place if the piston 25 is brought into such an inclined position that the cylinder surface 32 or the equator line Q is parallel to the plane E 1 of the circular opening 29.
  • the piston 25 is pivoted clockwise by the angle ⁇ into the inclined position shown in FIG it is no longer possible to remove the spherical head K from the hollow spherical section KA.
  • This inclination corresponds to a swivel angle of 0 ° enclosed by the drive shaft axis L T and the cylinder drum axis L Z of the axial piston machine and thus a zero displacement volume.
  • the axial piston machine is set to the maximum pivoting angle shown in FIG. 3, that is to say to the maximum displacement volume.
  • the cylinder surfaces 32 on the respective spherical head K each have a spherical cap KK, in which a relief groove 33 runs in a plane E 2 perpendicular to the piston axis L K and has two open ends, with which it opens into the cylindrical surface 32 or into the cavity 34 defined by this and the concave surface of the hollow spherical section KA.
  • the bearing gap h is not shown in FIG. 2.
  • the area of the concave surface of the hollow spherical section KA corresponding to the swivel angle range of the axial piston machine represents a bearing surface 35 on which the ball head K is supported with the bearing counter surface 36 delimited by the relief groove 33 on the spherical cap KK under hydrostatic relief by a pressure field.
  • each piston 25 is provided with a through bore 37, which is only shown in FIGS supplies the working space 39 of the cylinder bore 23.
  • a portion of this pressure oil flows through through holes 40 in the drive pulley 13 to pressure pockets 41 in the drive pulley ring surface.
  • a pressure field is also built up, which rotatably supports the drive pulley 13 on the housing end wall 17.
  • hydrostatic relief also includes the so-called “hydrostatic bearing”, in which the so-called inlet pressure in the pressure pocket 38 due to the use of a throttle in the through bore 37 is lower than the so-called supply pressure with which the pressure oil flows from the working space 39.
  • hydrostatic bearing in which the so-called inlet pressure in the pressure pocket 38 due to the use of a throttle in the through bore 37 is lower than the so-called supply pressure with which the pressure oil flows from the working space 39.
  • both pressures are essentially the same.
  • the function of the relief groove is described below using the example of the hydrostatic bearing.
  • the pressure oil supplied to the pressure pocket 38 via the through bore 37 with a throttle flows with the inlet pressure via the bearing gap h between the bearing counter surface 36 and the corresponding area of the bearing surface 35 directly on the one hand and on the other hand via the relief groove 33 into the cavity 34 between the cylinder surface 32 and the concave surface of the hollow ball section KA and from there to the leakage oil chamber.
  • the oil film in the gap h forms a pressure field which absorbs the piston force F K and thus prevents metallic contact between the ball head K and the concave surface of the hollow ball section KA.
  • the center of gravity S of the pressure field or the bearing counter surface 36 and thus the point of application of the piston force F N on the ball head K is at a smaller distance x than in the prior art (cf. FIG. 5) from the piston axis L. K , in the region of the point of penetration of the piston axis L K through the bearing counter surface 36.
  • the circular line with the radius x shows the position of the center of gravity S with the piston 25 rotating about its piston axis L K.
  • the radial force F R is smaller compared to the prior art corresponding to the smaller distance x, namely by such a value that no displacement of the ball head K can take place.
  • the end face 30 of the drive pulley 13 is selected in the form of a conical surface with an inclination angle ⁇ with respect to a plane E 3 perpendicular to the drive shaft axis L T. Passes through the apex of this conical surface 30 the drive shaft axis L T.
  • the angle ⁇ corresponds to the deflection angle of the pistons, which arises due to the formation of ellipses during the rotation of the drive shaft with the cylinder drum running obliquely.
  • This arrangement ensures optimal utilization of the retraction function of the hollow spherical sections as a result of their bearing surfaces enclosing the spherical heads at an angle greater than 180 °, since the piston offset during the revolution is almost symmetrical at the maximum swivel angle.

Description

  • Die Erfindung betrifft einen Kugelkopf nach dem Oberbegriff des Anspruches 1.
  • Kugelköpfe dieser Art sind beispielsweise aus der DE-PS 4 024 319 bekannt, die eine Taumelscheibenpumpe beschreibt, deren Kolben an der Taumelscheibe mittelbar über Kolbenstangen abgestützt sind. Jede Kolbenstange weist an ihren einander gegenüberliegenden Enden je einen Kugelkopf auf, der in einem Hohlkugelabschnitt im Kolben bzw. im Hubkörper, d.h. in der Taumelscheibe, aufgenommen ist.
  • Ferner sind Kugelköpfe der eingangs genannten Art aus der DE-OS 2 307 641 bekannt, die eine Radialkolbenmaschine beschreibt, deren Kolben mittelbar über Gleitschuhe an dem in Form eines Außenringes ausgebildeten Hubkörper abgestützt sind. Die Kugelköpfe sind an den Gleitschuhen ausgebildet und in entsprechenden Hohlkugelabschnitten in den Kolben aufgenommen.
  • Die vorbeschriebenen bekannten Kugelköpfe weisen jeweils einen größeren Durchmesser als die Kreisöffnungen der zugeordneten Hohlkugelabschnitte auf, in denen sie drehbar gelagert sind und in die sie nur mit Hilfe der Zylinderflächen eingesetzt werden können, vorausgesetzt, daß durch entsprechende Schrägstellung der jeweiligen Kolbenstange bzw. des Gleitschuhs die Ebene der Zylinderfläche in eine parallele Lage zur Ebene der Kreisöffnung gebracht ist.
  • Die Kugelköpfe sind in den Hohlkugelabschnitten in bekannter Weise hydrostatisch entlastet. Zu diesem Zweck ist in den Kugelkalotten oder in den Lagerflächen je eine sog. Drucktasche in Form einer Vertiefung ausgebildet, der Drucköl zugeführt wird, das durch den Lagerspalt zwischen der Kugelkalotte und der Lagerfläche unter Ausbildung eines hydrostatischen Druckfeldes zum Leckölraum der Axialkolbenmaschine hin abströmt.
  • Wie in Fig. 5 anhand der Kolbenstange und der Taumelscheibe der in der DE-PS 4 024 319 beschriebenen Taumelscheibenpumpe schematisch dargestellt ist, übt die Taumelscheibe 1 auf den Kugelkopf K eine Normalkraft FN aus, die im Flächenschwerpunkt S des Druckfeldes bzw. der Kugelkalotte KK angreift und im Kugelkopf K in eine Kolbenkraft FK und eine Radial- oder Querkraft FR zerlegt wird. Die Radialkraft FR ist dem Abstand x zwischen dem genannten Flächenschwerpunkt S und der Kolbenachse LK proportional und kann den Kugelkopf K im Hohlkugelabschnitt KA nach links in Fig. 5 verschieben, so daß eine zu große Ölmenge über den auf der entgegengesetzten Seite vergrößerten Lagerspalt h in den Leckölraum abfließt, wie dies mit dem Pfeil P angedeutet ist. Dadurch wird die hydrostatische Entlastung des Kugelkopfes K in ihrer Wirksamkeit verringert; dies kann so weit führen, daß das Druckfeld mit der Folge einer metallischen Berührung zwischen Kugelkopf K und Taumelscheibe 1 völlig zusammenbricht.
  • Es ist Aufgabe der Erfindung, den Kugelkopf der eingangs genannten Art so weiterzubilden, daß die an ihm unter Belastung wirkende Radialkraft FR verringert ist.
  • Diese Aufgabe wird durch die kennzeichnenden Merkmale des Anspruches 1 in Verbindung mit dessen gattungsbildenden Merkmalen gelöst. Der Teil des dem Lagerspalt zuströmenden Drucköls, der in Richtung der Entlastungsnut abströmt, wird von dieser aufgefangen und über den Hohlraum zwischen der Zylinderfläche und der Lagerfläche zum Leckölraum hin abgeführt. Das Drucköl benetzt somit lediglich den von der Entlastungsnut abgegrenzten, der Gegenlagerfläche zugeordneten Bereich des Lagerspaltes. Dementsprechend baut sich nur in diesem Bereich des Lagerspaltes das Druckfeld auf. Der Flächenschwerpunkt dieses Druckfeldes bzw. der Gegenlagerfläche weist einen im Vergleich zum Stand der Technik geringeren Abstand zur Kolbenachse auf. Dieser Tatbestand ist im Anspruch 1 durch das Merkmal, daß die Gegenlagerfläche im Bereich ihres Flächenschwerpunktes von der Kolbenachse durchdrungen ist, dargestellt. Dabei wird durch entsprechende Wahl der Größe dieses Bereichs bzw. Abstandes die Radialkraft auf einen solchen Wert eingestellt, daß keine oder nur eine unwesentliche Verschiebung des Kugelkopfes stattfindet und damit ein möglichst großes Druckfeld erzielt wird.
  • Bei Ausbildung der Entlastungsnut in der Lagerfläche ändert sich die Radialkraft mit der Lage, die der Kugelkolben innerhalb des Hohlkugelabschnitts einnimmt, also mit dem jeweils eingestellten Schwenkwinkel der Radial- oder Axialkolbenmaschine. Im Gegensatz dazu hat der Schwenkwinkel der Axial- oder Radialkolbenmaschine keinen Einfluß auf die Größe der Radialkraft und damit des Druckfeldes, wenn die Entlastungsnut in der Kugelkalotte ausgebildet ist.
  • Vorzugsweise verläuft die Entlastungsnut in einer zur Kolbenachse senkrechten Ebene. Auch andere Möglichkeiten des Verlaufs der Entlastungsnut sind denkbar, beispielsweise in einer zur genannten Ebene oder zu der Ebene der Äquatorlinie senkrechten Ebene.
  • Nachstehend ist die Erfindung anhand eines bevorzugten Ausführungsbeispiels unter Bezugnahme auf die Figuren 1 bis 4 näher beschrieben. Es zeigen:
  • Fig. 1
    eine Axialkolbenmaschine im Axialschnitt, deren Kolben an deren Hubkörper über Kugelköpfe gemäß dem bevorzugten Ausführungsbeispiel abgestützt sind,
    Fig. 2
    den in Fig. 1 mit A bezeichneten Ausschnitt im vergrößerten Maßstab,
    Fig. 3
    eine schematische Darstellung des Kolbens nach Fig. 2 mit den im Betrieb der Axialkolbenmaschine an ihn wirkenden Kräften, und
    Fig. 4
    einen Schnitt entlang der Linie IV-IV in Fig. 3.
  • Die in Figur 1 dargestellte Axialkolbenmaschine ist in Schrägachsenbauweise mit verstellbarem Verdrängungsvolumen ausgeführt und umfaßt in bekannter Weise als wesentliche Bauteile ein hohlzylindrisches Gehäuse 10 mit einem stirnseitig offenen Ende, eine dieses offene Ende verschließende Gehäuse-Abschlußplatte 11, eine Triebwelle 12 mit einer einteilig angeformten Triebscheibe 13, einen Steuerkörper 14 mit zugeordneter Verstelleinrichtung 15 sowie eine Zylindertrommel 16.
  • Die Triebwelle 12 durchsetzt eine in der der Gehäuse-Abschlußplatte 11 gegenüberliegenden Gehäuse-Stirnwand 17 ausgebildete Durchgangsbohrung und ist in dieser drehbar gelagert. Die Triebscheibe 13 ist im Gehäuse-Innenraum angeordnet und über ihre Ringfläche an der Innenfläche der Gehäuse-Stirnwand 17 drehbar abgestützt.
  • Der Steuerkörper 14 ist eine sog. Steuerlinse von bikonvexer Form, die in einem kreisbahnförmigen Stütz- und Schwenklager 18 in der Gehäuse-Abschlußplatte 11 verschiebbar angeordnet und innerhalb dieses Lagers mittels der Verstelleinrichtung 15 in jeder gewünschten Stellung fixiert werden kann. Im Steuerkörper 14 sind in bekannter Weise zwei einander gegenüberliegende, nicht gezeigte Steuernieren ausgebildet, die mit dem Druckstutzen und dem Saugstutzen (ebenfalls nicht gezeigt) der Schrägachsenmaschine verbunden sind.
  • Die Verstelleinrichtung 15 ist zur Veränderung des Verdrängungsvolumens der Schrägachsenmaschine vorgesehen und umfaßt einen Zapfen 19 und eine Stellstange 20, die in einer zur Triebwelle 12 senkrechten Bohrung 21 in der Gehäuse-Abschlußplatte 11 verschiebbar geführt ist. Der Zapfen 19 ist an der Stellstange 20 befestigt und greift in eine Bohrung 22 im Steuerkörper 14 ein.
  • Die Zylindertrommel 16 ist zwischen der Triebscheibe 13 und dem Steuerkörper 14 angeordnet und stützt sich zwecks selbstzentrierender Lagerung mit einer konkaven Lagerfläche an der dieser zugewandten, konvexen Steuerfläche des Steuerkörpers 14 drehbar ab.
  • In der Zylindertrommel 16 sind in bekannter Weise axial verlaufende und gleichmäßig auf einem Teilkreis verteilte Zylinderbohrungen 23 ausgebildet, die über Mündungskanäle 24 an der konkaven Lagerfläche der Zylindertrommel 16 ausmünden und bei Drehung der letzteren die Zylinderbohrungen 23 über die Steuernieren mit dem Druck- und Saugstutzen verbinden. In den Zylinderbohrungen 23 sind Kolben 25 hin- und herbewegbar angeordnet. Ihre freien Enden sind über Kugelgelenke drehmitnehmbar mit der Triebscheibe 13 verbunden. Jedes Kugelgelenk besteht aus einem am freien Ende des zugeordneten Kolbens 25 ausgebildeten Kugelkopf K und einem in der Triebscheibe 13 ausgebildeten Hohlkugelabschnitt KA (vgl. Fig. 2), in dem der Kugelkopf K drehbeweglich aufgenommen ist. Die Hohlkugelabschnitte KA sind auf einem Teilkreis angeordnet, der geringfügig kleiner oder größer als der Teilkreis der Zylinderräume 23 ist.
  • In einer zentralen Stufenbohrung in der Zylindertrommel 16 sitzt eine Druckfeder 26, die einen ebenfalls mittels eines Kugelgelenkes in der Triebscheibe 13 gelagerten, in die Stufenbohrung hineinragenden und die Zylindertrommel 16 führenden Mittelzapfen 27 an der Zylindertrommel 16 abstützt und diese somit dann, wenn keine Öldruckkräfte auftreten, in Anlage an den Steuerkörper 14 hält.
  • Die Kolben 25 entsprechen im wesentlichen den in der DE-AS 2 358 870 beschriebenen Kolben und sind deshalb hier nicht näher beschrieben. Es sei lediglich erwähnt, daß jeder Kolben 25 einen in einer Nut aufgenommenen Kolbenring 28 aufweist, an den sich in Richtung zum Kolbenboden ein Abschnitt in Form einer Kugelzone anschließt. Die Kolbenabschnitte zwischen dieser Kugelzone und dem Kolbenboden und oberhalb des Kolbenringes 28 sind kegelstumpfförmig ausgebildet.
  • Jeder Hohlkugelabschnitt KA ist von einer Kreisöffnung 29 begrenzt, die in einer zur Stirnfläche 30 der Triebscheibe 13 parallelen und gegenüber dieser um ein geringes Maß zurückgesetzten Ebene E1 liegt. Eine Kegelfläche 31 verbindet den Hohlkugelabschnitt KA in Höhe der Kreisöffnung 29 mit der Stirnfläche 30 der Triebscheibe 13. Der Durchmesser der Kreisöffnung 29 ist kleiner als derjenige des Hohlkugelabschnitts KA und des in diesem aufgenommenen Kugelkopfes K.
  • Um in den Hohlkugelabschnitt KA eingesetzt und aus diesem entfernt werden zu können, ist der Kugelkopf K mit einer Zylinderfläche 32 ausgebildet, die symmetrisch beidseits einer Kugelkopf-Äquatorlinie Q verläuft, die mit der Kolbenachse LK einen von 90° abweichenden Winkel β einschließt und einen um ein geringes Maß kleineren Durchmesser als die Kreisöffnung 29 aufweist. Die Montage und Demontage des Kugelkopfes K kann nur dann erfolgen, wenn der Kolben 25 in eine solche Schrägstellung gebracht ist, daß die Zylinderfläche 32 bzw. die Äquatorlinie Q parallel zur Ebene E1 der Kreisöffnung 29 liegt. Nach Einsetzen des Kugelkopfes K wird der Kolben 25 im Uhrzeigersinn um den Winkel γ bis in die in Fig. 2 gezeigte Schrägstellung verschwenkt, bei der ein Entfernen des Kugelkopfes K aus dem Hohlkugelabschnitt KA nicht mehr möglich ist. Diese Schrägstellung entspricht einem von der Triebwellenachse LT und der Zylindertrommelachse LZ eingeschlossenen Schwenkwinkel der Axialkolbenmaschine von 0° und damit einem Null-Verdrängungsvolumen. Durch weiteres Verschwenken des Kolbens 25 im Uhrzeigersinn um den Winkel α wird die Axialkolbenmaschine auf den in Fig. 3 gezeigten maximalen Schwenkwinkel, d.h. auf maximales Verdrängungsvolumen, eingestellt.
  • Wie in Fig. 2 deutlich zu erkennen ist, begrenzen im Inneren der Hohlkugelabschnitte KA die Zylinderflächen 32 am jeweiligen Kugelkopf K je eine Kugelkalotte KK, in der eine Entlastungsnut 33 in einer zur Kolbenachse LK senkrechten Ebene E2 verläuft und zwei offene Enden aufweist, mit denen sie in der Zylinderfläche 32 bzw. in dem von dieser und der konkaven Fläche des Hohlkugelabschnitts KA definierten Hohlraum 34 einmündet. Der Einfachheit halber ist in Fig. 2 der Lagerspalt h nicht eingezeichnet.
  • Der dem Schwenkwinkelbereich der Axialkolbenmaschine entsprechende Bereich der konkaven Fläche des Hohlkugelabschnitts KA stellt eine Lagerfläche 35 dar, an der sich der Kugelkopf K mit der von der Entlastungsnut 33 auf der Kugelkalotte KK abgegrenzten Lagergegenfläche 36 unter hydrostatischer Entlastung durch ein Druckfeld abstützt.
  • Zwecks Aufbau dieses Druckfeldes ist jeder Kolben 25 mit einer lediglich in Figur 3 und 4 dargestellten Durchgangsbohrung 37 versehen, die an einer in der Lagergegenfläche 36 ausgebildeten Vertiefung bzw. Abflachung 38, einer sog. Drucktasche, ausmündet und diese bei Betrieb der Axialkolbenmaschine mit Drucköl aus dem Arbeitsraum 39 der Zylinderbohrung 23 versorgt. Ein Teil dieses Drucköls strömt über durchgehende Bohrungen 40 in der Triebscheibe 13 Drucktaschen 41 in der Triebscheiben-Ringfläche zu. Mit Hilfe dieser Drucktaschen 41 wird ebenfalls ein Druckfeld aufgebaut, das die Triebscheibe 13 an der Gehäuse-Stirnwand 17 drehbar abstützt.
  • Der Begriff "hydrostatische Entlastung" umfaßt im Sinne der Erfindung auch das sog. "hydrostatische Lager", bei dem der sog. Zulaufdruck in der Drucktasche 38 aufgrund der Verwendung einer Drossel in der Durchgangsbohrung 37 kleiner als der sog. Versorgungsdruck ist, mit dem das Drucköl aus dem Arbeitsraum 39 zuströmt. Im Falle der hydrostatischen Entlastung sind beide Drücke im wesentlichen gleich. Nachstehend ist die Funktion der Entlastungsnut am Beispiel der hydrostatischen Lagerung beschrieben.
  • Bei Betrieb der Schrägachsenmaschine, der in bekannter Weise erfolgt und deshalb hier nicht weiter beschrieben ist, strömt das über die Durchgangsbohrung 37 mit nicht gezeigter Drossel der Drucktasche 38 zugeführte Drucköl mit dem Zulaufdruck über den Lagerspalt h zwischen der Lagergegenfläche 36 und dem entsprechenden Bereich der Lagerfläche 35 zum einen direkt und zum anderen über die Entlastungsnut 33 in den Hohlraum 34 zwischen der Zylinderfläche 32 und der konkaven Fläche des Hohlkugelabschnitts KA und von diesem zum Leckölraum hin ab. Der Ölfilm im Spalt h bildet ein Druckfeld, das die Kolbenkraft FK aufnimmt und somit eine metallische Berührung zwischen dem Kugelkopf K und der konkaven Fläche des Hohlkugelabschnitts KA verhindert. Wenn die Kolbenkraft FK zunimmt, dann wird der Lagerspalt h kleiner, der Ölstrom und der Druckabfall an der Drossel sinken, so daß der Zulaufdruck steigt und die erhöhte Belastung aufnehmen kann. Umgekehrt sinkt bei einer Entlastung der Zulaufdruck mit größer werdendem Lagerspalt.
  • Wie in Figur 3 deutlich zu erkennen, ist der Flächenschwerpunkt S des Druckfeldes bzw. der Lagergegenfläche 36 und damit der Angriffspunkt der Kolbenkraft FN am Kugelkopf K mit geringerem Abstand x als im Stand der Technik (vgl. Fig. 5) von der Kolbenachse LK angeordnet, und zwar im Bereich des Durchdringungspunktes der Kolbenachse LK durch die Lagergegenfläche 36. In Fig. 4 zeigt die Kreislinie mit dem Radius x die Lage des Flächenschwerpunktes S bei sich um seine Kolbenachse LK drehenden Kolben 25. Wie in Fig. 3 dargestellt, ist die Radialkraft FR im Vergleich zum Stand der Technik entsprechend dem geringeren Abstand x kleiner, und zwar um einen solchen Wert, daß keine Verschiebung des Kugelkopfes K mehr stattfinden kann.
  • Die Stirnfläche 30 der Triebscheibe 13 ist in Form einer Kegelfläche mit einem Neigungswinkel δ gegenüber einer zur Triebwellenachse LT senkrechten Ebene E3 ausgewählt. Durch den Scheitelpunkt dieser Kegelfläche 30 verläuft die Triebwellenachse LT. Der Winkel δ entspricht dem Auslenkwinkel der kolben, der durch die Ellipsenbildung während des Umlaufs der Triebwelle mit der schräg mitlaufenden Zylindertrommel entsteht. Durch diese Anordnung ist eine optimale Ausnutzung der Rückzugsfunktion der Hohlkugelabschnitte infolge ihrer die Kugelköpfe mit einem größeren Winkel als 180° umschließenden Lagerflächen gewährleistet, da der Kolbenversatz während des Umlaufs bei maximalem Schwenkwinkel nahezu symmetrisch ist.

Claims (4)

  1. Kugelkopf (K), der einen Kolben einer hydrostatischen Axial- oder Radialkolbenmaschine unter hydrostatischer Entlastung an deren Hubkörper (13) mittelbar oder unmittelbar abstützt (25), wobei der Kugelkopf in einem von einer Kreisöffnung (29) begrenzten Hohlkugelabschnitt (KA) vorgesehen und mit einer Zylinderfläche (32) ausgebildet ist, die beidseits einer mit der Kolbenachse (LK) einen von 90° abweichenden Winkel (β) einschließenden Äquatorlinie (Q) verläuft, einen kleineren Durchmesser als die den Hohlkugelabschnitt begrenzende Kreisöffnung aufweist und eine Kugelkalotte (KK) am Kugelkopf zur Lagerung in einer Lagerfläche (35) des Hohlkugelabschnitts begrenzt,
    dadurch gekennzeichnet,
    daß in der Kugelkalotte (KK) oder in der Lagerfläche (35) eine an ihren beiden Enden offene Entlastungsnut (33) ausgebildet, ist, die mit diesen offenen Enden immer in den von der Zylinderfläche (32) und der Lagerfläche (35) begrenzten Hohlraum (34) ausmündet und in der Kugelkalotte (KK) eine unter hydrostatischer Entlastung an der Lagerfläche (35) abgestützte Gegenlagerfläche (36) abgrenzt, deren Flächenschwerpunkt (S) stets im Bereich der Kolbenachse (LK) liegt.
  2. Kugelkopf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Entlastungsnut (33) in einer zur Kolbenachse (LK) senkrechten Ebene (E2) verläuft.
  3. Kugelkopf nach Anspruch 1,
    dadurch gekennzeichnet,
    daß die Entlastungsnut (33) in einer zur Ebene (E2) senkrechten Ebene verläuft.
  4. Kugelkopf nach Anspruch 1;
    dadurch gekennzeichnet,
    daß die Entlastungsnut (33) in einer Ebene verläuft, die senkrecht auf der Ebene steht, in der die Äquatorlinie (Q) liegt.
EP95112878A 1994-08-16 1995-08-16 Kugelkopf zur Abstützung eines Kolbens einer hydrostatischen Axial- oder radialkolbenmaschine an deren Hubkörper Expired - Lifetime EP0697520B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4429053A DE4429053C1 (de) 1994-08-16 1994-08-16 Kugelkopf zur Abstützung eines Kolbens einer hydrostatischen Axial- oder Radialkolbenmaschine an deren Hubkörper
DE4429053 1994-08-16

Publications (2)

Publication Number Publication Date
EP0697520A1 EP0697520A1 (de) 1996-02-21
EP0697520B1 true EP0697520B1 (de) 1997-10-08

Family

ID=6525833

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95112878A Expired - Lifetime EP0697520B1 (de) 1994-08-16 1995-08-16 Kugelkopf zur Abstützung eines Kolbens einer hydrostatischen Axial- oder radialkolbenmaschine an deren Hubkörper

Country Status (2)

Country Link
EP (1) EP0697520B1 (de)
DE (2) DE4429053C1 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104951A1 (de) 2014-04-08 2015-10-08 Linde Hydraulics Gmbh & Co. Kg Axialkolbenmaschine in Schrägachsenbauweise

Families Citing this family (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102006019884B4 (de) * 2006-04-28 2008-04-17 Sauer-Danfoss Gmbh & Co Ohg Hydrostatische Axialkolbenmaschine in Schrägachsenbauweise
DE102009058332B4 (de) * 2009-12-15 2019-11-28 Robert Bosch Gmbh Axialkolbenmaschine
US9212656B2 (en) * 2011-02-21 2015-12-15 Honeywell International Inc. Piston-to-shoe interface lubrication method
DE102012222172A1 (de) * 2012-12-04 2014-06-05 Robert Bosch Gmbh Axialkolbenmaschine mit kegelförmigem Kolben
AU2014270792B2 (en) * 2013-05-22 2017-08-31 Hydac Drive Center Gmbh Axial piston pump having a swash-plate type construction
CN104074738B (zh) * 2014-06-30 2017-03-22 徐州徐工液压件有限公司 一种柱塞泵、柱塞马达及其免收口正包柱塞滑靴组件
EP3168469B1 (de) 2015-11-11 2019-06-05 Linde Hydraulics GmbH & Co. KG Hydrostatische axialkolbenmaschine in schrägachsenbauweise
DE102016100920A1 (de) 2015-11-11 2017-05-11 Linde Hydraulics Gmbh & Co. Kg Hydrostatische Axialkolbenmaschine in Schrägachsenbauweise
DE102018218547A1 (de) 2018-10-30 2020-04-30 Robert Bosch Gmbh Hydrostatische Axialkolbenmaschine
IT201900001613A1 (it) * 2019-02-05 2020-08-05 Dana Motion Sys Italia Srl Pistone per macchine idrauliche a pistoni assiali.

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2638850A (en) * 1952-01-24 1953-05-19 Ferris Walter Piston assembly for axial type hydrodynamic machines
DE2307641A1 (de) * 1973-02-16 1974-08-22 Bosch Gmbh Robert Kugelgelenk
DE2358870B2 (de) * 1973-11-26 1980-02-21 Hydromatik Gmbh, 7900 Ulm Axialkolbenmaschine mit einstuckigem Kolben
US5114261A (en) * 1989-07-31 1992-05-19 Honda Giken Kogyo Kabushiki Kaisha Swashplate type hydraulic device having a ball joint connection
DE4214765A1 (de) * 1992-05-04 1993-11-11 Sachsenhydraulik Gmbh Kolben-Gleitschuh Verbindung für hydro-statische Maschinen

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE102014104951A1 (de) 2014-04-08 2015-10-08 Linde Hydraulics Gmbh & Co. Kg Axialkolbenmaschine in Schrägachsenbauweise
EP2940299A2 (de) 2014-04-08 2015-11-04 Linde Hydraulics GmbH & Co. KG Axialkolbenmaschine in schrägachsenbauweise

Also Published As

Publication number Publication date
DE59500767D1 (de) 1997-11-13
DE4429053C1 (de) 1995-11-02
EP0697520A1 (de) 1996-02-21

Similar Documents

Publication Publication Date Title
EP0044070B1 (de) Axialkolbenpumpe für zwei Förderströme
EP0941403B1 (de) Axialkolbenmaschine mit lagerspülung
DE4024319C2 (de) Vorrichtung zur Kupplung eines an einer Taumelscheibe drehbar abgestützten Ringkörpers mit Kolben in einem drehbaren Zylinderblock
DE3942189C1 (de)
EP0697520B1 (de) Kugelkopf zur Abstützung eines Kolbens einer hydrostatischen Axial- oder radialkolbenmaschine an deren Hubkörper
DE2448594C3 (de) Axialkolbenmaschine
DE19645580C1 (de) Axialkolbenmaschine mit Dämpfungselement für die Schräg- oder Taumelscheibe
DE3519783A1 (de) Axialkolbenmaschine
EP0728945B1 (de) Axiakolbenmaschine
DE2029087C3 (de) Hydrostatisches Längs-Gleitlager für den Triebflansch einer Druckflüsslgkeits-Schwenktrommel-Axialkolbenmaschine
EP0675286B1 (de) Axialkolbenmaschine mit hydrostatischer Enlastung ihrer gleitflächengelagerten Steuerlinse
DE19527649B4 (de) Axialkolbenmaschine
EP1700034B1 (de) Axialkolbenmaschine zum unabhä ngigen fördern in mehrere hydraulische kreisläufe
DE2641158A1 (de) Axialkolbenpumpe
EP0465796B1 (de) Axialkolbenmaschine in Schrägachsen-Bauweise
EP0763657B1 (de) Axialkolbenmaschine mit spannungsreduzierten Gleitschuhen
EP1041279B1 (de) Steuerkörper für eine Axialkolbenmaschine
DE102020211284A1 (de) Hydrostatische Axialkolbenmaschine in Schrägscheibenbauweise
DE19643389C1 (de) Axialkolbenmaschine mit variabler Fixierung der Steuerscheibe
DE60110314T2 (de) Axialkolbenpumpe
DE957804C (de) Schiefscheibentriebwerk
DE1653418B2 (de) Schrägscheibenlagerung für Axialkolbenmaschinen
DE4030545C2 (de) Verstellbare Axialkolbenmaschine in Schrägscheibenbauweise
EP1078164A1 (de) Axialkolbenpumpe
DE1728003A1 (de) Hydraulik-Pumpe oder -Motor,insbesondere fuer hydrostatische Antriebe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT SE

17P Request for examination filed

Effective date: 19960315

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19970121

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT SE

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
REF Corresponds to:

Ref document number: 59500767

Country of ref document: DE

Date of ref document: 19971113

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980108

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20070822

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20070823

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20070815

Year of fee payment: 13

Ref country code: IT

Payment date: 20070827

Year of fee payment: 13

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20070812

Year of fee payment: 13

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20080816

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080816

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080901

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090303

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080816

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20080817