EP0691049A1 - Schaltungsanordnung zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals - Google Patents

Schaltungsanordnung zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals

Info

Publication number
EP0691049A1
EP0691049A1 EP94911061A EP94911061A EP0691049A1 EP 0691049 A1 EP0691049 A1 EP 0691049A1 EP 94911061 A EP94911061 A EP 94911061A EP 94911061 A EP94911061 A EP 94911061A EP 0691049 A1 EP0691049 A1 EP 0691049A1
Authority
EP
European Patent Office
Prior art keywords
signal
signals
multiplied
quality
circuit arrangement
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94911061A
Other languages
English (en)
French (fr)
Other versions
EP0691049B1 (de
Inventor
Djahanyar Chahabadi
Matthias Hermann
Lothar Vogt
Juergen Kaesser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blaupunkt Werke GmbH
Original Assignee
Blaupunkt Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4309518A external-priority patent/DE4309518A1/de
Application filed by Blaupunkt Werke GmbH filed Critical Blaupunkt Werke GmbH
Publication of EP0691049A1 publication Critical patent/EP0691049A1/de
Application granted granted Critical
Publication of EP0691049B1 publication Critical patent/EP0691049B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/12Arrangements for observation, testing or troubleshooting
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving

Definitions

  • Circuit arrangement for deriving a quality signal which is dependent on the quality of a received multiplex signal
  • the invention relates to a circuit arrangement for deriving a quality signal dependent on the quality of a received multiplex signal in a stereo radio receiver, the multiplex signal being a sum signal (L + R) in baseband, a subcarrier modulated with a difference signal (LR) and a pilot signal with half Frequency of the subcarrier contains.
  • the reception quality can fluctuate greatly - for example due to drops in the received field strength, through multi-path reception or through the reception of interference signals.
  • various measures for masking these interference in the LF signal are known. For example, if reception is poor, it is possible to temporarily attenuate the LF signal or the
  • the object of the present invention is to provide a circuit arrangement for deriving at least one quality signal which is dependent on the quality of a received signal.
  • This object is achieved in that the multiplex signal is multiplied in digital form with a reference carrier obtained from a sampling clock generated in the radio receiver in two phase positions shifted by 90 ° with respect to one another in that the mixed signals resulting from the multiplication each have a correction signal to form corrected mixed signals are multiplied, that the corrected mixed signals are added and fed together with the sum signal to a matrix circuit to form stereo audio signals (L, R), that the mixed signals are further multiplied by the other correction signal and that the products of these multiplications are subtracted from one another and low-pass filtered become.
  • the circuit arrangement according to the invention enables the detection of audible interference and is based on the evaluation of the symmetry of the auxiliary carrier-frequency stereo difference signal. It is essential in this procedure that an undisturbed signal due to the
  • Two-sideband amplitude modulation must be symmetrical to the carrier. In the circuit arrangement according to the invention, this symmetry is ensured in the case of an undisturbed signal by feeding the side bands to be compared in the correct phase. An asymmetry therefore leads to the conclusion that there is an audible disturbance in the LF signal.
  • a further development of the invention contributes to symmetry in the undisturbed case in an advantageous manner in that, in order to form the correction signals, the multiplex signal is multiplied by a reference pilot signal phase-coupled with the reference carrier in two phase positions shifted by 90 ° with respect to one another, in that the resulting further mixed signals are low-pass filtered and that the low-pass filtered further mixed signals for Formation of the first correction signal are squared and subtracted from one another and are multiplied with one another and with two to form the second correction signal.
  • the effect of a fluctuation in the amplitude of the pilot signal which is not relevant for the purposes of the circuit arrangement according to the invention can be suppressed by squaring and adding the low-pass filtered further mixed signals to form a signal representing the amplitude of the pilot signal and by the correction signals using the amplitude of the pilot signal representing signal can be controlled in the sense of normalizing their amplitude.
  • the direction of the asymmetry of the sidebands is not important, so that an amount is provided after the low-pass filter. This is preferably done by squaring.
  • the quality signal derived with the circuit arrangement may well be an analog signal which can assume intermediate values between two limit values.
  • a binary signal can be used for many purposes.
  • One embodiment of the invention therefore provides that the amount formed is compared with a threshold value and the comparison result is output as a quality signal.
  • FIG. 1 is a block diagram of the circuit arrangement according to the invention
  • FIG. 2 shows a block diagram of a part of a circuit arrangement for deriving the correction signals and which is only shown schematically in FIG. 1
  • Fig. 3 is a block diagram of one in the
  • circuit arrangement according to the invention is limited to implementation using individual circuits corresponding to the blocks. Rather, the circuit arrangement according to the invention can be implemented in a particularly advantageous manner with the aid of highly integrated circuits. In this case, digital signal processors can be used which, with suitable programming, carry out the processing steps shown in the block diagrams.
  • the circuit arrangement according to the invention together with further circuit arrangements within an integrated circuit, can form essential parts of a radio receiver.
  • a digital multiplex signal MPX is supplied via an input 1, which contains a sum signal L + R, a subcarrier modulated with a difference signal L-R and a pilot signal in a manner known per se.
  • VHF stereo broadcasting has a frequency of 38 kHz, while the pilot signal has a frequency of 19 kHz.
  • the angular frequency of the pilot signal is referred to below as w.
  • multipliers 2, 3, 4, 5 and an adder 6 are provided in the stereo decoder according to FIG. 1, from whose output the demodulated difference signal LR together with the multiplex signal one of two further adders via a further multiplier 7 8, 9 existing matrix circuit is supplied.
  • the decoded digital stereo audio signals L and R reach outputs 12, 13 via two low-pass filters 10, 11.
  • the multiplex signal is first multiplied by a reference carrier, the multiplication in 3 being carried out with a reference carrier which is phase-shifted by 90 ° compared to the multiplication in 2.
  • the samples of the reference carriers are read from a table 14, the frequency of the reference carriers being an integer fraction of the sampling frequency on which the multiplex signal is based.
  • the sampling frequency is generated in a manner known per se in the radio receiver.
  • the multiplex signal has the following form:
  • MPXn ( v Ln + Rn) + (Ln-Rn) ' « sin (2wpn * T + 2 ⁇ ) + V ⁇ « sin (wpn « T + ⁇ ).
  • the signals Imr1 and Imr2 are fed to further multipliers 4, 5, the output signals of which - hereinafter referred to as further mixed signals - can be described as follows:
  • Ims1 ⁇ - (Ln-Rn) • cos2cccos2 ⁇ .
  • Ims2 -i (Ln-Rn) • sin2ccsin2 ⁇
  • the subsequent matrix circuit from the adders 8, 9 and the low-pass filters 10, 11 then generate the digital output signals L and R.
  • the low-pass filters can also be designed such that in addition to the suppression of the frequencies above the useful signal, the de-emphasis is carried out.
  • the generation of the correction signals G38c and G38s supplied to the multipliers 4 and 5 is first explained below with reference to FIG. 1.
  • the multiplex signal MPX First multiplied by two reference pilot signals sin (wt) and cos (wt), which are phase-shifted by 90 ° with respect to one another and are read from a table 16.
  • the output signals of these circuits are fed to the network 21, with the aid of which the correction signals G38s and G38c are derived. Before a description of the other parts of FIG. 1, the network 21 is described in more detail with reference to FIGS.
  • the signals SPC1 and SPC2 supplied via the inputs 23, 24 are squared at 25, 26 and multiplied at 27.
  • the squared signals SPC1 and SPC2 are subtracted from each other at 28 and added at 29.
  • the product of the two signals is multiplied by "2 1 at 30, so that the following signals are generated:
  • the quantity A characterizes the amplitude of the received pilot signal and is converted with the aid of a subtractor 31 and a threshold value circuit 32 into a switching signal STI which can be taken from an output 33 and used to indicate stereo reception.
  • the signals F38c and F38s are freed from the component A with the aid of filters 34, 35, to which the signal A is also supplied, so that the influence of fluctuations in the amplitude of the pilot signal on the stereo decoding is eliminated.
  • the signals G38c and G38s freed from component A can Outputs 36, 37 are removed and fed to the multipliers 4, 5 (FIG. 1).
  • FIG. 3 An embodiment of the filters 34, 35 is shown in FIG. 3. It consists of two adders 41, 42, two
  • Inputs 46, 47, 48 are fed signals F38c and A and a real number ⁇ , with which the step size can be controlled.
  • the signal at the output 49 of the filter according to FIG. 3 then results
  • G38sn G38sn-_1. + ⁇ (F38sn - A « G38sn- .1).
  • the number ⁇ can be fixed. However, it is also possible to vary the number ⁇ and thus the settling time, for example to implement a short settling time corresponding to a high bandwidth of the filter immediately after a transmitter has been reset, which is then reduced to a smaller bandwidth for the purpose of improving the signal-to-noise ratio.
  • the parts 50 to 59 of the circuit arrangement according to FIG. 1 represent a symmetry detector, the function of which is based on the fact that when the
  • Stereo multiplex signal with a reference carrier which is in quadrature with the carrier of the stereo difference signal, in the case of sidebands with the same high amplitude, no output signal is produced.
  • a signal is generated in any case in stereo decoders with quadrature demodulation of the carrier-frequency stereo difference signal, in which multiplication is carried out with two reference carriers which are phase-shifted by 90 ° and the phase position relative to the carrier is determined by a PLL circuit.
  • the signal obtained from the demodulation of the quadrature component can be fed directly to a low-pass filter 53, which is followed by a sampling rate conversion 54 around the divider 24.
  • An amount is then formed at 55, whereupon the resulting signal SD1 is compared with a threshold value SDS at 56 and 57.
  • the comparison result is evaluated in such a way that the signal ASD at the output 59 has the value 1 if the signal SD1 is greater than the threshold value SDS.
  • the signal processing described below is required before the low-pass filtering at 53.
  • the signal Imr1 is multiplied by the correction signal G38s.
  • the signal Imr2 is multiplied at 51 by the correction signal G38c.
  • the output signals of the multipliers 50, 51 are subtracted from one another at 52 and fed to the low-pass filter 53.
  • the signal ASD representing the reception quality can be used to switch from stereo to mono reception and can be supplied to the multiplier 7 instead of the signal D, for example.
  • other quantities can be used to form the signal D, such as the received field strength via the amplitude of the IF signal or spectral components in the multiplex signal above 60 kHz. These criteria can also be combined in a suitable manner, which is indicated in FIG. 1 in the form of a circuit 22.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Noise Elimination (AREA)

Abstract

Bei einer Schaltungsanordnung zur Ableitung eines von der Qualität eines empfangenen Multiplexsignals abhängigen Qualitätssignals in einem Stereo-Rundfunkempfänger, wobei das Multiplexsignal ein Summensignal (L+R) im Basisband, einen mit einem Differenzsignal (L-R) modulierten Hilfsträger und ein Pilotsignal mit der halben Frequenz des Hilfsträgers enthält, wird das Multiplexsignal in digitaler Form mit einem aus einem im Rundfunkempfänger erzeugten Abtasttakt gewonnenen Referenzträger in zwei um 90° gegeneinander verschobenen Phasenlagen multipliziert. Die durch die Multiplikation entstehenden Mischsignale werden mit je einem Korrektursignal unter Bildung von korrigierten Mischsignalen multipliziert, die addiert und zusammen mit dem Summensignal einer Matrixschaltung zur Bildung von Stereo-Audiosignalen (L, R) zugeführt werden. Die Mischsignale werden ferner mit dem jeweils anderen Korrektursignal multipliziert. Die Produkte dieser Multiplikationen werden voneinander subtrahiert und tiefpaßgefiltert.

Description

Schaltungsanordnung zur Ableitung eines von der Qualität eines empfangenen Multiplexsignals abhängigen Qualitätssignals
Die Erfindung betrifft eine Schaltungsanordnung zur Ableitung eines von der Qualität eines empfangenen Multiplexsignals abhängigen Qualitätssignals in einem Stereo-Rundfunkempfänger, wobei das Multiplexsignal ein Summensignal (L+R) im Basisband, einen mit einem Differenzsignal (L-R) modulierten Hilfsträger und ein Pilotsignal mit der halben Frequenz des Hilfsträgers enthält.
Insbesondere bei Autoradios kann die Empfangsqualität stark schwanken - beispielsweise durch Einbrüche der empfangenen Feldstärke, durch Mehrwegeempfang oder durch Empfang von Störsignalen. Um die dadurch bedingten Störungen möglichst gering zu halten, sind verschiedene Maßnahmen zur Maskierung dieser Störungen im NF-Signal bekannt. So ist es beispielsweise bei einem schlechten Empfang möglich, das NF-Signal vorübergehend zu dämpfen oder die
Stereokanaltrennung zu verringern. Diese bekannten Maßnahmen setzen allerdings voraus, daß die Signalqualität einwandfrei bestimmt werden kann.
Aufgabe der vorliegenden Erfindung ist es, eine Schaltungsanordnung zur Ableitung mindestens eines von der Qualität eines empfangenen Signals abhängigen Qualitätssignals anzugeben. Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Multiplexsignal in digitaler Form mit einem aus einem im Rundfunkempfänger erzeugten Abtasttakt gewonnenen Referenzträger in zwei um 90° gegeneinander verschobenen Phasenlagen multipliziert wird, daß die durch die Multiplikation entstehenden Mischsignale mit je einem Korrektursignal unter Bildung von korrigierten Mischsignalen multipliziert werden, daß die korrigierten Mischsignale addiert und zusammen mit dem Summensignal einer Matrixschaltung zur Bildung von Stereo-Audiosignalen (L, R) zugeführt werden, daß die Mischsignale ferner mit dem jeweils anderen Korrektursignal multipliziert werden und daß die Produkte dieser Multiplikationen voneinander subtrahiert und tiefpaßgefiltert werden.
Die erfindungsgemäße Schaltungsanordnung ermöglicht die Erkennung von hörbaren Störungen und beruht auf der Auswertung der Symmetrie des hilfsträgerfrequenten Stereo-Differenzsignals. Wesentlich ist bei diesem Vorgehen, daß ein ungestörtes Signal aufgrund der
Zwei-Seitenband-Amplitudenmodulation symmetrisch zum Träger sein muß. Bei der erfindungsgemäßen Schaltungsanordnung ist diese Symmetrie im Falle eines ungestörten Signals durch eine phasenrichtige Zuführung der zu vergleichenden Seitenbänder gewährleistet. Eine Asymmetrie läßt daher den Schluß zu, daß eine im NF-Signal hörbare Störung vorliegt.
Eine Weiterbildung der Erfindung trägt zu einer Symmetrie im ungestörten Fall in vorteilhafter Weise dadurch bei, daß zur Bildung der Korrektursignale das Multiplexsignal mit einem mit dem Referenzträger phasenverkoppelten Referenz-Pilotsignal in zwei um 90° gegeneinander verschobenen Phasenlagen multipliziert wird, daß die entstehenden weiteren Mischsignale tiefpaßgefiltert werden und daß die tiefpaßgefilterten weiteren Mischsignale zur Bildung des ersten Korrektursignals quadriert und voneinander subtrahiert werden und zur Bildung des zweiten Korrektursignals miteinander und mit zwei multipliziert werden.
Die Auswirkung einer für die Zwecke der erfindungsgemäßen Schaltungsanordnung nicht relevanten Schwankung der Amplitude des Pilotsignals kann dadurch unterdrückt werden, daß die tiefpaßgefilterten weiteren Mischsignale zur Bildung eines die Amplitude des Pilotsignals darstellenden Signals quadriert und addiert werden und daß die Korrektursignale mit Hilfe des die Amplitude des Pilotsignals darstellenden Signals im Sinne einer Normierung ihrer Amplitude gesteuert werden.
Im allgemeinen ist die Richtung der Asymmetrie der Seitenbänder nicht von Bedeutung, so daß nach dem Tiefpaß eine Betragsbildung vorgesehen ist. Diese erfolgt vorzugsweise durch eine Quadrierung.
Das mit der Schaltungsanordnung abgeleitete Qualitätssignal kann durchaus ein Analogsignal sein, das zwischen zwei Grenzwerten Zwischenwerte einnehmen kann. Für viele Zwecke ist jedoch ein Binärsignal anwendbar. Eine Ausgestaltung der Erfindung sieht daher vor, daß der gebildete Betrag mit einem Schwellwert verglichen und das Vergleichsergebnis als Qualitätssignal ausgegeben wird.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnung anhand mehrerer Figuren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigt:
Fig. 1 ein Blockschaltbild der erfindungsgemäßen Schaltungsanordnung, Fig. 2 ein Blockschaltbild eines in Fig. 1 lediglich schematisch dargestellten Teils einer Schaltungsanordnung zur Ableitung der Korrektursignale und
Fig. 3 ein Blockschaltbild eines bei der
Schaltungsanordnung nach Fig. 2 verwendeten Filters.
Gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen. Das Ausführungsbeispiel sowie Teile davon sind zwar als Blockschaltbilder dargestellt. Dieses bedeutet jedoch nicht, daß die erfindungsgemäße Schaltungsanordnung auf eine Realisierung mit Hilfe von einzelnen den Blöcken entsprechenden Schaltungen beschränkt ist. Die erfindungsgemäße Schaltungsanordnung ist vielmehr in besonders vorteilhafter Weise mit Hilfe von hochintegrierten Schaltungen realisierbar. Dabei können digitale Signalprozessoren eingesetzt werden, welche bei geeigneter Programmierung die in den Blockschaltbildern dargestellten Verarbeitungsschritte durchführen. Die erfindungsgemäße Schaltungsanordnung kann zusammen mit weiteren Schaltungsanordnungen innerhalb einer integrierten Schaltung wesentliche Teile eines Rundfunkempfängers bilden.
Dem Stereo-Decoder nach Fig. 1 wird über einen Eingang 1 ein digitales Multiplexsignal MPX zugeführt, das in an sich bekannter Weise ein Summensignal L+R, einen mit einem Differenzsignal L-R modulierten Hilfsträger und ein Pilotsignal enthält. Bei dem eingeführten
UKW-Stereo-Rundfunk beträgt die Frequenz des Hilfsträgers 38kHz, während das Pilotsignal eine Frequenz von 19kHz aufweist. Die Kreisfrequenz des Pilotsignals wird im folgenden als w bezeichnet.
' P Zur Demodulation des trägerfrequenten Signals sind bei dem Stereo-Decoder nach Fig. 1 Multiplizierer 2, 3, 4, 5 und ein Addierer 6 vorgesehen, von dessen Ausgang über einen weiteren Multiplizierer 7 das demodulierte Differenzsignal L-R zusammen mit dem Multiplexsignal einer aus zwei weiteren Addierern 8, 9 bestehenden Matrixschaltung zugeführt wird. Über zwei Tiefpässe 10, 11 gelangen die decodierten digitalen Stereo-Audiosignale L und R zu Ausgängen 12, 13.
Mit Hilfe der Multiplizierer 2, 3 wird das Multiplexsignal zunächst mit einem Referenzträger multipliziert, wobei die Multiplikation bei 3 mit einem um 90° gegenüber der Multiplikation bei 2 phasenverschobenen Referenzträger erfolgt. Die Abtastwerte der Referenzträger werden aus einer Tabelle 14 ausgelesen, wobei die Frequenz der Referenzträger einen ganzzahligen Bruchteil der Abtastfrequenz, welcher das Multiplexsignal zugrundeliegt, beträgt. Die Abtastfrequenz wird in an sich bekannter Weise im Rundfunkempfänger erzeugt.
Bei einer vorteilhaften Abtastfrequenz von 228kHz ergeben sich sechs Abtastwerte pro Periode der Referenzträger. Die Abtastwerte des Multiplexsignals MPX ergeben sich zu MPX := MPX(n«T), wobei n wie auch bei den im folgenden aufgeführten Größen eine ganze Zahl ist, welche die einzelnen Abtastwerte bezeichnet.
Das Multiplexsignal hat folgende Form:
MPXn = (vLn+Rn) + (Ln-Rn)'«sin(2wpn*T+2α) + VÄ«sin(wpn«T+α) .
Durch die Multiplikation mit den aus der Tabelle 14 ausgelesenen Werten des Referenzträgers sin(2w t) bzw. cos(2w t) ergeben sich folgende Mischsignale:
Imr1 = MPXn«sin(2wpnT) = )«cos 2α + ... bzw. (1)
Imr2 = MPXn•cos(2wpnT) = i(Ln-Rn)-sin 2α + ... (2) Dabei ist α die Phasendifferenz zwischen dem empfangenen Pilotsignal und einem aus dem Abtasttakt innerhalb des Empfängers erzeugten Referenz-Pilotsignal. Glieder mit höherer Frequenz sind in den Gleichungen (1) und (2) nicht dargestellt, da sie später durch die Tiefpässe 10, 11 herausgefiltert werden.
Die Signale Imr1 und Imr2 werden weiteren Multiplizierern 4, 5 zugeführt, deren Ausgangssignale - im folgenden weitere Mischsignale genannt - sich wie folgt beschreiben lassen:
Ims1 = Imr1«G38c = - C n-Rn) •cos2α*G38cn
Ims2 = Imr2-G38s = -(Ln-Rn) •sin2α«G38sn.
Wie später noch zu beschreiben ist, sind die Signale G38s = sin2α und G38c = cos2α. Damit ergeben sich für die weiteren Mischsignale:
Ims1 = ^ -(Ln-Rn) •cos2cccos2α.
Ims2 = -i(Ln-Rn) •sin2ccsin2α
Damit wird das Ausgangssignal des Addierers 6 ^(L -R ) .
Durch eine geeignete Normierung mit einem zugeführten Wert
D = 2 mit Hilfe des Multiprlizierers 7 entsteht dann (Ln-Rn) .
D kann ferner dazu benutzt werden, die Kanaltrennung gleitend von Mono- auf Stereo-Empfang umzublenden. Bei Monobetrieb ist D = 0.
Die nachfolgende Matrixschaltung aus den Addierern 8, 9 und die Tiefpässe 10, 11 erzeugen dann die digitalen Ausgangssignale L bzw. R. In vorteilhafter Weise können die Tiefpässe auch derart ausgelegt sein, daß außer der Unterdrückung der Frequenzen oberhalb des Nutzsignals die Deemphase durchgeführt wird.
Im folgenden wird zunächst anhand von Fig. 1 die Erzeugung der den Multiplizierern 4 und 5 zugeführten Korrektursignale G38c und G38s erläutert. Dazu wird das Multiplexsignal MPX zunächst mit zwei um 90° gegeneinander phasenverschobenen Referenz-Pilotsignalen sin(w t) und cos(w t) multipliziert, die aus einer Tabelle 16 ausgelesen werden. Die Ausgangssignale der Multiplizierer 14, 15 werden über Tiefpässe 17, 18 geleitet, die Signale SPC1 = VA«COS α und SPC2 = JA «sin α abgeben. Wegen der im Vergleich zum Pilotsignal sehr viel niedrigeren Frequenz dieser Signale erfolgt eine Abtastratenreduzierung bei 19, 20. Damit kann im Netzwerk 21 erheblicher Aufwand erspart werden. Die Ausgangssignale dieser Schaltungen werden dem Netzwerk 21 zugeführt, mit dessen Hilfe die Korrektursignale G38s und G38c abgeleitet werden. Vor einer Beschreibung der weiteren Teile der Fig. 1 wird das Netzwerk 21 anhand der Figuren 2 und 3 genauer beschrieben.
Die über die Eingänge 23, 24 zugeführten Signale SPC1 und SPC2 werden jeweils bei 25, 26 quadriert und bei 27 miteinander multipliziert. Die quadrierten Signale SPC1 und SPC2 werden bei 28 voneinander subtrahiert und bei 29 addiert. Das Produkt aus beiden Signalen wird bei 30 mit "21 multipliziert, so daß insgesamt folgende Signale entstehen:
A = (SPC1 ) 2 + (SPC2) 2 F38c = (SPC1)2 - (SPC2)2 = A-cos 2α F38s = 2«(SPC1 • SPC2) = A«sin 2α
Die Größe A kennzeichnet die Amplitude des empfangenen Pilotsignals und wird mit Hilfe eines Subtrahierers 31 und einer Schwellwertschaltung 32 in ein Schaltsignal STI umgewandelt, das einem Ausgang 33 entnommen und zur Anzeige des Stereo-Empfangs verwendet werden kann.
Die Signale F38c und F38s werden mit Hilfe von Filtern 34, 35, denen auch das Signal A zugeführt wird, vom Anteil A befreit, damit der Einfluß von Schwankungen der Amplitude des Pilotsignals auf die Stereo-Decodierung entfällt. Die vom Anteil A befreiten Signale G38c und G38s können den Ausgängen 36, 37 entnommen und den Multiplizierern 4, 5 (Fig. 1) zugeführt werden.
Ein Ausführungsbeispiel für die Filter 34, 35 ist in Fig. 3 dargestellt. Es besteht aus zwei Addierern 41, 42, zwei
Multiplizierern 43, 44 und einem Verzögerungsglied 45.
Eingängen 46, 47, 48 werden die Signale F38c und A sowie eine reelle Zahl μ zugeführt, mit der die Schrittweite gesteuert werden kann. Das Signal am Ausgang 49 des Filters nach Fig. 3 ergibt sich dann zu
G38cn - A«G38cn-_1, ) bzw.
G38sn = G38sn-_1. + μ(F38sn - A«G38sn- .1) .
Nach einer Einschwingzeit wird G38cn = cos 2α bzw. im Falle des Filters 35 (Fig. 2) G38s = sin 2α. Die Zahl μ kann fest vorgegeben sein. Es ist jedoch auch möglich, die Zahl μ und damit die Einschwingzeit zu variieren, beispielsweise eine kurze Einschwingzeit entsprechend einer hohen Bandbreite des Filters unmittelbar nach einer Neueinstellung eines Senders zu führen, die dann auf eine geringere Bandbreite zum Zwecke der Besserung des Rauschabstandes herabgesetzt wird.
Die Teile 50 bis 59 der Schaltungsanordnung nach Fig. 1 stellen einen Symmetrie-Detektor dar, dessen Funktion darauf beruht, daß bei einer Multiplikation des
Stereo-Multiplex-Signals mit einem Referenzträger, der in Quadratur zum Träger des Stereo-Differenzsignals liegt, im Falle von Seitenbändern mit gleich hoher Amplitude kein Ausgangssignal entsteht. Ein solches Signal entsteht ohnehin bei Stereo-Decodern mit einer Quadraturdemodulation des trägerfrequenten Stereo-Differenzsignals, bei welcher eine Multiplikation mit zwei gegeneinander um 90° phasenverschobenen Referenzträgern erfolgt und die Phasenlage zum Träger durch eine PLL-Schaltung festgelegt ist. Bei der Verwendung derartiger Stereo-Decoder kann das aus der Demodulation der Quadraturkomponente gewonnene Signal unmittelbar einem Tiefpaß 53 zugeführt werden, an den sich eine Abtastratenwandlung 54 um den Teiler 24 anschließt. Danach erfolgt bei 55 eine Betragsbildung, worauf das entstandene Signal SD1 mit einem Schwellwert SDS bei 56 und 57 verglichen wird. Bei 58 wird das Vergleichsergebnis derart ausgewertet, daß das Signal ASD am Ausgang 59 den Wert 1 aufweist, wenn das Signal SD1 größer als der Schwellwert SDS ist.
Für einen Stereo-Decoder, bei welchem das hilfsträgerfrequente Stereo-Differenzsignal mit zwei gegeneinander um 90° phasenverschobenen Referenzträgem multipliziert wird, deren Phasenlage zum Träger nicht festgelegt ist, ist vor der Tiefpaßfilterung bei 53 die im folgendenen beschriebene Signalverarbeitung erforderlich. Mit dem Korrektursignal G38s wird das Signal Imr1 multipliziert. Das Signal Imr2 wird bei 51 mit dem Korrektursignal G38c multipliziert. Die Ausgangssignale der Multiplizierer 50, 51 werden bei 52 voneinander subtrahiert und dem Tiefpaßfilter 53 zugeleitet.
Das die Empfangsqualität darstellende Signal ASD kann zum Umschalten von Stereo- auf Mono-Empfang verwendet werden und beispielsweise dem Multiplizierer 7 anstelle des Signals D zugeführt werden. Zur Bildung des Signals D können jedoch außer der Symmetrie der Seitenbänder des hilfsträgerfrequenten Differenzsignals andere Größen herangezogen werden, wie beispielsweise die Empfangsfeldstärke über die Amplitude des ZF-Signals oder Spektralanteile im Multiplexsignal oberhalb von 60 kHz. Diese Kriterien können in geeigneter Weise auch kombiniert werden, was in Fig. 1 in Form einer Schaltung 22 angedeutet ist.

Claims

Ansprüche
1. Schaltungsanordnung zur Ableitung eines von der Qualität eines empfangenen Multiplexsignals abhängigen Qualitätssignals in einem Stereo-Rundfunkempfänger, wobei das Multiplexsignal ein Summensignal (L+R) im Basisband, einen mit einem Differenzsignal (L-R) modulierten Hilfsträger und ein Pilotsignal mit der halben Frequenz des Hilfsträgers enthält, dadurch gekennzeichnet,
- daß das Multiplexsignal in digitaler Form mit einem aus einem im Rundfunkempfänger erzeugten Abtasttakt gewonnenen Referenzträger in zwei um 90° gegeneinander verschobenen Phasenlagen multipliziert wird,
- daß die durch die Multiplikation entstehenden Mischsignale mit je einem Korrektursignal unter Bildung von korrigierten Mischsignalen multipliziert werden,
- daß die korrigierten Mischsignale addiert und zusammen mit dem Summensignal einer Matrixschaltung zur Bildung von Stereo-Audiosignalen (L, R) zugeführt werden, daß die Mischsignale ferner mit dem jeweils anderen Korrektursignal multipliziert werden und
- daß die Produkte dieser Multiplikationen voneinander subtrahiert und tiefpaßgefiltert werden.
2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß zur Bildung der Korrektursignale das Multiplexsignal mit einem mit dem Referenzträger phasenverkoppelten Referenz-Pilotsignal in zwei um 90° gegeneinander verschobenen Phasenlagen multipliziert wird, daß die entstehenden weiteren Mischsignale tiefpaßgefiltert werden und daß die tiefpaßgefilterten weiteren Mischsignale zur Bildung des ersten Korrektursignals quadriert und voneinander subtrahiert werden und zur Bildung des zweiten Korrektursignals miteinander und mit zwei multipliziert werden.
3. Schaltungsanordnung nach Anspruch 2, dadurch gekennzeichnet, daß die tiefpaßgefilterten weiteren Mischsignale zur Bildung eines die Amplitude des Pilotsignals darstellenden Signals quadriert und addiert werden.
4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Korrektursignale mit Hilfe des die Amplitude des Pilotsignals darstellenden Signals im Sinne einer Normierung ihrer Amplitude gesteuert werden.
5. Schaltungsanordnung nach einem der vorhergehenden Ansprüche, dadurch gekennzeichnet, daß nach dem Tiefpaß eine Betragsbildung vorgesehen ist.
6. Schaltungsanordnung nach Anspruch 5, dadurch gekennzeichnet, daß die Betragsbildung durch eine Quadrierung erfolgt.
7. Schaltungsanordnung nach einem der Ansprüche 5 oder 6, dadurch gekennzeichnet, daß der gebildete Betrag mit einem Schwellwert verglichen und das Vergleichsergebnis als Qualitätssignal ausgegeben wird.
EP94911061A 1993-03-24 1994-03-22 Verfahren zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals Expired - Lifetime EP0691049B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4309518 1993-03-24
DE4309518A DE4309518A1 (de) 1993-03-24 1993-03-24 Schaltungsanordnung zur Ableitung mindestens eines von der Qualität eines empfangenen Signals abhängigen Qualitätssignals
PCT/DE1994/000320 WO1994022228A1 (de) 1993-03-24 1994-03-22 Schaltungsanordnung zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals

Publications (2)

Publication Number Publication Date
EP0691049A1 true EP0691049A1 (de) 1996-01-10
EP0691049B1 EP0691049B1 (de) 1997-06-11

Family

ID=38729064

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94911061A Expired - Lifetime EP0691049B1 (de) 1993-03-24 1994-03-22 Verfahren zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals

Country Status (5)

Country Link
US (1) US5696830A (de)
EP (1) EP0691049B1 (de)
JP (1) JP3640669B2 (de)
DE (1) DE59403123D1 (de)
WO (1) WO1994022228A1 (de)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19630395C1 (de) * 1996-07-26 1997-10-02 Sgs Thomson Microelectronics Elektrische Stummsteuerschaltung
US20030087618A1 (en) * 2001-11-08 2003-05-08 Junsong Li Digital FM stereo decoder and method of operation
EP1852988A1 (de) * 2005-01-24 2007-11-07 Pioneer Corporation Subträger-signalgenerator und multiplex-signal-demodulator
JP4916974B2 (ja) * 2007-08-03 2012-04-18 オンセミコンダクター・トレーディング・リミテッド Fmチューナ

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4630299A (en) * 1985-02-22 1986-12-16 General Electric Company Digital circuit for decoding digitized, demodulated FM stereo signals
DE4027399C2 (de) * 1990-08-30 1995-11-30 Blaupunkt Werke Gmbh UKW-Autoradio
DE4241362C2 (de) * 1992-12-09 1997-06-05 Blaupunkt Werke Gmbh Rundfunkempfänger
DE4303387A1 (de) * 1993-02-05 1994-08-11 Blaupunkt Werke Gmbh Schaltungsanordnung zur Decodierung eines Multiplexsignals in einem Stereo-Rundfunkempfänger

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See references of WO9422228A1 *

Also Published As

Publication number Publication date
DE59403123D1 (de) 1997-07-17
US5696830A (en) 1997-12-09
EP0691049B1 (de) 1997-06-11
JPH08508142A (ja) 1996-08-27
WO1994022228A1 (de) 1994-09-29
JP3640669B2 (ja) 2005-04-20

Similar Documents

Publication Publication Date Title
EP0617519B1 (de) Verfahren zur Ableitung mindestens eines von der Qualität eines empfangenen Signals abhängigen Qualitätssignals
EP0783794B1 (de) Verfahren zur Amplituden-Demodulation
DE60121716T2 (de) Verfahren und System zur Direktkonvertierungsempfang , insbesonders eines GPS-Empfängersystem mit Hochpassfilterung
EP0627834B1 (de) Demodulator für RDS-Signale
EP0642715B1 (de) Rundfunkempfänger mit digitaler signalverarbeitung
EP0609666B1 (de) Schaltungsanordnung zur Decodierung eines Multiplexsignals in einem Stereo-Rundfunkempfänger
EP0691049B1 (de) Verfahren zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals
EP0793361B1 (de) Schaltung zur Dekodierung einer Zusatzinformation in einer Rundfunkübertragung
EP0642714B1 (de) Rundfunkempfänger mit digitaler signalverarbeitung
DE4103061C2 (de) Rundfunkempfänger
EP0691050B1 (de) Schaltungsanordnung zur ableitung von signalen zur maskierung von audiosignalen
EP0356555B1 (de) Verfahren und Schaltungsanordnung zur Feststellung des Vorhandenseins oder Nichtvorhandenseins mindestens einer Frequenz bekannten Wertes in einem aus mehreren Frequenzen zusammengesetzten Eingangssignal
DE3131892C2 (de) Frequenztrennvorrichtung
EP0185414B1 (de) FM-Stereoempfänger
DE3230606A1 (de) Huellkurvendetektor
DE69937018T2 (de) RDS Demodulator für den Empfang von Rundfunkprogrammen die Radiodatensignalen und Autofahrer Rundfunkinformationsignalen (ARI) enthalten, mit einer digitalen Filtervorrichtung die eine hohe Dämpfung des ARI Signals bewirkt
WO2008037539A1 (de) Funkempfänger
EP0642712B1 (de) Schaltungsanordnung zur ableitung eines störungen in einem empfangenen stereo-multiplexsignal anzeigenden signals
EP0751654B1 (de) Rahmensynchronisierung, insbesondere für Mehrträgermodulationssignale
DE2556056A1 (de) Stereophonie-demodulator
EP0642713B1 (de) Schaltungsanordnung zur ableitung eines störungen in einem empfangenen stereo-multiplexsignal anzeigenden signals
DE3005537A1 (de) Verfahren und vorrichtung zur beseitigung von, auf einem hoeherfrequenten uebertragungsweg angelangerten stoerungen
DE2219944A1 (de) FM-Stereo-Empfänger
DE4133197A1 (de) Fm-stereoempfangsanordnung
DE4409474A1 (de) Amplitudendemodulator

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19960222

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59403123

Country of ref document: DE

Date of ref document: 19970717

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970813

ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100331

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100327

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110322

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110322

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110322

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20120502

Year of fee payment: 19

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59403123

Country of ref document: DE

Effective date: 20131001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20131001