EP0693169B1 - Procede pour la combustion de matieres solides au moyen d'un dispositif a grilles de combustion mobiles - Google Patents
Procede pour la combustion de matieres solides au moyen d'un dispositif a grilles de combustion mobiles Download PDFInfo
- Publication number
- EP0693169B1 EP0693169B1 EP95906873A EP95906873A EP0693169B1 EP 0693169 B1 EP0693169 B1 EP 0693169B1 EP 95906873 A EP95906873 A EP 95906873A EP 95906873 A EP95906873 A EP 95906873A EP 0693169 B1 EP0693169 B1 EP 0693169B1
- Authority
- EP
- European Patent Office
- Prior art keywords
- grate
- primary air
- combustion
- control
- cooling water
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Lifetime
Links
- 238000000034 method Methods 0.000 title claims abstract description 35
- 230000008569 process Effects 0.000 title claims abstract description 19
- 239000007787 solid Substances 0.000 title claims abstract description 12
- 238000002485 combustion reaction Methods 0.000 claims abstract description 84
- 239000000498 cooling water Substances 0.000 claims description 41
- 239000003546 flue gas Substances 0.000 claims description 35
- UGFAIRIUMAVXCW-UHFFFAOYSA-N Carbon monoxide Chemical compound [O+]#[C-] UGFAIRIUMAVXCW-UHFFFAOYSA-N 0.000 claims description 33
- 239000000463 material Substances 0.000 claims description 29
- 238000001816 cooling Methods 0.000 claims description 25
- 229910052760 oxygen Inorganic materials 0.000 claims description 15
- QVGXLLKOCUKJST-UHFFFAOYSA-N atomic oxygen Chemical compound [O] QVGXLLKOCUKJST-UHFFFAOYSA-N 0.000 claims description 14
- 238000009826 distribution Methods 0.000 claims description 14
- 239000001301 oxygen Substances 0.000 claims description 14
- 230000002829 reductive effect Effects 0.000 claims description 13
- 239000010813 municipal solid waste Substances 0.000 claims description 12
- 230000033228 biological regulation Effects 0.000 claims description 11
- 230000009467 reduction Effects 0.000 claims description 7
- MYMOFIZGZYHOMD-UHFFFAOYSA-N Dioxygen Chemical compound O=O MYMOFIZGZYHOMD-UHFFFAOYSA-N 0.000 claims description 6
- 239000000110 cooling liquid Substances 0.000 claims description 6
- 239000007788 liquid Substances 0.000 claims description 5
- 230000001105 regulatory effect Effects 0.000 claims description 4
- 230000001276 controlling effect Effects 0.000 claims description 3
- 238000001035 drying Methods 0.000 claims description 3
- 238000001514 detection method Methods 0.000 claims 1
- 238000002347 injection Methods 0.000 claims 1
- 239000007924 injection Substances 0.000 claims 1
- 238000009434 installation Methods 0.000 claims 1
- 239000003570 air Substances 0.000 description 105
- 238000010304 firing Methods 0.000 description 17
- JEIPFZHSYJVQDO-UHFFFAOYSA-N iron(III) oxide Inorganic materials O=[Fe]O[Fe]=O JEIPFZHSYJVQDO-UHFFFAOYSA-N 0.000 description 15
- 239000002826 coolant Substances 0.000 description 14
- 239000007789 gas Substances 0.000 description 10
- 238000010586 diagram Methods 0.000 description 9
- 238000001228 spectrum Methods 0.000 description 8
- 238000010438 heat treatment Methods 0.000 description 7
- 206010012735 Diarrhoea Diseases 0.000 description 6
- 229910000831 Steel Inorganic materials 0.000 description 6
- 239000000428 dust Substances 0.000 description 6
- 239000010959 steel Substances 0.000 description 6
- 230000032258 transport Effects 0.000 description 5
- IJGRMHOSHXDMSA-UHFFFAOYSA-N Atomic nitrogen Chemical compound N#N IJGRMHOSHXDMSA-UHFFFAOYSA-N 0.000 description 4
- 239000000523 sample Substances 0.000 description 4
- 238000009423 ventilation Methods 0.000 description 4
- 238000004056 waste incineration Methods 0.000 description 4
- XLYOFNOQVPJJNP-UHFFFAOYSA-N water Substances O XLYOFNOQVPJJNP-UHFFFAOYSA-N 0.000 description 4
- 229910000669 Chrome steel Inorganic materials 0.000 description 3
- 206010053615 Thermal burn Diseases 0.000 description 3
- 239000002956 ash Substances 0.000 description 3
- 238000010276 construction Methods 0.000 description 3
- 230000007423 decrease Effects 0.000 description 3
- 238000013461 design Methods 0.000 description 3
- 230000000694 effects Effects 0.000 description 3
- 230000003628 erosive effect Effects 0.000 description 3
- 239000010881 fly ash Substances 0.000 description 3
- 239000010720 hydraulic oil Substances 0.000 description 3
- 238000005259 measurement Methods 0.000 description 3
- 239000000126 substance Substances 0.000 description 3
- CURLTUGMZLYLDI-UHFFFAOYSA-N Carbon dioxide Chemical compound O=C=O CURLTUGMZLYLDI-UHFFFAOYSA-N 0.000 description 2
- 238000013459 approach Methods 0.000 description 2
- 229910002091 carbon monoxide Inorganic materials 0.000 description 2
- 210000000078 claw Anatomy 0.000 description 2
- 230000003247 decreasing effect Effects 0.000 description 2
- 210000003027 ear inner Anatomy 0.000 description 2
- 229910052757 nitrogen Inorganic materials 0.000 description 2
- 239000002245 particle Substances 0.000 description 2
- 238000005192 partition Methods 0.000 description 2
- 239000002893 slag Substances 0.000 description 2
- 238000010521 absorption reaction Methods 0.000 description 1
- 230000009471 action Effects 0.000 description 1
- 238000013019 agitation Methods 0.000 description 1
- 239000012080 ambient air Substances 0.000 description 1
- 230000009286 beneficial effect Effects 0.000 description 1
- 230000008901 benefit Effects 0.000 description 1
- 238000007664 blowing Methods 0.000 description 1
- 229910002092 carbon dioxide Inorganic materials 0.000 description 1
- 239000001569 carbon dioxide Substances 0.000 description 1
- 230000008859 change Effects 0.000 description 1
- 238000004140 cleaning Methods 0.000 description 1
- 239000003245 coal Substances 0.000 description 1
- 238000011161 development Methods 0.000 description 1
- 229910001882 dioxygen Inorganic materials 0.000 description 1
- 235000013399 edible fruits Nutrition 0.000 description 1
- 238000011156 evaluation Methods 0.000 description 1
- 230000009969 flowable effect Effects 0.000 description 1
- 239000012530 fluid Substances 0.000 description 1
- 238000011010 flushing procedure Methods 0.000 description 1
- 239000002803 fossil fuel Substances 0.000 description 1
- 230000005484 gravity Effects 0.000 description 1
- 239000003077 lignite Substances 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 229910052751 metal Inorganic materials 0.000 description 1
- 239000002184 metal Substances 0.000 description 1
- 239000003921 oil Substances 0.000 description 1
- 239000010815 organic waste Substances 0.000 description 1
- 239000000843 powder Substances 0.000 description 1
- 230000001007 puffing effect Effects 0.000 description 1
- 230000008707 rearrangement Effects 0.000 description 1
- 230000000717 retained effect Effects 0.000 description 1
- 238000005488 sandblasting Methods 0.000 description 1
- 238000007789 sealing Methods 0.000 description 1
- 230000009291 secondary effect Effects 0.000 description 1
- 238000000926 separation method Methods 0.000 description 1
- 238000005496 tempering Methods 0.000 description 1
- 230000036962 time dependent Effects 0.000 description 1
- 238000002604 ultrasonography Methods 0.000 description 1
- 235000013311 vegetables Nutrition 0.000 description 1
- 238000010792 warming Methods 0.000 description 1
- 238000005406 washing Methods 0.000 description 1
- 239000002699 waste material Substances 0.000 description 1
Images
Classifications
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G5/00—Incineration of waste; Incinerator constructions; Details, accessories or control therefor
- F23G5/50—Control or safety arrangements
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23H—GRATES; CLEANING OR RAKING GRATES
- F23H3/00—Grates with hollow bars
- F23H3/02—Grates with hollow bars internally cooled
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2207/00—Control
- F23G2207/10—Arrangement of sensing devices
- F23G2207/101—Arrangement of sensing devices for temperature
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2207/00—Control
- F23G2207/10—Arrangement of sensing devices
- F23G2207/103—Arrangement of sensing devices for oxygen
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2207/00—Control
- F23G2207/50—Cooling fluid supply
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23G—CREMATION FURNACES; CONSUMING WASTE PRODUCTS BY COMBUSTION
- F23G2900/00—Special features of, or arrangements for incinerators
- F23G2900/55—Controlling; Monitoring or measuring
- F23G2900/55009—Controlling stoker grate speed or vibrations for waste movement
-
- F—MECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
- F23—COMBUSTION APPARATUS; COMBUSTION PROCESSES
- F23H—GRATES; CLEANING OR RAKING GRATES
- F23H2900/00—Special features of combustion grates
- F23H2900/03021—Liquid cooled grates
Definitions
- the present invention relates to a method for burning of solids on a thrust combustion grate system.
- the solids can be any combustible imaginable Trade solids, for example fossil fuels like Brown coal, hard coal and the like material.
- the process is suitable for rubbish or rubbish in To burn large plants, the combustion thanks to this Process is optimized in many ways.
- this method is a novel type of a push-grate system necessary.
- DE-U 93 09 198 becomes a grate plate for the production of such Thrust combustion grate system for burning rubbish disclosed.
- This thrust combustion grate system is here first presented, afterwards the one operated with him To explain the procedure.
- the grate levels from a variety of side by side Rust bars are made of cast chrome steel such grate level in the new type of push-combustion grate from a hollow grate plate from, for example, two welded sheet steel shells.
- the individual grate plates are through one or more fluid circuits can be flowed through by a suitable medium and thus tempered. With this measure it is possible to rust through Keep cooling at a low temperature, or keep it at Also need to preheat. Preferably, the medium for Cooling or water used for heating.
- each such movable grate level is independent individually movable from all other movable grate levels, with regard to the stroke direction, the stroke and the lifting speed.
- the third essential difference to conventional grates made of chrome steel grate bars new grate type made of hollow grate plates with a variety of supply nozzles for the primary air supply to the fire be. This new grate construction opened for the Control and regulation of combustion new opportunities.
- the object of the present invention to provide a method for burning solids on such a thrust combustion grate system, which can optimize the combustion processes in many ways.
- the process includes a number of control measures that ensure that the combustion chamber spectrum can continue to approach an ideal spectrum and be kept close to it during operation, so that a further optimized burnout of all combustion residues is achieved, which increases the boiler efficiency increases and the boiler erosion can be reduced, and as a result also the flue gas values, in particular the CO and the NO x content, can be further reduced and the measures for the downstream flue gas treatment can thus be made less complex.
- the invention solves the problem with a method for burning of solids on a thrust combustion grate system of several, each separately from a coolant flowed through and half individually movable grate levels, which is characterized by the features according to patent claim 1.
- FIG 1 is a single grate plate 1 of a combustion grate with circuit for cooling or in general for the temperature control shown in perspective.
- This version of a grate plate 1 consists of two chrome steel sheet shells, namely from a shell for the top of the grate plate 2 and a bowl for the bottom of the grate plate 3.
- the two metal shells 2, 3 are together welded.
- their edges are advantageously shaped that the two shells 2, 3 are slipped into each other with their edges can be.
- the two end faces of the resulting Hollow profiles are tightly welded with end plates.
- the rear end plate is 4th used while the front end 5 is still free and insight into the interior of the hollow profile.
- connection sockets on the underside of the grate plate 3 6.7 for connecting a supply and discharge line for a medium to be flowed through the grate plate 1.
- This medium is basically used to temper the grate plate 1 and must always be a flowable medium, so a gas or a liquid. So it is possible the grate plate 1 flow through with a coolant, for example allow.
- the coolant can be water, for example or oil or another liquid suitable for cooling be.
- a liquid or a gas can also can be used to heat the grate plate 1.
- openings 8,9 On the top of the grate plate 2 and on the bottom of the grate plate 3 there are openings 8,9, the openings 8 on the upper side 2 being smaller than the openings 9 on the underside 3.
- the on the grate plate top 2 and the bottom of the grate plate 3 opposite Openings 8.9 are with tubular elements 21, for example conical tubes 21 with a round, elliptical or slit-shaped diameter, close together connected, each of these elements 21 in the grate plate top 2 and and the underside of the grate plate 3 are welded tight is.
- the resulting funnel-shaped bushings through the grate plate 1 allow by inflow with Air from the grate bottom 3 a targeted Ventilation of the firing material lying on the grate.
- the bottom 3 of the grate plate 1 feed pipes or hoses connected for the primary air to be blown.
- This one shown grate plate 1 has such a cross section that on the top 2 of the plate 1 has a largely flat surface 2 is formed, on which the firing material is determined to lie is.
- the lower side 3 has bends, so to a certain extent Feet 10,11 are formed.
- one foot 10 which here contains a channel 12, runs inside this cannula 12 a round rod 13 on which the grate plate 1 rests here.
- the other foot 11 is flat and below determined on the neighboring grate plate, which of the same Form is to lie on.
- a grate plate is partially cut open shown.
- This grate plate is by means of a partition bulkhead 50 divided into two chambers 51, 52. It is this Grate plate around one in the first part of a combustion grate is installed in which not with primary air supply is incorporated, which is why the plate shown here differs contains no tubular elements to that in FIG and therefore has no openings.
- Combustion grates usually consist of three to five different ones Zones, each consisting of a number of several grate plates exist, with primary air only from the second zone is fed.
- baffles inside the two chambers 51, 52 53 installed, which is tight with the grate plate below are welded, but an air gap on the top from a few tenths of a millimeter to the inside of the top Leave the grate plate open so that it can pass through these air gaps Gas exchange within the baffle 53 formed Labyrinths can take place.
- a cooling medium is pumped into the grate plate chamber 52, which then as indicated by the arrows by that of the Baffles 53 formed labyrinth flows and finally flows out of the chamber through the nozzle 7. Because the cooling medium a larger as it flows through Finding area for heat absorption will be a better one Heat exchange achieved. Water, for example, can be used as the cooling medium be used.
- each plank 54 consists of two superimposed square tubes 55, 56, the intermediate wall 57 thus formed one end is shortened so that there is a connection between the inside of the two square tubes 55,56 is formed. From A connection 58 becomes cooling medium through the plank 54 pumped, which then through the two square tubes 55.56 flows as indicated by the arrows, and finally flows out of the plank 54 through the nozzle 59.
- a shielding plate not shown here, is arranged be the plank 54 on the combustion plate side borders and as a wear element because of the between Grate plate and plank used friction.
- the flow is separately for each cooling cavity of a flow meter in the individual back rings measured and by means of a valve for each individual return controlled. This allows the cooling medium to be finely distributed. When this valve is completely closed, the flow is interrupted, when it is completely open, you have maximum Flow for the medium supplied. Between these two Extreme settings can be varied continuously.
- the valves in the individual returns can be done using servo motors be remotely controlled. This is how the coolant flow can be regulate individually for each individual cooling chamber. Of the Coolant inflow can be done with a separate dosing unit being controlled.
- the coolant supplied also passed through a heating system to the grate for starting up the system to the desired operating temperature preheat.
- FIG. 3 shows a supply siphon 30 as it is below the Combustion grate mounted to each primary air supply line can be. Because through the small openings in the grate plates inevitably drop some rusty diarrhea can, this rust diarrhea falls in the form of fine powder Slag in the primary air supply lines. It it is therefore necessary to provide such siphons 30 in which the rust diarrhea is caught, and with what at the same time ensures the unimpeded continuous air supply becomes.
- a siphon is, for example, similar to that below Form of an Erlenmeyer flask, the bottom of the Siphons is closed by a spring-loaded flap 31.
- the flap 31 is pivotable about a hinge 32 and one Spring 33 loads the flap 31 with its one leg 34 from below and with the other leg 35 the side wall of the Siphons.
- An actuating lever firmly connected to the flap 31 36 protrudes from hinge 32 and is located in Area of action of a solenoid 37.
- This electromagnet can when its coil 38 is energized will pull the operating lever 36 to its core 39, whereby the flap 31 is opened and the accumulated Rust diarrhea 40 falls into an underlying trough.
- the primary air supply line leads in the upper region of the siphon 30 41 into the interior of the siphon 30.
- This supply line leads sloping down into the siphon, so under no circumstances Rust diarrhea can fall into this supply line, because it has to not necessarily constantly flowed through by a strong air flow be.
- the neck 42 of the siphon is heat-resistant flexible line 43 with the lower mouth of a single conical tube connected by a grate plate 1 leads.
- the primary air supply is via individual hoses from the supply duct via siphons as already described for FIG. 3 to individual blown through the rust-penetrating ventilation tube.
- These hoses are also equipped with controllable valves, for example with solenoid valves. This execution allows a very fine and individual control of the primary air for a large number of individual small areas the rust. This makes it possible to control the fire very finely and to drive a practically geometric fire.
- FIG 4 is the drive of a single movable grate plate shown in more detail.
- the movable grate plate 16 lies laterally on two ball-bearing steel rollers 23 each attached to the side planks of the grate structure are.
- a stationary grate plate 14 with its front edge on the is shown here in dashed lines.
- This stationary grate plate 14 is at its rear end by means of claws 26 held a steel tube 22.
- This steel tube 22 is between the two planks of the rust track welded in.
- the moveable Grate plate 16 now has a semi-cylindrical on its underside Recess 68 on, which is about half in the Grate plate 16 extends into it.
- a bolt 69 which is held in a sleeve can, which penetrates the grate plate there.
- the piston rod 70 of a hydraulic cylinder-piston unit 71 attached, which inside a rinse cylinder 72nd is attached, which in turn with its outside in the Recess 68 fits and is fixed therein.
- the back 73 of the rinse cylinder 72 is via a rod 74 and a pipe clamp 75 firmly connected to the steel tube 22, which yes also the stationary one located over this entire drive Grate plate 14 holds.
- the rinse cylinder 72 is via an air supply line 76 constantly supplied with sealing air.
- This may be the following Show a rough calculation: With a conventional one For example, about 100 tons of rubbish per grate Rostbahn and day implemented. The lead time is thereby about 20 minutes. This gives a momentary weight load of approx. 1.4 tons on the entire rust track. Does this exist at Example of 10 grate plates or grate steps, results in a very low load of 140 kg per grate plate. Even with multiple loads, this would be for the Drive no problems. With the one described here Any movable grate plate or -control level completely individually. Not just whether and in what direction it is moving can be determined, but also at what speed. This is because between zero and a maximum speed by means of the stepless shut-off valves also infinitely adjustable.
- FIG. 5 shows the drive in a cross section seen from the side, the same elements as already described in FIG. 4 being shown.
- the grate plate which is movable here in turn rests on the next stationary grate plate 15 which in turn is held on the steel tube 22 at its rear end by means of the claw 26.
- a grate made of such overlapping grate plates can either be horizontal as shown, declined in the direction of conveyance, or also inclined towards the bottom.
- the stroke lengths and grate plate inclinations can be selected so that the strokes of the grate plates are either merely stoking movements. These then make up about 1/4 to 1/3 of a normal transport stroke.
- a transport stroke for example, measures around 250mm, and the stroke frequency can vary between 0.5Hz and 2Hz.
- Pure puffing strokes ensure that the firing material, which slowly moves downwards on the grate plate surface due to the force of gravity, is always pushed back somewhat and thereby rearranged. This rearrangement or agitation is very conducive to complete combustion.
- the fired material is not pushed from the grate plate front onto the next plate in such a simple stoking movement. Only when carrying out larger strokes is the firing material transported as desired.
- FIG. 6 shows the energy profile 89 of an ideal waste incineration, like they only do on a water-cooled grate can be approximated.
- the energy curve 89 is one here bell curve and gives the product of temperature x flow of the Cooling water.
- Below the grate 98 are the different ones Rust zones indicated 90-94, with the distribution 88 of the Primary air supply.
- the drying zone 90 At the very beginning of the grate, immediately after the feed 97, there is the drying zone 90.
- the kiln is first dried on the grate 98, what if possible without any primary air supply.
- With a conventional, non-water-cooled grate comes one should not, however, around the air supply, because it becomes needed to cool the grate.
- the main burning zone which is divided into two sections 92 and 93 is divided.
- the burnout zone 93 which extends to the end of the grate 98.
- the burnout zone 93 Like in Diagram shown takes the amount of primary air supplied practically steadily over the first half of the grate length, reaches a maximum in the second main combustion zone 93 and then decreases sharply. Only then will there be air in the burnout zone fed when this is necessary, that is, when it is there anything to burn at all. Above the fire secondary air is supplied from the side in order to burn out the flue gas ensure. Then the flue gases get in the boiler 96 and the downstream devices for the Flue gas treatment.
- FIG. 7 shows a diagram for evaluating the combustion quality, that is to say the flue gases G and the system efficiency E as a function of the O 2 content in the flue gas G.
- the CO value is considered as a superordinate measure of the combustion quality.
- CO max the CO limit value
- the aim of the combustion control must therefore be to keep the O 2 value so low that the NO x content becomes minimal and at the same time the CO limit value is just maintained.
- Such an ideal working point is shown in the diagram.
- it also guarantees high system efficiency. Because of the lower O 2 content compared to the current value, less air has to be blown through the firing material. This also means that there is less dust ejection. The dust particles are also less fast. This reduces the erosion of the boiler walls. Fast and many dust particles treat the boiler walls like sandblasting.
- the overarching goal of the present method is to achieve combustion that is as stoichiometric as possible. On the way to this, the O 2 content in the flue gas should be reduced to a value of around 4 percent by volume, whereas today, due to the systems, one has to operate at about 10 percent by volume.
- the temperature spectrum in the combustion chamber above the Combustion grate additionally using a variety of temperature measuring probes be determined. These probes can for example built into the surface of the grate plates be. On the other hand, the temperature spectrum can also be determined using of a pyrometer can be determined.
- Dosage of the primary air supply for each individual supply line succeeds in the current temperature spectrum in the combustion chamber approach the optimal spectrum.
- For individual Control of the primary air supply for each supply line can, for example, use solenoid valves in the supply lines be made by a central microprocessor can be controlled in which the optimal selected furnace temperature range can be saved.
- the dissipated cooling energy is based on flow and temperature used in the returns.
- a control loop can be formed, according to which the individual solenoid valves individually finely dosed something more or less open and primary air through let the individual supply lines flow.
- the primary air supply done through one or more powerful Compressors or fans.
- Such a fine and very complex set of rules can be built, which by means of an electronic evaluation of the combustion by individual Control of all coolant runs, all Drive elements for moving and loading the grate, as well optimally ensures all individual primary air supplies. This makes the energy content of the fired material even better use, the slag diarrhea is further minimized and above all, are the basics for further minimizing the unwanted flue gas components created.
- the medium used for temperature control can be exchanged in a heat with the primary air to be supplied.
- a commercially available heat exchanger can be used works on the countercurrent principle.
- it is possible to preheat the primary air what an optimal combustion with certain combustibles is beneficial.
- organic waste components for example with rotten or rotten Vegetables or fruits, is a preheat of the primary air very much desirable because it improves combustion.
- the combustion grate to start a combustion process to warm up the grate as soon as possible to drive to the optimal operating temperature.
- the temperature control medium can already remove the heat from the exhaust air absorb the incineration, and then into the grate plates of the combustion grate.
- the cooling of the thrust combustion grate is carried out exclusively by a cooling liquid and the supplied primary air is, apart from an inevitable part of its cooling effect, exclusively effective combustion air.
- the primary air in a variant can be specifically metered with combustion-promoting substances or it can consist exclusively of such substances.
- This combustion air could theoretically be limited to pure oxygen, which is fed through the primary air supply lines 41 to the material to be burned on the grate. It is immediately clear that the air throughput of the grate could be reduced to a fifth of the previous air volume. This means that large amounts of air no longer flow locally uncontrolled through the grate and the firing material, but local oxygen is gently fed into the firing material in a targeted amount, i.e.
- the control of the grate plate movements can also be controlled with the temperature. Once the temperature of a grate plate or area of a grate plate indicates that the burning bed height there is too low or no material on it Rust plate location. By automatically initiated combustion can immediately compensate for the burning bed become.
- the control measures mentioned here are advantageous controlled by a microprocessor, using as control variables including the temperatures of the individual coolant returns will be charged. These show quickly a change in the fire on the grate area in question on.
- FIG 8 is the basic block diagram of a controller and regulation for the method according to the invention shown.
- This control and regulation consists of the following Subsystems, which are each listed in a column: Whole on the left is the sensor system, that is, all Recordable data are listed based on the associated sensors. The column to the right lists the setpoint transmitters. Then comes the actual regulation and control for the individual physical components of the entire incinerator. The next column to the right names the facilities for the realization of superordinate links and the The column on the far right contains a list of the individual Actuators.
- the individual system components are described from top to bottom: For sensors, this starts with those for measuring the amount of steam QD, then those for measuring the temperatures T 1 ... T n of the cooling water at the individual measuring points i.
- the flow rate Q 1 ... Q m is also measured in each return i.
- the temperature TF in the combustion chamber is measured using a pyrometer, for example.
- the burning bed height H 1 ... H k can be measured at different points i.
- An ultrasound measurement from above onto the grate surface can be used for this purpose.
- O 2 is meant the oxygen content in the flue gas, which is measured with special measuring probes, or instead of O 2 the.
- the inverse value of carbon dioxide CO 2 in the flue gas was measured.
- the third column shows the individual regulation and control units that connect the measurement data with the target values and then pass them on for the higher-level links for billing. In the third column, this begins with the steam regulator DR. This compares the effective steam quantity recorded with the target steam quantity.
- the temperatures T i , flow rates Q i and possibly the combustion chamber temperature TF and the combustion bed heights H i are included in the profile controller PR.
- the measured values for O 2 and CO 2 serve as parameters for the stoke control SS, the conveyor control FS and the loading controller BR.
- the combustion chamber temperature TF and the measured O 2 or CO 2 value in the flue gas and the CO value in the flue gas are included in the minimization calculator SBR for the ratio between O 2 and CO 2 .
- the calculated value then also influences the loading controller.
- the output signals of these various regulators just presented are linked and processed in the control devices listed in the fourth column.
- the block diagram provides the following higher-level link options, which are listed in this fourth column. Starting from the top, this is once the air distributor LV, which is fed by the output signal of the steam controller DR and the profile controller PR. This is followed by the cooling water energy distributor WV, which receives its data from the profile controller PR. This is followed by a BFSK coordination computer for the coordination of loading, funding and stoking movements.
- the individual links made arithmetically based on programs then control the actuators.
- the air distributor has a determining effect on the air system and / or, if necessary, also on the air heating system, in the event that the primary air is to be preheated, or if preheated air is to be supplied to dry the combustion material.
- the cooling water is managed by the cooling water distributor WV by the directional valves WWS for the different returns of the cooling water system, the freshly fed Cooling water dosed using the WDS dosing unit is fed, and finally the heating system for the cooling water WHS is provided, depending on whether and how strong that Cooling water is tempered.
- the coordination computer BFSK provides the drive elements for the grate movements and for loading the grate. These include the conveyor drives for determining the Hubes FRH of the individual cylinder-piston units of the movable Grate plates and the conveyor drives for the determination the lifting speeds FRG of the individual cylinder-piston units the movable grate plates. In the same way also the loading via the conveyor drives for the FBH hub and the lifting speed FBG of the loading device is set. The loading can be carried out continuously by the solids in the feed chute initially from two to different Retractable hydraulic locking grids portioned and retained so that on the Only one such portion at a time Solids lies.
- the lock window to be passed to Combustion chamber is then from this portion of solids always tightly closed and through this window is a continuous promotion on the combustion grate possible.
- This continuous promotion is possible by the carrier surface of the loading device from several longitudinal webs formed by alternating, slow strokes, which, seen from the side, describe a rhomboid, the solids lying thereon uniformly through the window convey onto the combustion grate.
- the steam control is carried out via the sensor QD for the amount of steam, the setpoint generator SDR, the steam controller DR and a Air distributor LV realized via the air system LS.
- the controller is the controlled system of the entire grate, the controlled variable is the steam output or one related to the steam output Size.
- the guide variable is also the steam output or a size associated with it.
- As a manipulated variable acts the primary air volume with constant distribution and as Actuators the individual actuators of the primary air system, which is the supply of primary air for each one Determine the primary air zone under the grate plates. In general The following applies: The smaller the measured steam output in comparison to the setpoint, the more primary air must be supplied.
- O 2 / CO 2 control Another essential control system includes the O 2 / CO 2 control . These two values are inverse to each other. In many cases, the O 2 content in the flue gas is measured.
- the O 2 / CO 2 control is carried out via a sensor for the O 2 and / or CO 2 value, a setpoint generator SBR, a loading controller BR and a conveyor control FS, a stoking controller SS and a coordinator BFSK for the grate conveyor drives FRH and FRG as well as for the feed drives FBH and FBG.
- the controlled system for the loading controller BR is the loading device and / or the portioning device.
- the control and guide variable is the O 2 and / or CO 2 content and the correcting variable is the length of the drawer and the thrust speed of the individual moving loading elements for the continuous loading of the grate.
- the actuators contain the drive systems for these strokes.
- the control section of the conveyor control includes all movable grate plates.
- the O 2 and / or CO 2 content serves as the control and guide variable and the manipulated variables are the drawer lengths and the pushing speeds of the individual movable grate plates.
- control section in turn contains all movable grate plates.
- the O 2 and / or CO 2 content serves as the control and guide variable and the manipulated variables for this are again the reduced drawer lengths and the pushing speeds of the individual movable grate plates. If, for example, the CO 2 content begins to decrease or the inverse O 2 content in the flue gas begins to increase, fueling begins. If this fueling does not help, the system knows that there is no firing material on the grate at that point. Firing material must therefore be transported.
- the coordinator BFSK has the task of stoking control SS, conveyor control FS and / or the feed control BR movements to be effected separately and / or superimposed, to the actuators simultaneously or in succession the actuators to switch.
- a very important parameter for any waste incineration plant is the gas burnout. This can be regulated very finely by means of the method according to the invention, specifically via the chain of the feed control by the CO / O 2 minimization computer SBR as setpoint generator for the feed controller BR.
- Most waste incineration plants are operated with a volume fraction of approx. 10% oxygen in the flue gas. This excess air is necessary to ensure the flue gas burnout in conventional systems. It is accepted that the NO x value is high in this operating mode.
- the ratio of CO to NO x is opposite and only optimal in a narrow O 2 band.
- the CO / O 2 minimization computer automatically probes for the lowest possible O 2 content, at which an almost complete gas burnout is still guaranteed.
- the method according to the invention now makes it possible to reduce the O 2 content in the flue gas and to bring the combustion closer to an optimal working point thanks to the fine rules.
- This operating point is characterized by a lower O 2 value with a simultaneous significant reduction in the NO x content, and all this with reliable compliance with the permissible CO value, even with a significant reduction in this CO value.
- the setpoint generator reduces the O 2 setpoint for the charge controller until the actual CO value of the raw gas is below the legally permissible CO setpoint with a minimum O 2 content.
- the combustion chamber temperature which is simultaneously monitored via the temperature sensor TF, limits a further reduction in the O 2 content at a maximum value.
- the controlled system is the loading and portioning device, and the controlled variable is the O 2 and / or the CO 2 content.
- the ratio between CO and O 2 serves as a benchmark.
- the thrust speed and / or the stroke length of the actuators, namely the loading device and / or the movable grate plates, serves as the manipulated variable.
- Combustion positioning is another variable compared to the process operated with conventional systems. This combustion positioning is carried out via the temperature sensors T 1 ... T n of the cooling water temperatures of the grate, via the flow rate sensors Q 1 ... Q m of the cooling water flow rates of the grate, via the temperature sensor TF of the combustion chamber temperature, via a cooling water energy distributor WV, via a cooling water path distribution system WWS, a cooling water metering system WDS, cooling water heating on the one hand and / or via the air distributor LV, the air system LS and an air heating LHS on the other hand realized as primary air distribution control and / or cooling water energy redistribution control.
- the control sections are for the primary air distribution control the primary air zones, but still underneath through a variety of supply air nozzles in local areas on the Grate plates can be divided.
- the tax amount is the Primary air distribution, that is, where and at what time how much Air enters.
- the leader size is by the ideal Given the temperature profile of the cooling water.
- the actuators to be operated are the drives for the primary air supply that come from Fans or compressors exist, and / or air heating. For example, if the cooling water temperature in the Burnout zone of the grate not opposite the main fire zone drops, primary air is also supplied there, what else is omitted.
- the cooling water energy redistribution control has as a control route the grate cooling system and as a control variable the cooling water energy distribution.
- the optimal is used as a guide variable Cooling water energy profile.
- the manipulated variable is the cooling water path and / or the amount of cooling water and / or the cooling water energy.
- the present method also opens up the possibility of controlling the profile of the garbage or combustion bed itself. This is done using the temperature sensors T 1 ... T n of the cooling water temperature of the grate, the temperature sensor TF for the combustion chamber temperature, the waste or combustion bed height sensors H 1 ... H k , the profile computer PR, and the coordination computer BFSK, the grate conveyor drives FRH and FRG as well as the feed drives FBH and FBG.
- the control section is the grate conveyor and loading system.
- the control variable is the garbage bed profile.
- the guide variable is given by the cooling water temperature profile and / or the directly measured garbage bed profile.
- the drawer lengths and thrust speeds of the loading and the movable grate plates that form the actuators act as the manipulated variable.
Landscapes
- Engineering & Computer Science (AREA)
- Mechanical Engineering (AREA)
- General Engineering & Computer Science (AREA)
- Chemical & Material Sciences (AREA)
- Combustion & Propulsion (AREA)
- Incineration Of Waste (AREA)
- Gasification And Melting Of Waste (AREA)
- Catalysts (AREA)
- Solid-Fuel Combustion (AREA)
- Vertical, Hearth, Or Arc Furnaces (AREA)
- Baking, Grill, Roasting (AREA)
- Fertilizers (AREA)
Claims (10)
- Procédé pour la combustion de matières solides sur un système de grille de combustion à poussée ou ringardage, composé de plusieurs gradins de grille, parcourus chacun séparément par un liquide de refroidissement et pour moitié mobiles individuellement, ces gradins comportant un grand nombre de buses d'alimentation amenant l'air primaire du feu, caractérisé en ce que les fonctions ci-dessous ne sont pas commandées ni exécutées forcément en étant dépendantes les unes des autres:a) le refroidissement des différents gradins de grille,b) l'alimentation en air primaire localement et dans le temps, des substances activant la combustion étant le cas échéant ajoutées par dosage à celui-ci ou étant constituées exclusivement d'oxygène,c) les mouvements de brassage de la grille réalisés localement et dans le temps,d) les mouvements de transport de la grille réalisés localement et dans le temps,e) les mouvements de chargement de la grille réalisés dans le temps,
- Procédé suivant la revendication 1, caractérisé en ce que les températures du liquide de refroidissement des différents gradins de grille sont utilisées d'une part pour commander les mouvements de brassage et de transport - indépendants les uns des autres dans le temps et localement - des différents gradins individuels de grille ainsi que les mouvements de chargement du système de grille ainsi que d'autre part comme grandeurs de référence pour l'air primaire, dosé et amené séparément dans le temps et localement pour chaque gradin de grille.
- Procédé suivant une des revendications précédentes, caractérisé en ce qu'au moyen de la variation des mouvements de brassage, de transport et de chargement, la répartition de la température d'eau de refroidissement se rapproche d'un idéal théorique, et qu'ensuite - avec le maintien le plus fidèle possible de cette répartition - l'alimentation en air primaire est réduite dans le respect du maintien de la valeur limite en CO prescrite et avec une diminution de la valeur de NOX, jusqu'à ce que la valeur de CO commence à augmenter, un point de fonctionnement étant ainsi défini au-dessous de la valeur limite de CO, qui dès lors est maintenu au moyen d'une variation d'une ou plusieurs des fonctions a) à e) définies dans la revendication 1.
- Procédé suivant une des revendications précédentes, caractérisé en ce que, dès que la température de l'eau de refroidissement d'un gradin de grille diminue, un brassage y commence et que, quand cette température n'augmente plus ensuite, il est procédé à une brève augmentation de l'alimentation locale en air primaire, et que, si ensuite cette température d'eau de refroidissement n'augmente toujours pas, il se produit un mouvement de transport, pour amener de la matière à brûler sur le gradin de grille correspondant, et qu'une fois la valeur de consigne de cette température d'eau de refroidissement atteinte, le mouvement de transport s'arrête et que l'alimentation en air primaire est ramenée à la valeur de départ.
- Procédé suivant une des revendications précédentes, caractérisé par:a) une saisie de données de l'énergie de refroidissement recyclée et une utilisation de ces données pour la commande et la régulation de la combustion;b) un chargement de la grille, séparé suivant les besoins, dans le temps, sur celle-ci, du brassage et du transport de la matière à brûler, conformément aux consignes de la commande et de la régulation;c) un brassage et un transport de la matière à brûler sur la grille, séparés, suivant les besoins, dans le temps et localement, conformément aux consignes de la commande et de la régulation;d) une alimentation en air primaire dirigée suivant les besoins vers des endroits discrets, sur chaque gradin de grille, en quantité et en durée chaque fois dosées;e) une mise en équilibre individuelle de température, suivant les besoins, pour chaque plaque de la grille de combustion avec le fluide la traversant.
- Procédé suivant une des revendications précédentes, caractérisé en ce que:a) les données de combustion sont saisies au moyen de sondes thermiques (T1 ... Tn), de débitmètres (Q1 ... Qm) et de dispositifs de mesures (H1 ... Hk) destinés à déterminer la hauteur locale du lit d'ordures ainsi que d'un thermomètre de chambre de combustion (TF), puis calculées dans un calculateur de température, d'énergie et de profil du lit d'ordures (PR);b) le chargement de matière à brûler est commandée, au moyen de la variation de la course et de la vitesse de course du dispositif de chargement, par un calculateur de coordination (BFSK), recevant ses données du calculateur de profil (PR) ainsi que d'un régulateur de chargement (BR), qui prend en compte le rapport entre O2 et CO dans le gaz de fumée;c) le brassage et/ou le transport de la matière à brûler sur la grille, séparés dans le temps et localement, sont commandés au moyen d'une variation de la course et de la vitesse de course des dispositifs d'entraínement des plaques de grille par un calculateur de coordination (BFSK), recevant ses données du calculateur de profil (PR) ainsi que d'une commande de brassage et de transport (FS), qui prennent en compte le rapport entre O2 et CO dans le gaz de fumée;d) l'alimentation en air primaire conforme à l'objectif est réalisée sur un grand nombre de zones, comportant chacune des buses séparées d'alimentation en air dans les plaques de grilles, la quantité d'air chaque fois alimentée étant commandée par un distributeur d'air (LV), prenant en compte les données d'un régulateur de vapeur (DR), qui compare la consigne de la quantité de vapeur à la quantité effective produite;e) les plaques individuelles de grille sont tempérées individuellement, en ce qu'un distributeur d'eau de refroidissement (WV) commande les vannes à plusieurs voies (WWS) des différents circuits de liquide de refroidissement des différentes plaques de grille, de sorte que du liquide nouveau est ajouté par dosage ou que du liquide de refroidissement est préchauffé en cas de besoin, les grandeurs de réglage étant prédéterminées par le calculateur PR de température, d'énergie et de profil du lit d'ordures.
- Procédé suivant une des revendications précédentes, caractérisé en ce que, pour les mouvements de brassage, de transport et de chargement de matière à brûler, aussi bien la course correspondante que les vitesses de courses et les fréquences de courses sont soumises à des variations chaque fois indépendantes les unes des autres ainsi que séparées dans le temps et localement.
- Procédé suivant une des revendications précédentes, caractérisé en ce que, dans la zone de séchage de la grille, le système fonctionne sans aucune alimentation en air primaire, de sorte que le refroidissement de la grille est pris en charge exclusivement par le fluide qui la traverse.
- Procédé suivant une des revendications précédentes, caractérisé en ce que, dans la zone de post-combustion de la grille, le système fonctionne en général sans alimentation en air primaire et que de l'air primaire est amené seulement si exceptionnellement la température de l'eau de refroidissement provenant de la zone de post-combustion ne diminue pas par rapport à celle régnant dans la zone de combustion principale de la grille, l'alimentation en air primaire étant de nouveau arrêtée aussitôt dès que la température de l'eau de refroidissement provenant de la zone de post-combustion diminue.
- Procédé suivant une des revendications précédentes, caractérisé en ce que de l'oxygène pur est ajouté par dosage à l'air primaire.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
SI9530341T SI0693169T1 (en) | 1994-02-07 | 1995-02-06 | Process for burning solids with a sliding firebar system |
Applications Claiming Priority (7)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
CH34294 | 1994-02-07 | ||
CH342/94 | 1994-02-07 | ||
CH34294 | 1994-02-07 | ||
CH1321/94 | 1994-04-28 | ||
CH132194 | 1994-04-28 | ||
CH132194 | 1994-04-28 | ||
PCT/CH1995/000026 WO1995021353A1 (fr) | 1994-02-07 | 1995-02-06 | Procede pour la combustion de matieres solides au moyen d'un dispositif a grilles de combustion mobiles |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0693169A1 EP0693169A1 (fr) | 1996-01-24 |
EP0693169B1 true EP0693169B1 (fr) | 1999-09-01 |
Family
ID=25684273
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95906873A Expired - Lifetime EP0693169B1 (fr) | 1994-02-07 | 1995-02-06 | Procede pour la combustion de matieres solides au moyen d'un dispositif a grilles de combustion mobiles |
Country Status (14)
Country | Link |
---|---|
US (1) | US5680824A (fr) |
EP (1) | EP0693169B1 (fr) |
JP (1) | JPH08508818A (fr) |
CN (1) | CN1124520A (fr) |
AT (1) | ATE184092T1 (fr) |
AU (1) | AU1530795A (fr) |
BR (1) | BR9505838A (fr) |
CA (1) | CA2159992A1 (fr) |
DE (1) | DE59506717D1 (fr) |
DK (1) | DK0693169T3 (fr) |
ES (1) | ES2138720T3 (fr) |
GR (1) | GR3032009T3 (fr) |
NO (1) | NO953972D0 (fr) |
WO (1) | WO1995021353A1 (fr) |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO1996029544A1 (fr) * | 1995-03-23 | 1996-09-26 | Theodor Koch | Grille de combustion et procede d'optimisation du fonctionnement d'une grille de combustion |
DE19622423C1 (de) * | 1996-06-04 | 1997-07-10 | Martin Umwelt & Energietech | Rostelement und Rost für Verbrennungsanlagen sowie Verfahren zum Betrieb des Rostes |
DE19622424C2 (de) * | 1996-06-04 | 1998-10-29 | Martin Umwelt & Energietech | Rostelement und Rost mit Flüssigkeitskühlung |
DE19648128C2 (de) * | 1996-11-21 | 2002-11-07 | Alstom | Rost für eine Feuerungsanlage |
ATE210800T1 (de) * | 1998-11-10 | 2001-12-15 | Doikos Investments Ltd | Wassergekühlter verbrennungsrost, sowie verfahren zum verbrennen von kehricht auf demselben |
DE19910425C2 (de) * | 1999-03-10 | 2000-12-28 | Teset Ag Weismes Waimes | Rostsystem für einen Brennstoffkessel |
DE19923059A1 (de) * | 1999-05-20 | 2000-12-07 | Steag Ag | Verfahren zum Regeln eines Verbrennungsprozesses |
TW457354B (en) * | 1999-08-20 | 2001-10-01 | Von Roll Umwelttechnik Ag | Plant and grate block for the thermal treatment of waste materials |
CH701280B1 (de) * | 2007-08-22 | 2010-12-31 | Doikos Investments Ltd | Flüssigkeitsgekühlte Rostplatte mit Verschleissplatten und aus solchen Rostplatten bestehender Stufenrost. |
BR112012022069A2 (pt) * | 2010-03-01 | 2017-10-31 | Plascoenergy Ip Holdings S L Bilbao Schaffhausen Branch | sistema de transferência lateral |
CH703063A1 (de) * | 2010-04-21 | 2011-10-31 | Marco Bachmann | Verkleidungselement für Vorrichtungsteile von Verbrennungsöfen. |
DE102014008858A1 (de) | 2014-06-16 | 2015-12-17 | Joachim Kümmel | Verfahren zur Verbrennung von Abfall und Biomassen auf einem Flossenwand-Stufenrost sowie Vorrichtung zur Durchführung des Verfahrens |
CN113587116B (zh) * | 2021-09-28 | 2021-12-21 | 光大环保技术装备(常州)有限公司 | 水冷循环系统中保护设备的控制方法、控制系统及设备 |
CN114001365B (zh) * | 2021-12-31 | 2022-04-05 | 光大环保技术装备(常州)有限公司 | 水冷流道温度及流量检测系统及方法和流道参数测试系统 |
Family Cites Families (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE2833255A1 (de) * | 1978-07-28 | 1980-02-07 | Pauli Gmbh Waermetechnik | Luftgekuehlter roststab |
US4471704A (en) * | 1982-06-21 | 1984-09-18 | Clear Air, Inc. | Reciprocating grate systems for furnaces and incinerators |
JPS6449819A (en) * | 1987-08-20 | 1989-02-27 | Kubota Ltd | Combustion control method in incinerator |
US4838183A (en) * | 1988-02-11 | 1989-06-13 | Morse Boulger, Inc. | Apparatus and method for incinerating heterogeneous materials |
JPH02106613A (ja) * | 1988-10-13 | 1990-04-18 | Hitachi Zosen Corp | 焼却炉の火格子構造 |
JPH02110209A (ja) * | 1988-10-17 | 1990-04-23 | Kubota Ltd | ごみ焼却炉の燃焼制御方法 |
DE3904272C3 (de) * | 1989-02-14 | 1998-01-08 | Steinmueller Gmbh L & C | Verfahren zum Erfassen der von mindestens zwei räumlich getrennten Stellen mindestens einer Verbrennungszone auf einem Rost ausgehenden Strahlung und Vorrichtung zum Erfassen einer solchen Strahlung |
JPH0717937Y2 (ja) * | 1990-05-21 | 1995-04-26 | 日本鋼管株式会社 | 横型焼却炉の火格子構造 |
US5142999A (en) * | 1991-05-17 | 1992-09-01 | Axxon Corporation | Incinerator with fluid-cooled hearth |
CH684118A5 (de) * | 1993-04-20 | 1994-07-15 | Doikos Investments Ltd | Verfahren zum Verbrennen von Kehricht auf einem Verbrennungsrost sowie Verbrennungsrost zur Ausübung des Verfahrens und Rostplatte für einen solchen Verbrennungsrost. |
-
1995
- 1995-02-06 AU AU15307/95A patent/AU1530795A/en not_active Abandoned
- 1995-02-06 ES ES95906873T patent/ES2138720T3/es not_active Expired - Lifetime
- 1995-02-06 DE DE59506717T patent/DE59506717D1/de not_active Expired - Lifetime
- 1995-02-06 WO PCT/CH1995/000026 patent/WO1995021353A1/fr active IP Right Grant
- 1995-02-06 CA CA002159992A patent/CA2159992A1/fr not_active Abandoned
- 1995-02-06 JP JP7520300A patent/JPH08508818A/ja active Pending
- 1995-02-06 US US08/532,675 patent/US5680824A/en not_active Expired - Lifetime
- 1995-02-06 BR BR9505838A patent/BR9505838A/pt not_active Application Discontinuation
- 1995-02-06 EP EP95906873A patent/EP0693169B1/fr not_active Expired - Lifetime
- 1995-02-06 CN CN95190186A patent/CN1124520A/zh active Pending
- 1995-02-06 DK DK95906873T patent/DK0693169T3/da active
- 1995-02-06 AT AT95906873T patent/ATE184092T1/de active
- 1995-10-06 NO NO953972A patent/NO953972D0/no not_active Application Discontinuation
-
1999
- 1999-11-30 GR GR990403103T patent/GR3032009T3/el unknown
Also Published As
Publication number | Publication date |
---|---|
US5680824A (en) | 1997-10-28 |
NO953972L (no) | 1995-10-06 |
ES2138720T3 (es) | 2000-01-16 |
BR9505838A (pt) | 1996-02-13 |
WO1995021353A1 (fr) | 1995-08-10 |
GR3032009T3 (en) | 2000-03-31 |
JPH08508818A (ja) | 1996-09-17 |
DK0693169T3 (da) | 2000-03-27 |
AU1530795A (en) | 1995-08-21 |
CN1124520A (zh) | 1996-06-12 |
EP0693169A1 (fr) | 1996-01-24 |
NO953972D0 (no) | 1995-10-06 |
ATE184092T1 (de) | 1999-09-15 |
CA2159992A1 (fr) | 1995-08-10 |
DE59506717D1 (de) | 1999-10-07 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
EP0621449B1 (fr) | Procédé pour la combustion de déchets sur une grille de combustion ainsi qu'une grille de combustion pour la mise en oeuvre du procédé et barreau pour la fabrication d'une telle grille | |
EP0693169B1 (fr) | Procede pour la combustion de matieres solides au moyen d'un dispositif a grilles de combustion mobiles | |
DE3118931A1 (de) | Verfahren und vorrichtung zum betrieb einer kokereianlage | |
EP0815396B1 (fr) | Grille de combustion et procede d'optimisation du fonctionnement d'une grille de combustion | |
DE19650742C1 (de) | Mit Wasser gekühlter Verbrennungsrost | |
WO1995018333A1 (fr) | Grille modulaire a coulisse pour l'incineration d'immondices dans des usines d'exploitation commerciale et procede d'exploitation | |
DE69329934T2 (de) | Ofen mit automatischem zufuhrsystem | |
DE2442122A1 (de) | Pyrolyse-behaelter | |
DE2158317C3 (de) | Bandpelletisieranlage | |
EP3964752B1 (fr) | Procédé de fonctionnement d'une installation de combustion | |
EP1001218B1 (fr) | Grille de combustion refroidie par eau et procédé de combustion de déchets correspondant | |
DE2744505C2 (de) | Stufenrost mit Aufgabeeinrichtung, Vorrost und einem Hauptbrennrost aus Stufeneinzelrosten sowie Ausbrennrost | |
EP0081779A1 (fr) | Grille mécanique à mouvement continu d'un appareil à combustion | |
EP1614965A2 (fr) | Chaudière pour la combustion de carburant solide, en particulier de biomasse | |
DE70654C (de) | Ofenanlage zum Rösten, Brennen oder Trocknen | |
DE9414691U1 (de) | Vorrichtung zum Beschicken eines Kehrrichtverbrennungsrostes | |
DE69033225T2 (de) | Müllverbrennungsanlage | |
EP0151746B1 (fr) | Dispositif d'extraction des mâchefers pour appareils à combustion de grande capacité | |
DE3114722C2 (fr) | ||
DE2916187B1 (de) | Vorrichtung zum Trocknen und Erwaermen von teer- oder bitumenumhuelltem Mineralgemisch | |
DE1920051C3 (fr) | ||
EP1452801A1 (fr) | Appareil de chauffage pour combustible solide en vrac | |
DE19502261A1 (de) | Verfahren und Verbrennungsrost zum Verbrennen von festen Brennstoffen wie Müll, insbesondere zur Verbesserung des Ausbrandes | |
AT154488B (de) | Planrost. | |
AT282047B (de) | Müllverbrennungsanlage |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: LT PAYMENT 951009;SI PAYMENT 951009 |
|
RAX | Requested extension states of the european patent have changed |
Free format text: LT PAYMENT 951009;SI PAYMENT 951009 |
|
17P | Request for examination filed |
Effective date: 19960206 |
|
17Q | First examination report despatched |
Effective date: 19970606 |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: TECHFORM TECHNOLOGY AG |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: SEGHERS BETTER TECHNOLOGY GROUP |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): AT BE CH DE DK ES FR GB GR IT LI NL PT SE |
|
AX | Request for extension of the european patent |
Free format text: LT PAYMENT 19951009;SI PAYMENT 19951009 |
|
REF | Corresponds to: |
Ref document number: 184092 Country of ref document: AT Date of ref document: 19990915 Kind code of ref document: T |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: EP |
|
REF | Corresponds to: |
Ref document number: 59506717 Country of ref document: DE Date of ref document: 19991007 |
|
ITF | It: translation for a ep patent filed | ||
ET | Fr: translation filed | ||
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: FELBER & PARTNER AG PATENTANWAELTE |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FG2A Ref document number: 2138720 Country of ref document: ES Kind code of ref document: T3 |
|
GBT | Gb: translation of ep patent filed (gb section 77(6)(a)/1977) |
Effective date: 20000111 |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: SC4A Free format text: AVAILABILITY OF NATIONAL TRANSLATION Effective date: 19991129 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: T3 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
REG | Reference to a national code |
Ref country code: GB Ref legal event code: IF02 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: FR Payment date: 20030205 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: PT Payment date: 20030211 Year of fee payment: 9 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: GR Payment date: 20030214 Year of fee payment: 9 |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: SEGHERS KEPPEL TECHNOLOGY GROUP Free format text: SEGHERS BETTER TECHNOLOGY GROUP#'T HOOFD 1#2830 WILLEBROEK (BE) -TRANSFER TO- SEGHERS KEPPEL TECHNOLOGY GROUP#HOOFD 1#2830 WILLEBROEK (BE) |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: NV Representative=s name: E. BLUM & CO. PATENTANWAELTE |
|
NLS | Nl: assignments of ep-patents |
Owner name: SEGHERS KEPPEL TECHNOLOGY GROUP |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: TP |
|
REG | Reference to a national code |
Ref country code: PT Ref legal event code: PC4A Free format text: SEGHERS KEPPEL TECHNOLOGY GROUP BE Effective date: 20031212 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: PT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040831 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20040903 |
|
LTLA | Lt: lapse of european patent or patent extension |
Effective date: 20040206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20041029 |
|
REG | Reference to a national code |
Ref country code: FR Ref legal event code: ST |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: PC2A |
|
REG | Reference to a national code |
Ref country code: GB Ref legal event code: 732E |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PUE Owner name: KEPPEL SEGHERS HOLDINS PTE LTD. Free format text: SEGHERS KEPPEL TECHNOLOGY GROUP#HOOFD 1#2830 WILLEBROEK (BE) -TRANSFER TO- KEPPEL SEGHERS HOLDINS PTE LTD.#1HARBOUR FRONT AVENUE 18-01 KEPPEL BAY TOWER#SINGAPORE 098632 (SG) |
|
NLS | Nl: assignments of ep-patents |
Owner name: KEPPEL SEGHERS HOLDINGS PTE LTD Effective date: 20070327 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: IT Payment date: 20120224 Year of fee payment: 18 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: SE Payment date: 20130219 Year of fee payment: 19 Ref country code: ES Payment date: 20130227 Year of fee payment: 19 Ref country code: DE Payment date: 20130219 Year of fee payment: 19 Ref country code: GB Payment date: 20130218 Year of fee payment: 19 Ref country code: CH Payment date: 20130220 Year of fee payment: 19 Ref country code: DK Payment date: 20130218 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: BE Payment date: 20130220 Year of fee payment: 19 Ref country code: NL Payment date: 20130219 Year of fee payment: 19 |
|
PGFP | Annual fee paid to national office [announced via postgrant information from national office to epo] |
Ref country code: AT Payment date: 20130213 Year of fee payment: 19 |
|
BERE | Be: lapsed |
Owner name: *KEPPEL SEGHERS HOLDING PTE LTD Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59506717 Country of ref document: DE |
|
REG | Reference to a national code |
Ref country code: NL Ref legal event code: V1 Effective date: 20140901 |
|
REG | Reference to a national code |
Ref country code: DK Ref legal event code: EBP Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: CH Ref legal event code: PL Ref country code: SE Ref legal event code: EUG |
|
REG | Reference to a national code |
Ref country code: AT Ref legal event code: MM01 Ref document number: 184092 Country of ref document: AT Kind code of ref document: T Effective date: 20140206 |
|
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20140206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: NL Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140901 Ref country code: CH Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: LI Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: DE Ref legal event code: R119 Ref document number: 59506717 Country of ref document: DE Effective date: 20140902 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: SE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140207 Ref country code: AT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140206 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140206 Ref country code: DE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140902 Ref country code: DK Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 Ref country code: BE Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140228 |
|
REG | Reference to a national code |
Ref country code: ES Ref legal event code: FD2A Effective date: 20150407 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: ES Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140207 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: IT Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20140206 |