EP0693117B1 - Verwendung von carboxylgruppen enthaltenden umsetzungsprodukten von proteinen oder proteinhydrolysaten in wasch- und reinigungsmitteln - Google Patents

Verwendung von carboxylgruppen enthaltenden umsetzungsprodukten von proteinen oder proteinhydrolysaten in wasch- und reinigungsmitteln Download PDF

Info

Publication number
EP0693117B1
EP0693117B1 EP94912550A EP94912550A EP0693117B1 EP 0693117 B1 EP0693117 B1 EP 0693117B1 EP 94912550 A EP94912550 A EP 94912550A EP 94912550 A EP94912550 A EP 94912550A EP 0693117 B1 EP0693117 B1 EP 0693117B1
Authority
EP
European Patent Office
Prior art keywords
proteins
reaction products
washing
acid
cleaning agents
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94912550A
Other languages
English (en)
French (fr)
Other versions
EP0693117A1 (de
Inventor
Matthias Kroner
Gunnar Schornick
Richard Baur
Alexander Kud
Volker Schwendemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0693117A1 publication Critical patent/EP0693117A1/de
Application granted granted Critical
Publication of EP0693117B1 publication Critical patent/EP0693117B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3703Macromolecular compounds obtained otherwise than by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3719Polyamides or polyimides
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3746Macromolecular compounds obtained by reactions only involving carbon-to-carbon unsaturated bonds
    • C11D3/3769(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines
    • C11D3/3773(Co)polymerised monomers containing nitrogen, e.g. carbonamides, nitriles or amines in liquid compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/37Polymers
    • C11D3/3788Graft polymers

Definitions

  • the invention relates to the use of carboxyl-containing Reaction products of proteins or protein hydrolyzates, which are hydrolyzed up to a maximum of dipeptides, as an additive in detergents and cleaning agents.
  • JP-A-56/012 351 are reaction products from amino acids and maleic anhydride or succinic anhydride known be produced in organic solvents.
  • the implementation products are used for example in shampoos or cleaners.
  • Detergent formulations are known from EP-A 0 455 468, the chemically modified vegetable proteins as a graying inhibitor contain.
  • the proteins are preferably converted with phthalic anhydride in an aqueous medium at pH modified by at least 8.
  • the degree of modification of the proteins is however relatively small, so that the reaction products have practically no dispersing effect and also with Use in detergents the primary washing effect of the detergents do not increase.
  • DE-A-4 033 209 describes the conversion of protein hydrolyzates a molecular weight of 200 to 20,000 with ether carboxylic acid chlorides described in aqueous medium.
  • the implementation products are used as surfactants in washing and cleaning agents.
  • the present invention is based on the object of dispersing effective additives for use in reduced phosphate and phosphate-free detergents and cleaning agents are available too put.
  • the component used to produce the reaction products a) Maleic anhydride, maleic acid, fumaric acid or Mixtures of the compounds mentioned. Preferably you bet Maleic anhydride.
  • Proteins or protein hydrolyzates come as compounds of component b) considered to be no further than up to dipeptides are hydrolyzed. All natural proteins can be considered as proteins be used.
  • the proteins can be vegetable or animal Be of origin.
  • the proteins can be in purified form or used unpurified to produce the reaction products will. Examples of a purified protein are soy protein isolate, while whey protein is an example of an unpurified Is protein. Examples of animal proteins are casein, Whey, gelatin and bone glue. Examples of vegetable proteins are the proteins from potatoes, sugar beets, marker peas, Soy, wheat and corn.
  • the protein hydrolyzates are obtained by hydrolysis of the proteins acidic, neutral, basic or fermentative conditions.
  • the hydrolysis of the proteins can vary widely be carried out, but no further than up to dipeptides.
  • the hydrolysis products can still have proportions of low molecular weight Contain peptides.
  • Mixtures can also be used as component b) from proteins and protein hydrolyzates.
  • Acid, neutral or basic hydrolyzed proteins are bone glue, Soy hydrolyzate and wheat hydrolyzate.
  • the proteins can however, they can also be treated reductively or oxidatively to get them into to convert a more water soluble form.
  • wheat gluten or soy proteins can be caused by alkali sulfite, alkali thiosulfate, Mercaptoethanol, thioglycolic acid, thiolactic acid or Alkali sulfide can be reductively pretreated.
  • the natural proteins can also contain other components such as carbohydrates, fiber components, cellulose and hemicellulose, oils or fats.
  • whey proteins contain large amounts of lactose and other carbohydrates.
  • soy milk can also contain oil and fat from the soy plant.
  • Cellulose fractions can also be contained in the soy protein.
  • the molecular weight of the proteins can be reduced or hydrolyzed to such an extent that di- and tripeptides are also present in addition to higher molecular weight protein hydrolyzates. Examples of dipeptides are:
  • tripeptides examples are:
  • synthetic proteins are polyaspartic acids that for example by polycondensation of L- or DL-aspartic acid or by thermal polycondensation of acidic ammonium salts of fumaric acid, maleic acid or malic acid are.
  • Polycondensates of glutamic acid which are polymerized of N-carboxylic anhydrides of glutamic acid and its esters are producible. All synthetic are suitable as component b) Peptides generated by the polymerization of N-carboxylic acid anhydrides are available in the manner of an anionic polymerization.
  • Such synthetic peptides are also suitable as component b), by the mixed polymerization of various N-carboxylic acid anhydrides different amino acids are available.
  • Soy proteins are preferably used as component b), Wheat, potatoes, whey, casein and gelatin.
  • the acid number is obtained by reacting components a) with b) of proteins increases.
  • the acid number is the amount required Sodium hydroxide solution to neutralize 1 g of the reaction product is needed. It is included, for example, by titration Determined with the help of 0.1 N sodium hydroxide solution.
  • the acid numbers of the proteins are between 0 and 1, while the acid numbers of the reaction products at least 1.5 mmol sodium hydroxide solution / g reaction product be.
  • the acid numbers of the hydrolyzed proteins can up to 1.3 mmol sodium hydroxide solution / g. You will be through the implementation the protein hydrolyzates with the compounds of the component a) further increased.
  • the acid numbers of the reaction products are preferably 1.8-10 mmol of sodium hydroxide solution / g of reaction product.
  • the compounds of components a) and b) are at temperatures implemented in the range of 90 - 300.
  • the implementation will in particular at temperatures from 120 to 300 ° C., preferably 150 up to 270 ° C under pressure, e.g. up to 30 bar.
  • the connections Component a) can be used as a solvent for the Proteins or protein hydrolyzates can be used.
  • the implementation of components a) and b) is preferably in the absence of Water carried through. A method of operation in which the implementation is particularly preferred in molten maleic anhydride.
  • the components a) and b) can be in any weight ratio implemented with each other, e.g. in a weight ratio of 99: 1 to 1:99.
  • Components a) are preferably used in excess, e.g.
  • reaction mixture is 55-90% by weight.
  • the excess components a) can after completion of the implementation can be easily removed from the reaction mixture. If for example, maleic anhydride used as component a) , you can easily do it by sublimation, distillation or Extract with solvents such as acetone or ethyl acetate remove from the reaction mixture.
  • reaction products from components a) and b) have K values (determined according to Fikentscher in 1% aqueous solution on Sodium salt at pH 7 and 25 ° C) from 10 to 100.
  • the reaction products can be in the form of the free acids or in Form of salts with alkali metal, alkaline earth metal and ammonium bases be used.
  • reaction products from components a) and b) are biological degradable according to OECD Guidelines for Testing of Chemicals, Paris 1981, 302 B (modified Zahn-Wellens test). You are too degradable according to the decrease in dissolved oxygen in the closed Bottle test and according to the modified SCAS test, cf. R. Wagner, Methods for Testing the Biochemical Degradability chemical substances, Verlag Chemie, Weinheim 1988, page 62.
  • reaction products described above or their alkali, ammonium and alkaline earth metal salts are added to phosphate-reduced or phosphate-free detergents and cleaning agents. In most cases the amount applied is Reaction products 0.1 - 30 wt .-%, based on the washing and Cleaning supplies. Under reduced phosphate detergents such terms are understood as no more than 25% by weight of phosphate, calculated as sodium triphosphate. Most phosphate-free detergents contain sodium aluminum silicate (Zeolite A).
  • the implementation products from the components a) and b) or their salts are preferably used in amounts from 1 to 20% by weight, based on the detergent or cleaning agent formulation, used. Under detergent formulations all cleaners for hard surfaces should be understood, e.g. Dishwashing detergent, industrial bottle washer cleaner, Cleaner for dairies and floor cleaning agents.
  • the reaction products are preferably in textile detergents used. They have good dispersibility in the detergent fleet for particle dirt, especially for clay minerals (Clay). This property is important because it is clay-like Soiling of textile goods is widespread.
  • the implementation products also act as a builder for detergents and cause a reduction in the incrustation during the washing process and the graying on the washed textile. they are thus also suitable as incrustation and graying inhibitors.
  • composition of the washing and cleaning formulations can be very different.
  • Detergents and cleaning agents included usually 2 to 50 wt .-% surfactants and optionally builders. This information applies to both liquid and powdery Detergents and cleaning agents. Examples of the composition of detergent formulations used in Europe, the United States and are common in Japan can be found, for example, in Chemical and Engn. News, Vol. 67, 35 (1989) tabulated. Further information on the composition of detergents and cleaning agents can WO-A-90/13581 and Ullmanns Encyklopadie Technical Chemistry, Verlag Chemie, Weinhein 1983, 4th edition, Pages 63-160 are taken.
  • Such detergent formulations are also of interest, up to 60 wt .-% of an alkali silicate and up to 10% by weight of a polycondensate according to the invention contain.
  • the alkali silicates include, for example amorphous sodium disilicates into consideration, which are described in EP-A-0 444 415 are described, as well as crystalline layered silicates, which according to EP-A-0 337 219 contained in detergent formulations as a builder are and according to EP-B-0 164 514 for softening water used, and sodium silicates by draining from sodium silicate solutions and drying up to water contents of 15 to 23, preferably 18 to 20 wt .-% are available.
  • Sodium aluminum silicates (Zeolite A) can be used in amounts up to 50% can be contained in detergents.
  • the detergents can optionally also contain a bleach, e.g. Sodium perborate, which if used in Amounts up to 30 wt .-% in the detergent formulation can be.
  • a bleach e.g. Sodium perborate
  • the detergents and cleaning agents can, if necessary contain other common additives, e.g. Complexing agents, citrates, Opacifiers, optical brighteners, enzymes, perfume oils, color transfer inhibitors, Graying inhibitors and / or bleach activators.
  • reaction products are also used as water treatment agents suitable. They are usually in amounts from 1 to 1000 ppm of water in cooling circuits, evaporators or sea water desalination plants added. They also act as a deposit inhibitor in the evaporation of sugar juice. They will Thin sugar added in amounts of 0.1 to 1000 ppm.
  • the K values of the neutralized reaction products were H. Fikentscher, Cellulose-Chemie, Volume 13, 58 to 64 and 71 to 74 (1932) in aqueous solution at a temperature of 25 ° C and one Concentration of 1 wt .-% at pH 7 on the sodium salt of the polymers certainly.
  • the quantities of maleic anhydride and protein given in Table 1 are introduced into a 500 ml pressure-tightly sealable reactor which is equipped with a stirrer and heated to a temperature of 140 ° C. under pressure for 4 h with exclusion of moisture. A solution or a slurry of the reaction product is then obtained in molten maleic anhydride.
  • 1 l of anhydrous acetone is added after the reaction mixture has cooled, the mixture is stirred for 3 h and filtered. The filter residue is then extracted with acetone in an extractor for 4 h and then dried in vacuo.
  • the reaction products listed in Table 1 are obtained, which are characterized by means of the K value and the acid number.
  • the implementation products were used for the technical tests 1 to 10 converted into the sodium salts in which 10 g of Stir powdery products in 100 ml of water and add neutralized by 10% aqueous sodium hydroxide solution until no more sodium hydroxide solution was used and an aqueous solution or slurry of the reaction products with a pH was between 7 and 8.
  • the clay dispersion was carried out as described below Clay dispersion test (CD test) assessed.
  • Finely ground china clay is used as a model for particulate dirt SPS 151 used.
  • 1 g of clay is added with the addition of 1 ml 0.1% sodium salt solution of the polyelectrolyte in 98 ml of water Intensely dispersed for 10 minutes in a standing cylinder (100 ml).
  • a standing cylinder 100 ml
  • Immediately after stirring, take from the center of the standing cylinder a 2.5 ml sample and determined after dilution to 25 ml the turbidity of the dispersion with a turbidimeter. After 30 or Samples are taken again for 60 minutes of the dispersion and how the turbidity determines above.
  • the turbidity of the dispersion is specified in NTU (nephelometric turbidity units).
  • TAV test The clay detachability (TAV test) of textile fabrics was special examined on the basis of washing tests.
  • the one described below TAV test shows the basic sound release ability of a Additives in the presence of one surfactant, but excluding others, usual detergent ingredients and is therefore independent of the chosen detergent formulation.
  • cotton / polyester fabric was mixed with a clay consisting of 33.3% each from varieties 178 / R (ocher), 262 (brown) and 84 / rf (red-brown) from Carl Jäger, Hilgert, evenly coated.
  • the types of clay are different "fat"; i.e.
  • the clay mixture was in the form of a 20% Suspension in deionized water with vigorous pumping around the Suspension brought homogeneously onto the tissue. This was done with a Jigger from Arthurs, Krefeld, at 10 meters / minute using of body goods made of 33% cotton and 67% polyester (BW / PES fabric) from Winkler, Waldshut. After 3 Runs were then completely desalted with 600 l Rinsed water once. After that, the wet tissue was in one Stenter dried at 50 ° C and 2 meters / minute drying speed. The clay fabric produced in this way contains 1.76% clay, determined by ashing at 700 ° C, 2.5 h.
  • the tissue thus obtained is pre-measured via color strength and in Classes divided. Be as a color strength range for a class 10 units set arbitrarily. The color strength range of everyone The blended fabrics used are between 260 and 340 color strength units. A washing series consisting of 6 washing attempts, is made of only one class with soiled fabric carried out.
  • washing tests were carried out under the following conditions: Washing machine Launder-o-meter Number of wash cycles 1 Number of rinsing cycles 1 Number of wash attempts 6 Washing temperature 20 - 24 ° C Washing time 15 minutes
  • Fleet quantity 500 g PU -Water + 80 ppm ethoxylated oxo alcohol (C 13 / C 15 -oxo alcohol + 8 EO)
  • Water hardness (Ca 2+ + Mg 2+ ) 1 mmol / l Molar ratio ca 2+ : Mg 2+ : HCO 3 3: 1: 6 pH 10 + 0.1
  • Test concentration of the polymer 80 ppm Dirty tissue 5 g clay fabric ( ⁇ 30.5 cm x 8 cm)
  • White tissue or clean tissue 5 g PES / BW fabric ⁇ 30 cm x 8 cm
  • weighting factors for eye irritation ( X 10 ( ⁇ ) + Y 10 ( ⁇ ) + Z. 10 ( ⁇ )) are shown in the table below: ⁇ (nm) Weighting factors ( X 10 ( ⁇ ) + Y 10 ( ⁇ ) + Z. 10 ( ⁇ )) 400 0.1071 420 1.1984 440 2.4131 460 2.1759 480 1.1062 500 0.6831 520 0.9402 540 1.3525 560 1.7025 580 1.8831 600 1.7823 620 1.2544 640 0.6114 660 0.2129 680 0.0568 700 0.0133
  • the weighting with the eye irritation function of humans should be Weight slight yellowing of the fabric more.
  • the exact Derivation of the mathematical evaluation was carried out by A. Kud in Tenside, Surfactants, Detergents, Vol. 28, 497 ff (1991).
  • the polymers to be used according to the invention were after TAV test described above, cf. Examples 10 to 18. The results obtained are together with the results Comparative Examples 3 and 4 in the table described below 3 specified. As can be seen from this occurs by adding the polymers to be used according to the invention to the aqueous Solution of the nonionic surfactant an increase in the primary washing effect on.
  • Example 10 was repeated with the only exception that the test was carried out in the absence of reaction product 1, ie the effect of a surfactant solution containing 80 ppm of the surfactant used in Examples 10 to 18 was tested.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Description

Die Erfindung betrifft die Verwendung von Carboxylgruppen enthaltenden Umsetzungsprodukten von Proteinen oder Proteinhydrolysaten, die höchstens bis zu Dipeptiden hydrolysiert sind, als Zusatz in Wasch- und Reinigungsmitteln.
Aus Z. Chem. Band 25, 18-19 (1985) ist die Umsetzung von Aminosäuren oder Peptiden mit Maleinsäureanhydrid in Essigsäure bekannt.
Aus der JP-A-56/012 351 sind Umsetzungsprodukte aus Aminosäuren und Maleinsäureanhydrid oder Bernsteinsäureanhydrid bekannt, die in organischen Lösemitteln hergestellt werden. Die Umsetzungsprodukte werden beispielsweise in Shampoos oder Reinigern verwendet.
Aus der EP-A 0 455 468 sind Waschmittelformulierungen bekannt, die chemisch modifizierte pflanzliche Proteine als Vergrauungsinhibitor enthalten. Die Proteine werden vorzugsweise durch Umsetzung mit Phthalsäureanhydrid in wäßrigem Medium bei einem pH-Wert von mindestens 8 modifiziert. Der Grad der Modifizierung der Proteine ist jedoch relativ gering, so daß die Umsetzungsprodukte praktisch keine dispergierende Wirkung aufweisen und auch beim Einsatz in Waschmitteln die Primärwaschwirkung der Waschmittel nicht erhöhen.
In der DE-A-4 033 209 wird die Umsetzung von Proteinhydrolysaten eines Molgewichts von 200 bis 20 000 mit Ethercarbonsäurechloriden in wäßrigem Medium beschrieben. Die Umsetzungsprodukte werden als Tenside in Wasch- und Reinigungsmitteln verwendet.
Aus der EP-A-0457205 ist die Verwendung von wasserlöslichen oder wasserdispergierbaren gepfropften Proteinen als Zusatz zu Wasch- und Reinigungsmitteln in Mengen von 0,1 bis 20 Gew.-%, bezogen auf die jeweiligen Formulierungen, bekannt. Die gepfropften Proteine werden durch radikalisch initiierte Copolymerisation von monoethylenisch ungesättigten Monomeren in Gegenwart von Proteinen hergestellt.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, dispergierend wirkende Zusätze für den Einsatz in phosphatreduzierten und phosphatfreien Wasch- und Reinigungsmitteln zur Verfügung zu stellen.
Die Aufgabe wird erfindungsgemäß gelöst, durch Verwendung von Carboxylgruppen enthaltenden Umsetzungsprodukten, die durch Reaktion von
  • a) Maleinsäureanhydrid, Maleinsäure und/oder Fumarsäure und
  • b) natürlichen Proteinen und/oder deren Hydrolysaten, die nicht weiter als bis zu Dipeptiden hydrolysiert sind,
  • bei Temperaturen von 120 bis 300°C unter Druck in Abwesenheit Radikale bildender Initiatoren, eines wäßrigen Mediums und eines organischen Lösemittels zu Umsetzungsprodukten mit einer Säurezahl von mindestens 1,5 mmol NaOH/g Umsetzungsprodukt erhältlich sind, als Zusatz zu phosphatreduzierten und phosphatfreien Wasch- und Reinigungsmitteln.
    Zur Herstellung der Umsetzungsprodukte verwendet man als Komponente a) Maleinsäureanhydrid, Maleinsäure, Fumarsäure oder Mischungen der genannten Verbindungen. Vorzugsweise setzt man Maleinsäureanhydrid ein.
    Als Verbindungen der Komponente b) kommen Proteine oder Proteinhydrolysate in Betracht, die nicht weiter als bis zu Dipeptiden hydrolysiert sind. Als Proteine können alle natürlichen Proteine eingesetzt werden. Die Proteine können pflanzlichen oder tierischen Ursprungs sein. Die Proteine können in gereinigter Form oder ungereinigt zur Herstellung der Umsetzungsprodukte eingesetzt werden. Beispiele für ein gereinigtes Protein ist Sojaproteinisolat, während Molkenprotein ein Beispiel für ein ungereinigtes Protein ist. Beispiele für tierische Proteine sind Casein, Molke, Gelatine und Knochenleim. Beispiele für pflanzliche Proteine sind die Proteine aus Kartoffeln, Zuckerrüben, Markerbsen, Soja, Weizen und Mais.
    Die Proteinhydrolysate werden durch Hydrolyse der Proteine unter sauren, neutralen, basischen oder fermentativen Bedingungen hergestellt. Die Hydrolyse der Proteine kann unterschiedlich weit durchgeführt werden, jedoch nicht weiter als bis zu Dipeptiden. Die Hydrolyseprodukte können noch Anteile an niedrigmolekularen Peptiden enthalten. Als Komponente b) kann man auch Mischungen aus Proteinen und Proteinhydrolysaten einsetzen. Beispiele für sauer, neutral oder basisch hydrolysierte Proteine sind Knochenleim, Sojahydrolysate und Weizenhydrolysate. Die Proteine können jedoch auch reduktiv oder oxidativ behandelt werden, um sie in eine besser in Wasser lösliche Form zu überführen. Beispielsweise können Weizengluten oder Sojaproteine durch Alkalisulfit, Alkalithiosulfat, Mercaptoethanol, Thioglykolsäure, Thiomilchsäure oder Alkalisulfid reduktiv vorbehandelt werden. Sie können auch mit Oxidationsmitteln, z.B. mit Wasserstoffperoxid, Peressigsäure, Peroxiden, Natrium- oder Kaliumperoxodisulfat, Sauerstoff oder Salpetersäure behandelt werden.
    Die natürlichen Proteine können herkunftsbedingt auch andere Bestandteile wie Kohlenhydrate, Faserbestandteile, Cellulose und Hemicellulose, Öle oder Fette enthalten. Beispielsweise enthalten Molkeproteine neben geringen Mengen an Fett und Öl der Milch größere Mengen Laktose und andere Kohlenhydrate. Sojamilch kann neben den Sojaproteinen noch Öl- und Fettanteile aus der Sojapflanze aufweisen. Auch Celluloseanteile können im Sojaprotein enthalten sein. Die Proteine können im Molekulargewicht so weit erniedrigt bzw. hydrolysiert werden, daß neben höhermolekularen Proteinhydrolysaten auch Di- und Tripeptide vorliegen. Beispiele für Dipeptide sind:
    Figure 00040001
    Beispiele für Tripeptide sind:
    Figure 00040002
    Die oben verwendeten Abkürzungen bedeuten:
    Figure 00040003
    Beispiele für synthetische Proteine sind Polyasparaginsäuren, die beispielsweise durch Polykondensation von L- oder DL-Asparaginsäure oder durch thermische Polykondensation von sauren Ammoniumsalzen der Fumarsäure, Maleinsäure oder Äpfelsäure erhältlich sind. Polykondensate der Glutaminsäure, die durch Polymerisieren von N-Carbonsäureanhydriden der Glutaminsäure und ihrer Ester herstellbar sind. Als Komponente b) eignen sich alle synthetischen Peptide, die durch Polymerisation von N-Carbonsäureanhydriden nach Art einer anionischen Polymerisation erhältlich sind. Als Komponente b) eignen sich außerdem solche synthetischen Peptide, die durch Mischpolymerisation von verschiedenen N-Carbonsäureanhydriden unterschiedlicher Aminosäuren erhältlich sind.
    Als Komponente b) verwendet man vorzugsweise Proteine aus Soja, Weizen, Kartoffeln, Molke, Casein und Gelatine.
    Durch die Umsetzung der Komponenten a) mit b) wird die Säurezahl der Proteine erhöht. Die Säurezahl ist die erforderliche Menge an Natronlauge, die zur Neutralisation von 1 g des Umsetzungsproduktes benötigt wird. Sie wird beispielsweise durch Titration mit Hilfe von 0,1 N-Natronlauge ermittelt. Die Säurezahlen der Proteine betragen zwischen 0 und 1, während die Säurezahlen der Umsetzungsprodukte mindestens 1,5 mmol Natronlauge/g Umsetzungsprodukt betragen. Die Säurezahlen der hydrolysierten Proteine können bis zu 1,3 mmol Natronlauge/g betragen. Sie werden durch die Umsetzung der Proteinhydrolysate mit den Verbindungen der Komponente a) weiter erhöht. Die Säurezahlen der Umsetzungsprodukte betragen vorzugsweise 1,8 - 10 mmol Natronlauge/g Umsetzungsprodukt.
    Die Verbindungen der Komponenten a) und b) werden bei Temperaturen in dem Bereich von 90 - 300 umgesetzt. Die Umsetzung wird insbesondere bei Temperaturen von 120 bis 300°C, vorzugsweise 150 bis 270°C unter Druck, z.B. bis zu 30 bar, durchgeführt. Die Verbindungen der Komponente a) können dabei als Lösemittel für die Proteine oder Proteinhydrolysate verwendet werden. Die Umsetzung der Komponenten a) und b) wird vorzugsweise in Abwesenheit von Wasser durchgefürht. Besonders bevorzugt ist eine Arbeitsweise, bei der man die Umsetzung in geschmolzenem Maleinsäureanhydrid durchführt. Die Komponenten a) und b) können in jedem beliebigen Gewichtsverhältnis miteinander umgesetzt werden, z.B. im Gewichtsverhältnis 99:1 bis 1:99. Vorzugsweise setzt man die Komponenten a) im Überschuß ein, z.B. beträgt ihr Anteil in der Reaktionsmischung 55 - 90 Gew.-%. Die überschüssigen Komponenten a) können nach Beendigung der Umsetzung leicht aus dem Reaktionsgemisch entfernt werden. Wenn beispielsweise Maleinsäureanhydrid als Komponente a) eingesetzt wurde, kann man es leicht durch Sublimieren, Destillieren oder Extrahieren mit Lösemitteln, wie Aceton oder Essigsäureethylester aus der Reaktionsmischung entfernen.
    Die Umsetzungsprodukte aus den Komponenten a) und b) haben K-Werte (bestimmt nach Fikentscher in 1 %iger wäßriger Lösung am Natriumsalz bei pH 7 und 25°C) von 10 bis 100.
    Die Umsetzungsprodukte können in Form der freien Säuren oder in Form der Salze mit Alkalimetall-, Erdalkalimetall- und Ammoniumbasen eingesetzt werden. Zur Herstellung der Salze fügt man üblicherweise zu einer wäßrigen Lösung der Umsetzungsprodukte bzw. zu einer Aufschlämmung der Umsetzungsprodukte in Wasser eine Base oder eine Mischung mehrerer Basen zu.Geeignet sind beispielsweise Natronlauge, Kalilauge, Soda, Pottasche, Natriumhydrogencarbonat, Kaliumhydrogencarbonat, Kalziumhydroxyd, Kalziumoxid, Bariumhydroxyd, Magnesiumhydroxyd oder Magnesiumoxid sowie Ammoniak und Amine wie Methylamin, Ethylamin, n-Propylamin, Isopropylamin, n-Butylamin, Isobutylamin, Ethanolamin, Diethanolamin, Triethanolamin, Morpholin und Cyclohexylamin.
    Die Umsetzungsprodukte aus den Komponenten a) und b) sind biologisch abbaubar nach OECD Guidelines for Testing of Chemicals, Paris 1981, 302 B (modifizierter Zahn-Wellens-Test). Sie sind auch abbaubar gemäß der Abnahme des gelösten Sauerstoffs im geschlossenen Flaschentest sowie gemäß dem modifizierten SCAS-Test, vgl. R. Wagner, Methoden zur Prüfung der biochemischen Abbaubarkeit chemischer Substanzen, Verlag Chemie, Weinheim 1988, Seite 62.
    Die oben beschriebenen Umsetzungsprodukte bzw. ihre Alkali-, Ammonium- und Erdalkalimetallsalze werden als Zusatz zu phosphatreduzierten oder phosphatfreien Wasch- und Reinigungsmitteln verwendet. In den meisten Fällen beträgt die angewendete Menge an Umsetzungsprodukten 0,1 - 30 Gew.-%, bezogen auf die Wasch- und Reinigungsmittel. Unter phosphatreduzierten Waschmitteln sollen solche Formulierungen verstanden werden, die nicht mehr als 25 Gew.-% Phosphat, berechnet als Natriumtriphosphat enthalten. Phosphatfreie Waschmittel enthalten größtenteils Natriumaluminium-silikat (Zeolith A). Die Umsetzungsprodukte aus den Komponenten a) und b) bzw. deren Salze werden vorzugsweise in Mengen von 1 bis 20 Gew.-%, bezogen auf die Wasch- oder Reinigungsmittelformulierung, eingesetzt. Unter Reinigungsmittelformulierungen sollen sämtliche Reiniger für harte Oberflächen verstanden werden, z.B. Geschirreiniger, Reiniger für die industrielle Flaschenwäsche, Reiniger für Molkereibetriebe und Fußbodenreinigungsmittel.
    Die Umsetzungsprodukte werden vorzugsweise in Textilwaschmitteln eingesetzt. Sie besitzen in der Waschmittelflotte ein gutes Dispergiervermögen für Partikelschmutz, insbesondere für Tonmineralien (Clay). Diese Eigenschaft ist deshalb wichtig, weil lehmartige Verschmutzungen von Textilgut weit verbreitet sind. Die Umsetzungsprodukte wirken außerdem als Builder für Waschmittel und bewirken während des Waschvorgangs eine Reduktion der Inkrustierung und der Vergrauung auf dem gewaschenen Textilgut. Sie sind somit auch als Inkrustations- und Vergrauungsinhibitoren geeignet.
    Die Zusammensetzung der Wasch- und Reinigungsformulierungen kann sehr unterschiedlich sein. Wasch- und Reinigungsmittel enthalten üblicherweise 2 bis 50 Gew.-% Tenside und gegebenenfalls Builder. Diese Angaben gelten sowohl für flüssige als auch für pulverförmige Wasch- und Reinigungsmittel. Beispiele für die Zusammensetzung von Waschmittelformulierungen, die in Europa, in den USA und in Japan gebräuchlich sind, findet man beispielsweise in Chemical and Engn. News, Band 67, 35 (1989) tabellarisch zusammengestellt. Weitere Angaben über die Zusammensetzung von Wasch- und Reinigungsmitteln können der WO-A-90/13581 sowie Ullmanns Encyklopädie der technischen Chemie, Verlag Chemie, Weinhein 1983, 4. Auflage, Seiten 63-160 entnommen werden. Außerdem sind solche Waschmittelformulierungen von Interesse, die bis zu 60 Gew.-% eines Alkalisilikats und bis zu 10 Gew.-% eines erfindungsgemäßen Polykondensats enthalten. Als Alkalisilikate kommen beispielsweise die amorphen Natriumdisilikate in Betracht, die in der EP-A-0 444 415 beschrieben werden, sowie kristalline Schichtsilikate, die gemäß der EP-A-0 337 219 in Waschmittelformulierungen als Builder enthalten sind und gemäß der EP-B-0 164 514 zur Enthärtung von Wasser verwendet werden, und Natriumsilikate, die durch Entwässern von Natriumsilikatlösungen und Trocknen bis zu Wassergehalten von 15 bis 23, vorzugsweise 18 bis 20 Gew.-% erhältlich sind. Natriumaluminium-silikate (Zeolith A) können in Mengen bis zu 50 % in Waschmitteln enthalten sein.
    Die Waschmittel können gegebenenfalls noch ein Bleichmittel enthalten, z.B. Natriumperborat, das im Fall seines Einsatzes in Mengen bis zu 30 Gew.-% in der Waschmittelformulierung enthalten sein kann. Die Wasch- und Reinigungsmittel können gegebenenfalls weitere übliche Zusätze enthalten, z.B. Komplexbildner, Citrate, Trübungsmittel, optische Aufheller, Enzyme, Parfümöle, Farbübertragungsinhibitoren, Vergrauungsinhibitoren und/oder Bleichaktivatoren.
    Die Umsetzungsprodukte sind außerdem als Wasserbehandlungsmittel geeignet. Sie werden dabei üblicherweise in Mengen von 1 bis 1000 ppm dem Wasser in Kühlkreisläufen, Verdampfern oder Meerwasserentsalzungsanlagen zugesetzt. Sie wirken außerdem als Belagsverhinderer bei der Eindampfung von Zuckersaft. Sie werden dem Zuckerdünnsaft in Mengen von 0,1 bis 1000 ppm zugesetzt.
    Die K-Werte der neutralisierten Umsetzungsprodukte wurden nach H. Fikentscher, Cellulose-Chemie, Band 13, 58 bis 64 und 71 bis 74 (1932) in wäßriger Lösung bei einer Temperatur von 25°C und einer Konzentration von 1 Gew.-% bei pH 7 am Natriumsalz der Polymeren bestimmt.
    Beispiele Allgemeine Herstellvorschrift für die Umsetzungsprodukte
    In einem 500 ml fassenden druckdicht verschließbaren Reaktor, der mit einem Rührer ausgestattet ist, werden die in Tabelle 1 angegebenen Mengen an Maleinsäureanhydrid und Protein eingefüllt und unter Feuchtigkeitsausschluß für 4 h auf eine Temperatur von 140°C unter Druck erhitzt. Man erhält dann eine Lösung bzw. eine Aufschlämmung des Umsetzungsproduktes in geschmolzenem Maleinsäureanhydrid. Um die Reaktionsmischung zu reinigen, fügt man nach dem Erkalten des Reaktionsgemisches 1 l wasserfreies Aceton zu, rührt die Mischung 3 h und filtriert. Der Filterrückstand wird anschließend 4 h in einem Extrahierapparat mit Aceton extrahiert und danach im Vakuum getrocknet. Man erhält dabei die in der Tabelle 1 angegebenen Umsetzungsprodukte, die mit Hilfe des K-Wertes und der Säurezahl charakterisiert sind.
    Figure 00090001
    Für die anwendungstechnischen Prüfungen wurden die Umsetzungsprodukte 1 bis 10 in die Natriumsalze überführt, in dem man 10 g der pulvrigen Produkte in 100 ml Wasser aufrührte und durch Zugabe von 10 %iger wäßriger Natronlauge solange neutralisierte, bis keine Natronlauge mehr verbraucht wurde und eine wäßrige Lösung oder Aufschlämmung der Umsetzungsprodukte mit einem pH-Wert zwischen 7 und 8 entstanden war.
    Anwendungstechnische Beispiele
    Die Clay-Dispergierung wurde nach dem im folgenden beschriebenen Clay-Dispergiertest (CD-Test) beurteilt.
    CD-Test
    Als Modell für partikulären Schmutz wird feingemahlener China-Clay SPS 151 benutzt. 1 g Clay wird unter Zusatz von 1 ml einer 0,1 %igen Natriumsalzlösung des Polyelektrolyten in 98 ml Wasser 10 Minuten in einem Standzylinder (100 ml) intensiv dispergiert. Sofort nach dem Rühren nimmt man aus der Mitte des Standzylinders eine Probe von 2,5 ml und bestimmt nach dem Verdünnen auf 25 ml die Trübung der Dispersion mit einem Turbidimeter. Nach 30- bzw. 60-minütiger Standzeit der Dispersion werden erneut Proben genommen und wie oben die Trübung bestimmt. Die Trübung der Dispersion wird in NTU (nephelometric turbidity units) angegeben. Je weniger sich die Dispersion während der Lagerung absetzt, desto höher sind die gemessenen Trübungswerte und um so stabiler ist die Dispersion. Als zweite physikalische Meßgröße wird die Dispersionskonstante bestimmt, die das zeitliche Verhalten des Sedimentationsprozesses beschreibt. Da der Sedimentationsprozeß annähernd durch ein monoexpotentielles Zeitgesetzt beschrieben werden kann, gibt τ die Zeit an, in der die Trübung auf 1/e-tel des Ausgangs zustandes zum Zeitpunkt t=O abfällt.
    Je höher ein Wert für τ ist, um so langsamer setzt sich die Dispersion ab.
    Figure 00110001
    Test auf Primärwaschvermögen
    Speziell wurde das Tonablösevermögen (TAV-Test) von Textilgewebe an Hand von Waschversuchen untersucht. Der im Folgenden beschriebene TAV-Test zeigt das prinzipielle Tonablösevermögen eines Additivs in Gegenwart eines Tensids, jedoch unter Ausschluß anderer, üblicher Waschmittelingredentien und ist demzufolge unabhängig von der gewählten Waschmittelformulierung. Tonmineralien sind gefärbt und geben bei einer Ablagerung auf dem Gewebe diesem einen Farbschleier. Um die Primärwaschwirkung von Ton auf dem Gewebe zu erfassen, wurde Baumwoll/Polyestergewebe mit einer Tonmischung bestehend aus je 33,3 % aus den Sorten 178/R (ockerfarben), 262 (braun) und 84/rf (rotbraun) der Fa. Carl Jäger, Hilgert, gleichmäßig beschichtet. Die Tonsorten sind unterschiedlich "fett"; d.h. sie unterscheiden sich im Gehalt an Aluminium-, Eisen- und Manganoxid. Die Tonmischung wurde in Form einer 20 %igen Suspension in vollentsalztem Wasser unter kräftigem Umpumpen der Suspension homogen auf das Gewebe gebracht. Dies wurde mit einem Jigger der Fa. Küsters, Krefeld, bei 10 Meter/Minute unter Verwendung von Körperware aus 33 % Baumwolle und 67 % Polyester (BW/ PES-Gewebe) der Fa. Winkler, Waldshut, durchgeführt. Nach 3 Durchläufen wurde anschließend mit 600 1 vollständig entsalztem Wasser ein Mal gespült. Danach wurde das nasse Gewebe in einem Spannrahmen bei 50°C und 2 Meter/Minute Trockengeschwindigkeit getrocknet. Das auf diese Weise hergestellte Tongewebe enthält 1,76 % Ton, bestimmt durch Veraschung bei 700°C, 2,5 h.
    Das so erhaltene Gewebe wird via Farbstärke vorgemessen und in Klassen eingeteilt. Als Farbstärkebereich für eine Klasse werden 10 Einheiten willkürlich vorgegeben. Der Farbstärkebereich aller Klassen liegt bei dem verwendeten Mischgewebe zwischen 260 und 340 Farbstärkeeinheiten. Eine Waschserie, bestehend aus 6 Waschversuchen, wird mit angeschmutztem Gewebe aus nur einer Klasse durchgeführt.
    Die Waschversuche (TAV-Test) wurden unter folgenden Bedingungen durchgeführt:
    Waschgerät Launder-o-meter
    Anzahl der Waschzyklen 1
    Anzahl der Spülzyklen 1
    Anzahl der Waschversuche 6
    Waschtemperatur 20 - 24°C
    Waschdauer 15 min
    Flottenmenge 500 g VE-Wasser + 80 ppm ethoxilierter Oxoalkohol (C13/C15-Oxoalkohol + 8 EO)
    Wasserhärte (Ca2+ + Mg2+) 1 mmol/l
    Molverhältnis ca2+: Mg2+:HCO3 3:1:6
    pH 10 + 0,1
    Testkonzentration des Polymer 80 ppm
    Schmutzgewebe 5 g Tongewebe (∼ 30,5 cm x 8 cm)
    Weißgewebe bzw. sauberes Gewebe 5 g PES/BW-Gewebe
    (∼ 30 cm x 8 cm)
    Nach dem Spülen mit 500 g Wasser (Härte 1 mmol/l Ca2+ und Mg2+), 20°C, 1 min im Launder-o-meter werden die Gewebe geschleudert und anschließend zum Trocknen einzeln aufgehängt. Vermessen wird das Gewebe mit einem Elrepho 2000 der Fa. Data Color, Heidenheim, und zwar 6 Meßpunkte pro Gewebestück. Der für die Auswertung verwendete Wellenlängenbereich beträgt 400 - 700 nm. Gemessen wird der Reflexionsgrad als Funktion der Wellenlänge. Als Referenz dient Bariumsulfat. Aus den Remissionswerten wird nach W. Baumann, R. Broßmann, B.T. Gröbel, N. Kleinemeier, M. Kraver, A.t. Leaver und H.-P. Oesch; Melliand Textilberichte Band 67, 562 ff. (1986), die Farbstärke mit Wichtung der Augenreizfunktion berechnet. Die Wichtungsfaktoren für die Augenreizfunktion (X 10(λ) + Y 10(λ) + Z 10(λ)) sind der nachfolgenden Tabelle zu entnehmen:
    λ (nm) Wichtungsfaktoren (X 10(λ) + Y 10(λ) + Z 10(λ))
    400 0,1071
    420 1,1984
    440 2,4131
    460 2,1759
    480 1,1062
    500 0,6831
    520 0,9402
    540 1,3525
    560 1,7025
    580 1,8831
    600 1,7823
    620 1,2544
    640 0,6114
    660 0,2129
    680 0,0568
    700 0,0133
    Die Wichtung mit der Augenreizfunktion des Menschen soll schon leichte Vergilbungen des Gewebes stärker gewichten. Die genaue Herleitung der mathematischen Auswertung wurde von A. Kud in Tenside, Surfactants, Detergents, Band 28, 497 ff (1991), beschrieben.
    Die Primärwaschwirkung in % wird nach der folgenden Gleichung berechnet: P = (fs,b - fs,a)/(fs,b - fs,o) · 100
    fs,b =
    Farbstärke des angeschmutzten Gewebes (Tongewebe) vor dem Waschen
    fs,a =
    Farbstärke des angeschmutzten Gewebes nach dem Waschen
    fs,o =
    Farbstärke des sauberen Gewebes vor der Anschmutzung (Schmutzgewebe vor der Anschmutzung).
    Die Verwendung der Farbstärke zur Berechnung der Primärwaschwirkung hat im Vergleich zur Remission bei einer Wellenlänge oder dem in der Literatur verwendeten K/S-Werten (K = Absorptionskoeffizient und S = Streukoeffizient) bei einer Wellenlänge den Vorteil, daß der sichtbare Bereich des Spektrums erfaßt wird und Schmutzpartikel aller Farben berücksichtigt werden.
    Die erfindungsgemäß zu verwendenden Polymere wurden nach dem oben beschriebenen TAV-Test geprüft, vgl. Beispiele 10 bis 18. Die dabei erhaltenen Ergebnisse sind zusammen mit den Ergebnissen der im folgenden beschriebenen Vergleichsbeispiele 3 und 4 in Tabelle 3 angegeben. Wie daraus ersichtlich ist, tritt durch Zugabe der erfindungsgemäß zu verwendenden Polymeren zu der wäßrigen Lösung des nichtionischen Tensids eine Erhöhung der Primärwaschwirkung auf.
    Vergleichsbeispiel 3
    Anstelle der in den Beispielen 10 bis 18 eingesetzten Umsetzungsprodukte verwendete man dieselbe Menge, d.h. 80 ppm, Citronensäure in Form des Mono-natriumsalzes.
    Vergleichsbeispiel 4
    Beispiel 10 wurde mit der einzigen Ausnahme wiederholt, daß man den Test in Abwesenheit des Umsetzungsprodukts 1 durchführte, d.h. die Wirkung einer Tensidlösung prüfte, die 80 ppm des in den Beispielen 10 bis 18 verwendeten Tensids enthielt.
    Beispiel Nr. Umsetzungsprodukt Nr. Wirkung [%] bei Test auf
    Ton-Ablöse-Vermögen
    10 1 62,0
    11 2 62,7
    12 3 64,5
    13 4 61,1
    14 5 65,0
    15 6 60,0
    16 7 59,2
    17 8 56,4
    18 10 58,1
    Vergleichsbeispiel
    3 - 55,3
    4 - 55,3

    Claims (3)

    1. Verwendung von Carboxylgruppen enthaltenden Umsetzungsprodukten, die durch Reaktion von
      (a) Maleinsäureanhydrid, Maleinsäure und/oder Fumarsäure und
      (b) natürlichen Proteinen und/oder deren Hydrolysaten, die nicht weiter als bis zu Dipeptiden hydrolysiert sind,
      bei Temperaturen von 120 bis 300°C unter Druck in Abwesenheit Radikale bildender Initiatoren, eines wäßrigen Mediums und eines organischen Lösemittels zu Umsetzungsprodukten mit einer Säurezahl von mindestens 1,5 mmol NaOH/g Umsetzungsprodukt erhältlich sind, als Zusatz zu phosphatreduzierten und phosphatfreien Wasch- und Reinigungsmitteln.
    2. Verwendung nach Anspruch 1, dadurch gekennzeichnet, daß man als Komponente (a) Maleinsäureanhydrid einsetzt.
    3. Verwendung nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man Proteine aus Soja, Weizen, Kartoffeln, Molke, Casein oder Gelatine einsetzt.
    EP94912550A 1993-04-10 1994-03-29 Verwendung von carboxylgruppen enthaltenden umsetzungsprodukten von proteinen oder proteinhydrolysaten in wasch- und reinigungsmitteln Expired - Lifetime EP0693117B1 (de)

    Applications Claiming Priority (3)

    Application Number Priority Date Filing Date Title
    DE4311854 1993-04-10
    DE4311854A DE4311854A1 (de) 1993-04-10 1993-04-10 Verwendung von Carboxylgruppen enthaltenden Umsetzungsprodukten von Proteinen oder Proteinhydrolysaten in Wasch- und Reinigungsmitteln
    PCT/EP1994/000982 WO1994024254A1 (de) 1993-04-10 1994-03-29 Verwendung von carboxylgruppen enthaltenden umsetzungsprodukten von proteinen oder proteinhydrolysaten in wasch- und reinigungsmitteln

    Publications (2)

    Publication Number Publication Date
    EP0693117A1 EP0693117A1 (de) 1996-01-24
    EP0693117B1 true EP0693117B1 (de) 1998-05-27

    Family

    ID=6485241

    Family Applications (1)

    Application Number Title Priority Date Filing Date
    EP94912550A Expired - Lifetime EP0693117B1 (de) 1993-04-10 1994-03-29 Verwendung von carboxylgruppen enthaltenden umsetzungsprodukten von proteinen oder proteinhydrolysaten in wasch- und reinigungsmitteln

    Country Status (4)

    Country Link
    US (1) US5665693A (de)
    EP (1) EP0693117B1 (de)
    DE (2) DE4311854A1 (de)
    WO (1) WO1994024254A1 (de)

    Families Citing this family (9)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE4428638A1 (de) * 1994-08-12 1996-02-15 Basf Ag Verfahren zur Herstellung von Polykondensaten der Asparaginsäure und Verwendung der Polykondensate
    DE19511859A1 (de) * 1995-03-31 1996-10-02 Basf Ag Verfahren zur Herstellung von Mischungen aus Polyasparaginsäuren und acylierten Polyasparaginsäuren
    EP1009791A1 (de) * 1997-08-08 2000-06-21 The Procter & Gamble Company Wäschewaschmittelzusammensetzungen mit polymer auf basis von aminosäure, um die aussehen- und integrität-eigenschaften der damit gewaschenen wäsche zu besitzen
    US6407053B1 (en) 1997-08-08 2002-06-18 The Procter & Gamble Company Laundry detergent compositions with amino acid based polymers to provide appearance and integrity benefits to fabrics laundered therewith
    US6214786B1 (en) 1997-08-08 2001-04-10 The Procter & Gamble Company Laundry detergent compositions with amino acid based polymers to provide appearance and integrity benefits to fabrics laundered therewith
    US5952288A (en) * 1997-10-06 1999-09-14 Colgate-Palmolive Co. Protein containing cleaning compositions
    NL1019878C1 (nl) 2002-01-31 2003-08-04 Inv Promotion Opvouwbaar doel voor buitenspel.
    US20060005316A1 (en) * 2004-07-07 2006-01-12 Durrant Edward E Carbonated cleaning composition and method of use
    CA2518298A1 (fr) * 2005-09-06 2007-03-06 Chaimed Technologies Inc. Polymeres biodegradables, leur preparation et leur usage pour la fabrication de pansements

    Family Cites Families (11)

    * Cited by examiner, † Cited by third party
    Publication number Priority date Publication date Assignee Title
    DE1470429A1 (de) * 1964-06-16 1969-06-12 Wella Ag Verfahren zur Darstellung von modifizierten Harzen auf Eiweissbasis
    DE2056814C3 (de) * 1970-11-19 1973-09-27 Chemische Werke Huels Ag, 4370 Marl Waschmittel mit einem Gehalt an einer Gerustsubstanz
    JPS5612351A (en) * 1979-07-13 1981-02-06 Tokyo Fine Chem Kk N-short-chain acylaminoacid and its preparation
    JP2616960B2 (ja) * 1988-05-26 1997-06-04 日本油脂株式会社 水系ゲル化剤および水系ゲル
    JP2803265B2 (ja) * 1989-12-26 1998-09-24 日本油脂株式会社 変性ポリペプチドおよびその用途
    US5112520A (en) * 1990-04-30 1992-05-12 Protein Technologies International, Inc. Method for improving the soil anti-redeposition properties of washing detergents and product
    DE4016002A1 (de) * 1990-05-18 1991-11-21 Basf Ag Verwendung von wasserloeslichen oder wasserdispergierbaren gepfropften proteinen als zusatz zu wasch- und reinigungsmitteln
    DE4033209A1 (de) * 1990-10-19 1992-04-23 Henkel Kgaa Oberflaechenaktive ethercarbonsaeure-derivate
    DE4221875A1 (de) * 1992-07-03 1994-01-05 Basf Ag Modifizierte Polyasparaginsäuren, Verfahren zu ihrer Herstellung und ihre Verwendung
    US5442038A (en) * 1993-10-06 1995-08-15 Srchem, Inc. Polymers of maleic acid with amines
    US5408029A (en) * 1993-10-06 1995-04-18 Srchem, Inc. Amino acid copolymers of maleic acid

    Also Published As

    Publication number Publication date
    DE59406092D1 (de) 1998-07-02
    EP0693117A1 (de) 1996-01-24
    WO1994024254A1 (de) 1994-10-27
    DE4311854A1 (de) 1994-10-13
    US5665693A (en) 1997-09-09

    Similar Documents

    Publication Publication Date Title
    EP0740696B1 (de) Verwendung von Polyasparaginsäure in Waschmittel
    EP0648241B1 (de) Modifizierte polyasparaginsäuren, verfahren zu ihrer herstellung und ihre verwendung
    DE19516957C2 (de) Wasserlösliche Copolymere und Verfahren zu ihrer Herstellung und ihre Verwendung
    DE69026908T2 (de) Biologisch abbaubare, wasserlösliche Pfropfcopolymere, Zusammensetzungen solcher Copolymere und Verfahren für die Anwendung solcher Copolymere
    DE69418403T2 (de) Verfahren zur Herstellung von Aminosäureteilchen
    EP0457205B1 (de) Verwendung von wasserlöslichen oder wasserdispergierbaren gepfropften Proteinen als Zusatz zu Wasch- und Reinigungsmitteln
    DE69223819T2 (de) Biologisch abbaubare Polymere, Verfahren zur Herstellung derartiger Polymere und Zusammensetzungen die derartige Polymere enthalten
    DE60112275T2 (de) Schmutzlösende polymere und diese enthaltende waschmittelzusammensetzungen
    DE69507066T2 (de) Wässeriges Verfahren zur Herstellung von Polymeren mit niedrigem Molekulargewicht
    EP0609777A2 (de) Waschmittelzusammensetzung mit verbessertem Schmutztragevermögen, Verfahren zu dessen Herstellung und Verwendung eines geeigneten Polycarboxylats hierfür
    DE4008696A1 (de) Verfahren zur herstellung von homo- und copolymerisaten monoethylenisch ungesaettigter dicarbonsaeuren und ihre verwendung
    DE2335044A1 (de) Waschmittel
    DE3915070A1 (de) Isopropanolloesliche copolymerisate, die polyalkylenoxid-bloecke enthaltende monomere einpolymerisiert enthalten, ihre herstellung und ihre verwendung
    EP0693117B1 (de) Verwendung von carboxylgruppen enthaltenden umsetzungsprodukten von proteinen oder proteinhydrolysaten in wasch- und reinigungsmitteln
    EP0689555B1 (de) Polycokondensate auf basis von asparaginsäure, verfahren zu ihrer herstellung und ihre verwendung
    DE1915652C3 (de)
    DE1915652A1 (de) Wasch-,Bleich- und Reinigungsmittel
    DE2025238B2 (de) Pulverförmige Wasch- und Reinigungsmittel
    EP0849355A2 (de) Pulverförmige Wasch- und Reinigungsmittel-Komponente
    EP0874891B1 (de) Verwendung von modifizierten polyasparaginsäuren in waschmitteln
    DE2544242B2 (de)
    DE1960140A1 (de) Wasch- Bleich- und Reinigungsmittel
    DE69635422T2 (de) Aminonitril-Zwischenprodukte zur Herstellung von 2-Hydroxyethyliminodiessigsäure
    DE2539071A1 (de) Verfahren zum waschen von textilien sowie mittel zur durchfuehrung des verfahrens
    DE1955429A1 (de) Wasch-,Bleich- und Reinigungsmittel

    Legal Events

    Date Code Title Description
    PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

    Free format text: ORIGINAL CODE: 0009012

    17P Request for examination filed

    Effective date: 19950814

    AK Designated contracting states

    Kind code of ref document: A1

    Designated state(s): DE FR GB

    17Q First examination report despatched

    Effective date: 19960911

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAG Despatch of communication of intention to grant

    Free format text: ORIGINAL CODE: EPIDOS AGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAH Despatch of communication of intention to grant a patent

    Free format text: ORIGINAL CODE: EPIDOS IGRA

    GRAA (expected) grant

    Free format text: ORIGINAL CODE: 0009210

    AK Designated contracting states

    Kind code of ref document: B1

    Designated state(s): DE FR GB

    REF Corresponds to:

    Ref document number: 59406092

    Country of ref document: DE

    Date of ref document: 19980702

    GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

    Effective date: 19980619

    ET Fr: translation filed
    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: DE

    Free format text: LAPSE BECAUSE OF THE APPLICANT RENOUNCES

    Effective date: 19990316

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: GB

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19990329

    PLBE No opposition filed within time limit

    Free format text: ORIGINAL CODE: 0009261

    STAA Information on the status of an ep patent application or granted ep patent

    Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

    26N No opposition filed
    GBPC Gb: european patent ceased through non-payment of renewal fee

    Effective date: 19990329

    PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

    Ref country code: FR

    Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

    Effective date: 19991130

    REG Reference to a national code

    Ref country code: FR

    Ref legal event code: ST