EP0691050B1 - Schaltungsanordnung zur ableitung von signalen zur maskierung von audiosignalen - Google Patents

Schaltungsanordnung zur ableitung von signalen zur maskierung von audiosignalen Download PDF

Info

Publication number
EP0691050B1
EP0691050B1 EP94911062A EP94911062A EP0691050B1 EP 0691050 B1 EP0691050 B1 EP 0691050B1 EP 94911062 A EP94911062 A EP 94911062A EP 94911062 A EP94911062 A EP 94911062A EP 0691050 B1 EP0691050 B1 EP 0691050B1
Authority
EP
European Patent Office
Prior art keywords
signal
signals
low
pass filter
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94911062A
Other languages
English (en)
French (fr)
Other versions
EP0691050A1 (de
Inventor
Djahanyar Chahabadi
Matthias Herrmann
Lothar Vogt
Jürgen KÄSSER
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Blaupunkt Werke GmbH
Original Assignee
Blaupunkt Werke GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Priority claimed from DE4309518A external-priority patent/DE4309518A1/de
Application filed by Blaupunkt Werke GmbH filed Critical Blaupunkt Werke GmbH
Publication of EP0691050A1 publication Critical patent/EP0691050A1/de
Application granted granted Critical
Publication of EP0691050B1 publication Critical patent/EP0691050B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/63Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for separation improvements or adjustments
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H40/00Arrangements specially adapted for receiving broadcast information
    • H04H40/18Arrangements characterised by circuits or components specially adapted for receiving
    • H04H40/27Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95
    • H04H40/36Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving
    • H04H40/45Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving
    • H04H40/72Arrangements characterised by circuits or components specially adapted for receiving specially adapted for broadcast systems covered by groups H04H20/53 - H04H20/95 specially adapted for stereophonic broadcast receiving for FM stereophonic broadcast systems receiving for noise suppression
    • HELECTRICITY
    • H04ELECTRIC COMMUNICATION TECHNIQUE
    • H04HBROADCAST COMMUNICATION
    • H04H20/00Arrangements for broadcast or for distribution combined with broadcast
    • H04H20/53Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers
    • H04H20/57Arrangements specially adapted for specific applications, e.g. for traffic information or for mobile receivers for mobile receivers

Definitions

  • the invention relates to a circuit arrangement for deriving signals for masking audio signals in a radio receiver. Due to drops in the received field strength, the reception quality can fluctuate significantly, particularly with car radios. In order to keep the resulting interference as low as possible, measures for masking these interference in audio signals are known. For example, with low reception field strength, it is possible to reduce the stereo channel separation or to temporarily attenuate the audio signals.
  • a noise reduction circuit is known from EP 0 449 199 A, by means of which interference at the output of a receiver can be reduced. For this purpose, the field strength of the received radio signal is determined. Furthermore, a noise value is tapped at the output of the radio receiver and both signals are fed to a fuzzy circuit. On the basis of the output signal of the fuzzy circuit, an attenuation circuit is now activated, which is intended to reduce the noise level at the output of the receiver.
  • a further noise reduction circuit is known from EP 0 418 036 A, in which occurring noises are damped by a low-pass filter with a variable cut-off frequency in the differential signal after the stereo demodulator is switched on.
  • the cut-off frequency is determined as a function of a control signal which is determined on the basis of the received RF level, the multipath propagation level and the spectral content of the audio signal.
  • an FM radio system is known in which the receiver also has a noise reduction circuit. To reduce noise, both the received field strength of the received signal and the spectrum at the output of the discriminator are evaluated, with frequencies above 3 kHz being considered. In the case of weak signals or relay faults, the output signal is only attenuated if the control signal for the attenuation rises above a predetermined signal-to-noise ratio.
  • the measure according to the invention further improves interference suppression.
  • this makes it possible to reduce the stereo channel separation even in the case of relatively short field strength drops, while the signals are damped as a function of the presence of interference signals in the received signal when the field strength drops are more or less short.
  • coefficients can also be stored permanently in the circuit arrangement according to the invention
  • a further development of the invention is particularly advantageous in that the coefficient or coefficients are stored in a non-volatile memory and with the aid of a microcomputer, a display device and an operating device and with the aid of a program are changeable for operator guidance.
  • This further training means that individual copies can be adapted a larger series of radio receivers to different, for example, typical operating conditions possible.
  • the coefficients can also be changed by a service workshop or by the user.
  • a further development of the invention consists in combining the weighted field strength signals to form masking signals with auxiliary signals which indicate the presence of interference signals.
  • the combination with the auxiliary signals is preferably carried out by multiplication.
  • circuit arrangement according to the invention can be implemented in various ways. For example, individual or groups of the blocks shown can be implemented using suitable circuits, in particular integrated circuits. With a very high degree of integration, it is also possible to implement the entire digital signal processing of the receiver in an integrated circuit, signal processing steps, such as filtering or nonlinear weighting, being carried out by arithmetic operations. To implement a receiver with the circuit arrangement according to the invention, digital signal processors and other digital circuits, such as shift registers, flip-flops etc., can also be arranged together within an integrated circuit.
  • a signal H3 is fed to an input 1 which corresponds to the received field strength in is substantially proportional and is referred to below as auxiliary signal H3.
  • This is averaged in two low-pass filters 2, 3 with different time constants.
  • a changeover switch 4 forwards one of the output signals of the low-pass filters 2, 3 as a signal AMC depending on a signal DD2 to be explained later.
  • This is weighted at 5 to generate a signal AFE indicating the noise attenuation and can be removed at an output 6.
  • the signal WF with a smaller time constant is also weighted at 7 and can be taken from an output 8 as signal WF2.
  • Coefficients K1, K2 required for weighting are stored in a non-volatile memory 9 and are supplied to the circuits 5, 7 via a microcomputer 10.
  • K1 and K2 can be individual coefficients or a group of coefficients.
  • a display device 11 and an input device 12 are connected to the microcomputer 10.
  • the microcomputer 10 is provided with a program which allows the setting of the coefficients in a menu-driven manner.
  • Fig. 2 shows details of the circuit 7 (Fig. 1).
  • the signal WF can be fed to an input 15, while inputs 16, 17 are fed to coefficients K1.1 and K1.2.
  • a multiplier 18 the signal WF is multiplied by the coefficient K1.1.
  • the product is then added to the coefficient K1.2 at 19.
  • the output signal of the adder 19 is compared with the value 0 at 20 and replaced with the value 0 in the case of negative values with the aid of a changeover switch 21.
  • Fig. 3 shows an example of a circuit 5 (Fig. 1), in which the signal AMC supplied at 23 with an am Input 24 applied coefficient K2 is multiplied by 25.
  • the signal AFE can be taken from an output 26.
  • the dependence of the stereo channel separation SK shown in FIG. 4 on the reception field strength E can be set with the aid of the coefficients K1.1 and K1.2.
  • a solid and a dashed curve are shown as examples.
  • the coefficient K1.1 is essentially the slope and the coefficient K1.2 the shift on the field strength axis.
  • the curve shown includes the dependency of the stereo channel separation on the signal WF2, which is given by characteristics within the stereo decoder.
  • Fig. 5 shows the attenuation L as a function of the received field strength E for two different values of the coefficient K2.
  • Fig. 6 shows a second embodiment.
  • the auxiliary signals H1, H2 and H3 are fed to inputs 45, 46, 27.
  • the auxiliary signal H3 characterizing the reception field strength is averaged in two low-pass filters 28, 29 with different time constants.
  • a changeover switch 30 forwards one of the output signals of the low-pass filters 28, 29 as the signal AMC. This is weighted at 32 in the form of a noise curve to generate the noise attenuation AFE.
  • the field strength signal with the smaller time constant is also weighted at 31 (signal WF2). This is multiplied at 33 by a signal AT1 to form the control signal D, which is available at the output 34.
  • auxiliary signals H2 and H3 are used to generate the signal DD2, the generation of which is explained in more detail in connection with FIG. 7.
  • the auxiliary signal H1 representing the spectral components above the useful range of the stereo multiplex signal is first squared at 35, thereby forming a measure of the energy content of these components. This is passed through a threshold value detector at 36, so that a signal AHD arises which indicates the presence of spectral components with an energy lying above a predetermined threshold.
  • the auxiliary signal H2 formed from the symmetry signal SY (FIG. 1) is passed via a threshold value detector 37 ', the output signal ASD of which thus indicates asymmetries which exceed a predetermined threshold.
  • Such asymmetries indicate, among other things, the presence of adjacent channel interference.
  • both detectors 36, 37 are provided, the output signals AHD and ASD of which are routed via a controllable logic network 38.
  • this has the advantage that, in the case of pure mono broadcasts in which no carrier-frequency stereo signal is transmitted, the signal DD2 is derived from the auxiliary signal H1. It is also possible to derive the DD2 signal using stereo signal transmission methods that deviate from the European standard - for example, the FMX method in the USA.
  • the logical network 38 enables a selection or a logical combination of the two signals AHD and ASD to the signal DD1.
  • the logical network 38 can be formed in a simple manner from a controllable four-way switch, the inputs of which are the signals AHD and ASD, an OR combination of these signals and an AND combination these signals can be fed.
  • the signal DD1 is then available at the output of the controllable changeover switch and is fed to a pulse width discriminator 39. This ensures that the signal DD2 only indicates a fault when the signal DD1 is active for an adjustable minimum time.
  • the signal DD2 serves as a trigger signal for two asymmetrical integrators 40, 41. These essentially each contain a counter which jumps to 0 or another predetermined value at the moment of triggering and retains it as long as the signal DD2 is at 0. If the signal DD2 then assumes the logic level 1, the output signals AT1 and AMU of the asymmetrical integrators 40, 41 increase linearly to a maximum value with adjustable time constants.
  • the signal AT1 is fed to a multiplier 33 together with the field strength signal WF2 weighted at 32.
  • the output signal AMU of the asymmetrical integrator 41 is multiplied at 42 by the signal AFE, which results in a signal AFE_AMU which effects an attenuation of the audio signals by means of the multipliers 9, 10 (FIG. 1) by a maximum of 33 dB. This signal can be found in the circuit at output 43.
  • the exemplary embodiments explained with reference to FIGS. 1 to 6 are parts of a radio receiver with digital signal processing, for which an exemplary embodiment is shown in FIG. 7.
  • the signal received via an antenna 51 is amplified, selected and demodulated in a receiving part (tuner) 52 in a manner known per se.
  • a stereo multiplex signal MPX1 with a sampling rate of 456 kHz is available at an output 53 of the receiving part 52.
  • a low-pass filter 55 is provided before the sampling rate reduction 54.
  • a low-pass filter with a flat frequency response in the pass band is required for proper further processing of the stereo multiplex signal.
  • a simpler low-pass filter with a decreasing frequency response is provided in the exemplary embodiment.
  • the drop in frequency response is compensated in a subsequent compensation filter 56.
  • the stereo multiplex signal MPX2 is then routed via a circuit 57 for automatic interference suppression, which repeats the sample values before the start of the interference until the end of the interference, in particular when spark interference occurs.
  • This circuit is followed by a stereo decoder 58, which generates two audio signals L, R, which are passed to outputs 61, 62 via multipliers 59, 60. From there, the audio signals are fed to the loudspeakers via NF amplifiers.
  • a signal is generated from the stereo multiplex signal MPX1 with the aid of a high pass 63 and a decimation circuit 64 which contains signal components above the useful frequency range of the stereo multiplex signal, but which are folded into a lower frequency range by the decimation.
  • This signal MPX3 indicates various faults, for example the faults caused by spark from vehicles. It is used on the one hand to control the circuit 57 for automatic interference suppression and on the other hand to form the auxiliary signal H1 by decimation of the sampling rate to 9.5 kHz at 65.
  • the auxiliary signal H2 whose sampling rate is also 9.5 kHz is formed by low-pass filtering at 66 and decimation at 67 from a symmetry signal SY. This in turn is shaped in the stereo decoder 58. It is known that the stereo subcarrier is amplitude-demodulated to form the differential signal LR. This is done by multiplying the subcarrier by a subcarrier of the same phase position regenerated in the radio receiver. In the stereo decoder 58, the stereo subcarrier is additionally multiplied by a carrier rotated by 90 ° with respect to the reference carrier, thereby producing a signal which is 0 for symmetrical sidebands of the stereo subcarrier and deviates from 0 accordingly for asymmetries. The further auxiliary signal H2 is formed from this signal by low-pass filtering at 66 and decimation at 67.
  • the receiving part 52 emits a signal AM, which is produced by amplitude demodulation of the FM intermediate frequency signal.
  • this likewise has a sampling rate of 456 kHz and is decimated by a factor of 48 after a low-pass filtering 69 at 70, so that the resulting third auxiliary signal H3 has a sampling rate of 9.5 kHz.
  • control signals D and AFE_AMU the sampling rate of which is initially 9.5 kHz, but is increased to 228 kHz at 72 and 73. This is done by interpolating 24 samples each, which in the simplest case consists in repeating each sample 24 times.
  • the control signal D is fed to a control input of the stereo decoder 58 and is used there to switch over to mono operation in the event of a disturbed reception.
  • the signal AFE_AMU is fed to the multipliers 59 and 60, as a result of which the volume (masking) is reduced when there are faults.

Landscapes

  • Engineering & Computer Science (AREA)
  • Signal Processing (AREA)
  • Noise Elimination (AREA)
  • Stereo-Broadcasting Methods (AREA)
  • Circuits Of Receivers In General (AREA)
  • Reduction Or Emphasis Of Bandwidth Of Signals (AREA)

Abstract

Bei einer Schaltungsanordnung zur Ableitung von Signalen zur Maskierung von Audiosignalen in einem Rundfunkempfänger wird ein der Empfangsfeldstärke im wesentlichen proportionales Signal über einen Tiefpaßfilter geleitet und anschließend mit einer vorgegebenen Funktion gewichtet.

Description

  • Die Erfindung betrifft eine Schaltungsanordnung zur Ableitung von Signalen zur Maskierung von Audiosignalen in einem Rundfunkempfänger. Durch Einbrüche der empfangenen Feldstärke kann insbesondere bei Autoradios die Empfangsqualität stark schwanken. Um die dadurch bedingten Störungen möglichst gering zu halten, sind Maßnahmen zur Maskierung dieser Störungen in Audiosignalen bekannt. So ist es beispielsweise bei geringer Empfangsfeldstärke möglich, die Stereo-Kanaltrennung zu verringern oder die Audiosignale vorübergehend zu dämpfen.
  • Aus der EP 0 449 199 A ist ein Geräuschreduzierungsschaltkreis bekannt, mittels dem Störungen am Ausgang eines Empfängers reduziert werden können. Hierzu wird die Feldstärke des empfangenen Rundfunksignals ermittelt. Weiterhin wird ein Geräuschwert am Ausgang des Rundfunkempfängers abgegriffen und beide Signale einer Fuzzyschaltung zugeführt. Aufgrund des Ausgangssignals der Fuzzyschaltung wird nunmehr eine Abschwächschaltung angesteuert, die den Geräuschpegel am Ausgang des Empfängers verringern soll. Aus der EP 0 418 036 A ist eine weitere Geräuschreduktionsschaltung bekannt, in der auftretende Geräusche dadurch bedämpft werden, indem ein Tiefpaßfilter mit variabler Grenzfrequenz in das Differenzsignal nach dem Stereodemodulator eingeschaltet ist. Die Grenzfrequenz wird in Abhängigkeit von einem Kontrollsignal ermittelt, das aufgrund des empfangenen HF-Pegels, des Mehrwegeausbreitungspegels sowie des Spektralinhaltes des Audiosignales bestimmt wird. Und schließlich ist aus der WO 89/02198 ein FM-Funksystem bekannt, bei dem der Empfänger ebenfalls einen Geräuschreduktionsschaltkreis aufweist. Zur Geräuschreduktion wird sowohl die Empfangsfeldstärke des empfangenen Signals ausgewertet als auch das Spektrum am Ausgang des Diskriminators, wobei Frequenzen über 3 kHz betrachtet werden. Das Ausgangssignal wird bei schwachen Signalen oder Relaisstörungen nur dann abgeschwächt, wenn das Kontrollsignal für die Abschwächung über einem vorgegebenen Signalgeräuschabstand ansteigt.
  • Durch die erfindungsgemäße Maßnahme wird eine weitere Verbesserung der Störunterdrückung erreicht. Insbesondere wird es dadurch möglich, die Stereokanaltrennung auch bei relativ kurzen Feldstärke-Einbrüchen zu vermindern, während die Dämpfung der Signale in Abhängigkeit vom Vorliegen von Störsignalen im Empfangssignal bei mehr oder weniger kurzen Feldstärkeeinbrüchen erfolgt.
  • Vorteilhafte Weiterbildungen und Verbesserungen ergeben sich aus den Unteransprüchen. Obwohl bei der erfindungsgemäßen Schaltungsanordnung die Koeffizienten auch fest gespeichert sein können, ist eine Weiterbildung der Erfindung dadurch besonders vorteilhaft, daß der beziehungsweise die Koeffizienten in einem nicht flüchtigen Speicher abgelegt sind und mit Hilfe eines Mikrocomputers, einer Anzeigevorrichtung und einer Bedienvorrichtung und mit Hilfe eines Programmes zur Bedienerführung veränderbar sind. Durch diese Weiterbildung ist eine Anpassung einzelner Exemplare einer größeren Serie von Rundfunkempfängern an verschiedene, beispielsweise landestypische Einsatzbedingungen, möglich. Auch eine Änderung der Koeffizienten durch eine Servicewerkstatt oder auch durch den Benutzer kann ermöglicht werden.
  • Eine weitere Weiterbildung der Erfindung besteht darin, daß die gewichteten Feldstärkesignale zur Bildung von Maskierungssignalen mit Hilfssignalen kombiniert werden, welche das Vorliegen von Störsignalen anzeigen. Dabei erfolgt vorzugsweise die Kombination mit den Hilfssignalen durch Multiplikation.
  • Ausführungsbeispiele der Erfindung sind in der Zeichnung anhand mehrerer Figuren dargestellt und in der nachfolgenden Beschreibung näher erläutert. Es zeigen:
  • Figur 1
    ein erstes Ausführungsbeispiel,
    Fig. 2
    ein Teil des Ausführungsbeispiels in detaillierterer Darstellung,
    Fig. 3
    ein weiteres Teil des Ausführungsbeispiels,
    Fig. 4
    ein Diagramm zur Abhängigkeit der Stereo-Kanaltrennung von der Empfangsfeldstärke,
    Fig. 5
    ein Diagramm zur Abhängigkeit der Dämpfung der Audiosignale von der Empfangsfeldstärke,
    Fig. 6
    ein zweites Ausführungsbeispiel und
    Fig. 7
    wesentliche Teile eines Rundfunkempfängers mit einer erfindungsgemäßen Schaltungsanordnung.
  • Gleiche Teile sind in den Figuren mit gleichen Bezugszeichen versehen. Die erfindungsgemäße Schaltungsanordnung kann auf verschiedene Weise verwirklicht werden. So können beispielsweise einzelne oder Gruppen der dargestellten Blöcke durch geeignete Schaltungen, insbesondere integrierte Schaltungen, realisiert werden. Bei sehr hohem Integrationsgrad ist es ferner möglich, die gesamte digitale Signalverarbeitung des Empfängers in einem integrierten Schaltkreis zu realisieren, wobei Signalverarbeitungsschritte, wie beispielsweise Filterungen oder nichtlineare Wichtungen, durch Rechenoperationen durchgeführt werden. Innerhalb eines integrierten Schaltkreises können zur Realisierung eines Empfängers mit der erfindungsgemäßen Schaltungsanordnung auch digitale Signalprozessoren und andere digitale Schaltungen, wie beispielsweise Schieberegister, Flip-Flops usw., gemeinsam angeordnet sein.
  • Bei dem Ausführungsbeispiel gemäß Fig. 1 wird einem Eingang 1 ein Signal H3 zugeführt, das der Empfangsfeldstärke im wesentlichen proportional ist und im folgenden als Hilfssignal H3 bezeichnet wird. Dieses erfährt in zwei Tiefpaßfiltern 2, 3 eine Mittelung mit unterschiedlichen Zeitkonstanten. Ein Umschalter 4 leitet in Abhängigkeit eines später zu erläuternden Signals DD2 eines der Ausgangssignale der Tiefpaßfilter 2, 3 als Signal AMC weiter. Dieses wird bei 5 zur Erzeugung eines die Aufrauschdämpfung angebenden Signals AFE gewichtet und ist an einem Ausgang 6 abnehmbar. Das Signal WF mit einer kleineren Zeitkonstanten wird bei 7 ebenfalls gewichtet und ist als Signal WF2 einem Ausgang 8 entnehmbar.
  • Für die Wichtung erforderliche Koeffizienten K1, K2 sind in einem nichtflüchtigen Speicher 9 abgelegt und werden über einen Mikrocomputer 10 den Schaltungen 5, 7 zugeleitet. K1 und K2 können einzelne Koeffizienten oder jeweils eine Gruppe von Koeffizienten sein. An den Mikrocomputer 10 sind eine Anzeigevorrichtung 11 und eine Eingabevorrichtung 12 angeschlossen. Der Mikrocomputer 10 ist mit einem Programm versehen, das menügeführt die Einstellung der Koeffizienten erlaubt.
  • Fig. 2 zeigt Einzelheiten der Schaltung 7 (Fig. 1). Einem Eingang 15 ist das Signal WF zuführbar, während Eingängen 16, 17 Koeffizienten K1.1 und K1.2 zugeleitet werden. In einem Multiplizierer 18 wird das Signal WF mit dem Koeffizienten K1.1 multipliziert. Das Produkt wird anschließend bei 19 zum Koeffizienten K1.2 addiert.
  • Damit das Signal WF2 am Ausgang 22 keine negativen Werte annimmt, wird das Ausgangssignal des Addierers 19 bei 20 mit dem Wert 0 verglichen und bei negativen Werten mit Hilfe eines Umschalters 21 durch den Wert 0 ersetzt.
  • Fig. 3 zeigt ein Beispiel für eine Schaltung 5 (Fig. 1), in welcher das bei 23 zugeführte Signal AMC mit einem am Eingang 24 anliegenden Koeffizienten K2 bei 25 multipliziert wird. Das Signal AFE ist einem Ausgang 26 entnehmbar.
  • Die in Fig. 4 dargestellte Abhängigkeit der Stereo-Kanaltrennung SK von der Empfangs feldstärke E ist mit Hilfe der Koeffizienten K1.1 und K1.2 einstellbar. Als Beispiele sind eine durchgezogene und eine gestrichelte Kurve dargestellt. Mit dem Koeffizienten K1.1 ist im wesentlichen die Steigung und mit dem Koeffizienten K1.2 die Verschiebung auf der Feldstärke-Achse einstellbar. Die dargestellte Kurve schließt die Abhängigkeit der Stereo-Kanaltrennung von dem Signal WF2 ein, die durch Kennlinien innerhalb des Stereodecoders gegeben ist.
  • Fig. 5 zeigt die Dämpfung L als Funktion der Empfangs feldstärke E für zwei verschiedene Werte des Koeffizienten K2. Durch Änderung des Koeffizienten sind gleichzeitig die Steigung und der Beginn (0-dB-Punkt) der Dämpfung bzw. Lautstärke-Absenkung bei kleiner werdender Empfangs feldstärke einstellbar.
  • Fig. 6 zeigt ein zweites Ausführungsbeispiel. Eingängen 45, 46, 27 werden die Hilfssignale H1, H2 und H3 zugeführt. Das die Empfangs feldstärke bezeichnende Hilfssignal H3 erfährt in zwei Tiefpaßfiltern 28, 29 eine Mittelung mit unterschiedlichen Zeitkonstanten. Ein Umschalter 30 leitet in Abhängigkeit eines später zu erläuternden Signals DD2 eines der Ausgangssignale der Tiefpaßfilter 28, 29 als Signal AMC weiter. Dieses wird bei 32 in Form einer Aufrauschkurve zur Erzeugung der Aufrauschdämpfung AFE gewichtet. Das Feldstärkesignal mit der kleineren Zeitkonstante wird ferner bei 31 ebenfalls gewichtet (Signal WF2). Dieses wird bei 33 mit einem Signal AT1 zur Bildung des Steuersignals D multipliziert, das am Ausgang 34 zur Verfügung steht.
  • Zur Erzeugung des Signals DD2 werden Hilfssignale H2 und H3 herangezogen, deren Erzeugung im Zusammenhang mit Fig. 7 näher erläutert wird. Das die Spektralanteile oberhalb des Nutzbereichs des Stereo-Multiplexsignals darstellende Hilfssignal H1 wird dazu bei 35 zunächst quadriert, wodurch ein Maß für den Energie-Inhalt dieser Anteile gebildet wird. Dieses wird bei 36 über einen Schwellwertdetektor geleitet, so daß ein Signal AHD entsteht, das das Vorliegen von Spektralanteilen mit einer über eine vorgegebene Schwelle liegender Energie anzeigt. Das aus dem Symmetriesignal SY (Fig. 1) gebildete Hilfssignal H2 wird nach einer Quadrierung bei 37 über einen Schwellwertdetektor 37' geleitet, dessen Ausgangssignal ASD somit Asymmetrien anzeigt, die eine vorgegebene Schwelle übersteigen. Derartige Asymmetrien deuten unter anderem auf das Vorliegen von Nachbarkanalstörungen hin.
  • Bei vielen Anwendungsfällen bringt die Verwendung eines der Signale AHD bzw. ASD als Signal DD2 bereits erhebliche Vorteile. Bei dem dargestellten Ausführungsbeispiel sind jedoch beide Detektoren 36, 37 vorgesehen, deren Ausgangssignale AHD und ASD über ein steuerbares logisches Netzwerk 38 geleitet werden. Dieses hat einerseits den Vorteil, daß bei reinen Mono-Sendungen, bei denen kein trägerfrequentes Stereo-Signal gesendet wird, die Ableitung des Signals DD2 aus dem Hilfssignal H1 erfolgt. Ebenso ist die Ableitung des Signals DD2 auch bei von der europäischen Norm abweichenden Verfahren zur Stereo-Signalübertragung möglich - beispielsweise bei dem FMX-Verfahren in den USA.
  • Das logische Netzwerk 38 ermöglicht eine Auswahl oder eine logische Verknüpfung der beiden Signale AHD und ASD zum Signal DD1. Das logische Netzwerk 38 kann in einfacher Weise aus einem steuerbaren Vierfach-Umschalter gebildet sein, dessen Eingängen die Signale AHD und ASD, eine Oder-Verknüpfung dieser Signale und eine Und-Verknüpfung dieser Signale zuführbar sind. Am Ausgang des steuerbaren Umschalters steht dann das Signal DD1 zur Verfügung, das einem Impulsbreitendiskriminator 39 zugeleitet wird. Dieser sorgt dafür, daß das Signal DD2 erst dann eine Störung anzeigt, wenn das Signal DD1 für eine einstellbare Mindestzeit aktiv ist.
  • Das Signal DD2 dient außer zur Steuerung des Umschalters 30 als Triggersignal für zwei asymmetrische Integratoren 40, 41. Diese enthalten im wesentlichen jeweils einen Zähler, der im Moment des Triggerns auf 0 oder einen anderen vorgegebenen Wert springt und diesen solange beibehält, wie das Signal DD2 auf 0 liegt. Nimmt das Signal DD2 dann den logischen Pegel 1 an, steigen die Ausgangssignale AT1 und AMU der asymmetrischen Integratoren 40, 41 mit einstellbaren Zeitkonstanten linear auf einen Maximalwert an. Das Signal AT1 wird gemeinsam mit dem bei 32 gewichteten Feldstärkesignal WF2 einem Multiplizierer 33 zugeführt.
  • Das Ausgangssignal AMU des asymmetrischen Integrators 41 wird bei 42 mit dem Signal AFE multipliziert, wodurch ein Signal AFE_AMU entsteht, das eine Dämpfung der Audiosignale mit Hilfe der Multiplizierer 9, 10 (Fig. 1) um maximal 33 dB bewirkt. Dieses Signal ist der Schaltung am Ausgang 43 entnehmbar.
  • Die anhand der Figuren 1 bis 6 erläuterten Ausführungsbeispiele sind Teile eines Rundfunkempfängers mit digitaler Signalverarbeitung, für den ein Ausführungsbeispiel in Fig. 7 dargestellt ist. Das über eine Antenne 51 empfangen Signal in einem Empfangsteil (Tuner) 52 in an sich bekannter Weise verstärkt, selektiert und demoduliert. An einem Ausgang 53 des Empfangsteils 52 steht ein Stereo-Multiplexsignal MPX1 mit einer Abtastrate von 456 kHz zur Verfügung. Um eine anschließende Abtastraten-Herabsetzung - auch Dezimation genannt - auf 228 kHz ohne Alias-Störungen zu erreichen, ist vor der Abtastraten-Herabsetzung 54 ein Tiefpaßfilter 55 vorgesehen. Zu einer einwandfreien weiteren Verarbeitung des Stereo-Multiplexsignals ist an sich ein Tiefpaßfilter mit im Durchlaßbereich ebenem Frequenzgang erforderlich. Um den dafür benötigten Aufwand, insbesondere bei der hohen Abtastrate von 456 kHz, zu ersparen, ist bei dem Ausführungsbeispiel ein einfacheres Tiefpaßfilter mit abfallendem Frequenzgang vorgesehen. Der Frequenzgangabfall wird allerdings in einem anschließenden Kompensationsfilter 56 kompensiert.
  • Das Stereo-Multiplexsignal MPX2 wird danach über eine Schaltung 57 zur automatischen Störunterdrückung geführt, die insbesondere bei Auftreten von Funkenstörungen Abtastwerte vor dem Beginn der Störung bis zum Ende der Störung wiederholt. An diese Schaltung schließt sich ein Stereodecoder 58 an, der zwei Audiosignale L, R erzeugt, die über Multiplizierer 59, 60 zu Ausgängen 61, 62 geleitet werden. Von dort aus werden die Audiosignale über NF-Verstärker den Lautsprechern zugeführt.
  • Aus dem Stereo-Multiplexsignal MPX1 wird mit Hilfe eines Hochpasses 63 und einer Dezimations-Schaltung 64 ein Signal erzeugt, das oberhalb des Nutzfrequenzbereichs des Stereo-Multiplexsignals vorhandene Signalanteile enthält, die jedoch durch die Dezimation in einen unteren Frequenzbereich gefaltet sind. Dieses Signal MPX3 zeigt verschiedene Störungen an, beispielsweise die durch Zündfunken von Fahrzeugen entstehenden Störungen. Es wird einerseits zur Steuerung der Schaltung 57 zur automatischen Störunterdrückung und andererseits zur Bildung des Hilfssignals H1 durch Dezimation der Abtastrate auf 9,5 kHz bei 65 verwendet.
  • Das Hilfssignal H2, dessen Abtastrate ebenfalls 9,5 kHz beträgt, wird durch Tiefpaßfilterung bei 66 und Dezimation bei 67 aus einem Symmetriesignal SY gebildet. Dieses wird wiederum im Stereodecoder 58 geformt. Dort wird bekanntlich der Stereo-Hilfsträger zur Bildung des Differenzsignals L-R amplitudendemoduliert. Dieses geschieht dadurch, daß der Hilfsträger mit einem im Rundfunkempfänger regenerierten Hilfsträger gleicher Phasenlage multipliziert wird. In dem Stereodecoder 58 wird der Stereo-Hilfsträger zusätzlich mit einem um 90° gegenüber dem Referenz träger gedrehten Träger multipliziert, wodurch ein Signal entsteht, das bei symmetrischen Seitenbändern des Stereo-Hilfsträgers 0 ist und bei Unsymmetrien entsprechend von 0 abweicht. Aus diesem Signal wird durch Tiefpaßfilterung bei 66 und Dezimation bei 67 das weitere Hilfssignal H2 gebildet.
  • An einem Ausgang 68 gibt das Empfangsteil 52 ein Signal AM ab, das durch Amplitudendemodulation des FM-Zwischenfrequenzsignals entsteht. Dieses weist bei dem dargestellten Ausführungsbeispiel ebenfalls eine Abtastrate von 456 kHz auf und wird nach einer Tiefpaßfilterung 69 bei 70 um den Faktor 48 dezimiert, so daß das entstehende dritte Hilfssignal H3 eine Abtastrate von 9,5 kHz aufweist.
  • In der Schaltung 71 (Einzelheiten siehe Fig. 6) werden die Hilfssignale H1, H2 und H3 miteinander zu Steuersignalen D und AFE_AMU kombiniert, deren Abtastrate zunächst 9,5 kHz beträgt, jedoch bei 72 und 73 auf 228 kHz heraufgesetzt wird. Dieses erfolgt durch eine Interpolation von jeweils 24 Abtastwerten, die im einfachsten Fall darin besteht, daß jeder Abtastwert 24 mal wiederholt wird. Das Steuersignal D wird einem Steuereingang des Stereodecoders 58 zugeführt und dient dort der Umschaltung auf Mono-Betrieb im Fall eines gestörten Empfangs. Das Signal AFE_AMU wird den Multiplizierern 59 und 60 zugeführt, wodurch eine Herabsetzung der Lautstärke (Maskierung) bei Vorliegen von Störungen vorgenommen wird.

Claims (7)

  1. Schaltungsanordnung zur Ableitung von Signalen zur Maskierung von Audiosignalen in einem Rundfunkempfänger, wobei ein der Empfangs feldstärke im wesentlichen proportionales Signal (H3) einem ersten Tiefpaßfilter (2) zugeführt ist, dadurch gekennzeichnet, daß das der Empfangsfeldstärke im wesentlichen proportionale Signal (H3) einem zweiten Tiefpaßfilter (3) zugeführt ist, daß das Ausgangssignal des ersten Tiefpaßfilters (2) in einer ersten Schaltung (7) mit vorgegebenen ersten Koeffizienten gewichtet ist und zur Bildung eines Maskierungssignals zur Verminderung der Stereokanaltrennung (7) verwendbar ist, daß das Ausgangssignal des ersten Tiefpaßfilters (2) ebenfalls in einer zweiten Schaltung (5) mit vorgegebenen zweiten Koeffizienten gewichtet ist und zur Bildung eines Maskierungssignals zur Dämpfung der Audiosignale verwendbar ist, und daß bei Störungen im Audiosignal anstelle des Ausgangssignals des ersten Tiefpaßfilters (2) das Ausgangssignal des zweiten Tiefpaßfilters (3) zur Bildung des Maskierungssignals zur Dämpfung der Audiosignale der zweiten Schaltung (5) zugeführt ist.
  2. Schaltungsanordnung nach Anspruch 1, dadurch gekennzeichnet, daß die Koeffizienten in einem nichtflüchtigen Speicher (9) abgelegt sind und mithilfe eines Mikrocomputers (10), einer Anzeigevorrichtung (11), einer Bedienvorrichtung (12) und eines Programms zur Bedienerführung veränderbar sind.
  3. Schaltungsanordnung nach Anspruche 1 oder 2, dadurch gekennzeichnet, daß die gewichteten Ausgangssignale des ersten bzw. des zweiten Tiefpaßfilters zur Bildung der Maskierungssignale mit Hilfssignalen kombiniert sind, die aus Störungen im Audiosignal abgeleitet sind.
  4. Schaltungsanordnung nach Anspruch 3, dadurch gekennzeichnet, daß die Kombination der gewichteten Ausgangssignale des ersten bzw. des zweiten Tiefpaßfilters mit den Hilfssignalen mittels Multiplikation erfolgt.
  5. Schaltungsanordnung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß eine Störung im Audiosignal dann festgestellt ist, wenn Spektralanteile des Audiosignales, die oberhalb des Nutzbereiches des Stereo-Multiplexsignales liegen, über einen vorgegebenen Zeitbereich eine vorgegebene Schwelle überschreiten.
  6. Schaltungsanordnung nach einem der Ansprüche 1 bis 5 dadurch gekennzeichnet, daß das gewichtete der Empfangsfeldstärke proportionale Signal auf einen Maximalwert begrenzt ist.
  7. Schaltungsanordnung nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Maskierungssignal zur Verminderung der Stereo-Kanaltrennung auf nicht negative Werte begrenzt ist.
EP94911062A 1993-03-24 1994-03-22 Schaltungsanordnung zur ableitung von signalen zur maskierung von audiosignalen Expired - Lifetime EP0691050B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4309518 1993-03-24
DE4309518A DE4309518A1 (de) 1993-03-24 1993-03-24 Schaltungsanordnung zur Ableitung mindestens eines von der Qualität eines empfangenen Signals abhängigen Qualitätssignals
PCT/DE1994/000321 WO1994022229A1 (de) 1993-03-24 1994-03-22 Schaltungsanordnung zur ableitung von signalen zur maskierung von audiosignalen

Publications (2)

Publication Number Publication Date
EP0691050A1 EP0691050A1 (de) 1996-01-10
EP0691050B1 true EP0691050B1 (de) 1996-12-18

Family

ID=38729052

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94911062A Expired - Lifetime EP0691050B1 (de) 1993-03-24 1994-03-22 Schaltungsanordnung zur ableitung von signalen zur maskierung von audiosignalen

Country Status (5)

Country Link
US (1) US5661810A (de)
EP (1) EP0691050B1 (de)
JP (1) JP3676363B2 (de)
DE (1) DE59401348D1 (de)
WO (1) WO1994022229A1 (de)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE4434451A1 (de) * 1994-09-27 1996-03-28 Blaupunkt Werke Gmbh Amplitudendemodulator
EP0776144B1 (de) * 1995-11-25 2001-04-11 Micronas GmbH Signalmodifikationsschaltung
DE19630395C1 (de) * 1996-07-26 1997-10-02 Sgs Thomson Microelectronics Elektrische Stummsteuerschaltung
US6856925B2 (en) * 2001-10-26 2005-02-15 Texas Instruments Incorporated Active removal of aliasing frequencies in a decimating structure by changing a decimation ratio in time and space
DE10224699A1 (de) * 2002-06-04 2003-12-24 Bosch Gmbh Robert Verfahren und Schaltungsanordnung zum Beeinflussen der Höhenwiedergabe eines Audiosignals
DE102010001548A1 (de) 2009-11-18 2011-05-19 Robert Bosch Gmbh Schaltungsanordnung für einen Empfänger
EP2636153A1 (de) * 2010-11-05 2013-09-11 Semiconductor Ideas To The Market (ITOM) Verfahren zur verringerung von rauschen in einem stereosignal, vorrichtung zur verarbeitung von stereosignalen und fm-empfänger mit dem verfahren

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5757051A (en) * 1980-09-22 1982-04-06 Nippon Gakki Seizo Kk Fm stereo receiver
US4497063A (en) * 1981-06-26 1985-01-29 Pioneer Electronic Corporation FM stereo demodulator
JPS61263327A (ja) * 1985-05-17 1986-11-21 Pioneer Electronic Corp 音声多重受信機
MX161741A (es) * 1987-08-28 1990-12-20 Motorola Inc Sistema mejorado de comunicaciones de frecuencia modulada
US4901350A (en) * 1989-04-20 1990-02-13 Delco Electronics Corporation Closed-loop audio attenuator
CA2025012A1 (en) * 1989-09-11 1991-03-12 William R. Short Audible noise reducing
US5027402A (en) * 1989-12-22 1991-06-25 Allegro Microsystems, Inc. Blend-on-noise stereo decoder
DE69110934T2 (de) * 1990-03-28 1995-11-23 Pioneer Electronic Corp Rauschreduktionsschaltung.
US5257312A (en) * 1991-05-03 1993-10-26 U.S. Philips Corporation Time-discrete stereo decoder
US5249233A (en) * 1992-04-06 1993-09-28 Ford Motor Company Multipath noise minimizer for radio receiver
US5432854A (en) * 1993-02-25 1995-07-11 Chrysler Corporation Stereo FM receiver, noise control circuit therefor
DE4311933A1 (de) * 1993-04-10 1994-10-13 Blaupunkt Werke Gmbh Schaltungsanordnung zur Erzeugung eines Stopp-Signals für einen Sendersuchlauf

Also Published As

Publication number Publication date
DE59401348D1 (de) 1997-01-30
JP3676363B2 (ja) 2005-07-27
US5661810A (en) 1997-08-26
JPH08508143A (ja) 1996-08-27
EP0691050A1 (de) 1996-01-10
WO1994022229A1 (de) 1994-09-29

Similar Documents

Publication Publication Date Title
EP0497115B1 (de) Verfahren zur Überbrückung von Audiosignalunterbrechungen
DE4237692C1 (de) Empfänger für ein digitales Rundfunksignal
EP0617519B1 (de) Verfahren zur Ableitung mindestens eines von der Qualität eines empfangenen Signals abhängigen Qualitätssignals
DE69321019T2 (de) Mehrwegempfangsminimalisierung für einen Rundfunkempfänger
DE69212214T2 (de) Zeitdiskreter Stereo-Decoder
DE69029022T2 (de) Reduktion von hörbarem Rauschen
EP0783794B1 (de) Verfahren zur Amplituden-Demodulation
EP0691050B1 (de) Schaltungsanordnung zur ableitung von signalen zur maskierung von audiosignalen
EP0642715B1 (de) Rundfunkempfänger mit digitaler signalverarbeitung
EP0642714B1 (de) Rundfunkempfänger mit digitaler signalverarbeitung
DE4323015C2 (de) Stereophoner Rundfunkempfänger
DE60037722T2 (de) AM Empfänger
EP0653850B1 (de) Schaltungsanordnung zur Erkennung von Nachbarkanalstörungen
EP0345843B1 (de) Empfangsverfahren und Empfangs-Antennensystem für mobilen Emfang
DE69937018T2 (de) RDS Demodulator für den Empfang von Rundfunkprogrammen die Radiodatensignalen und Autofahrer Rundfunkinformationsignalen (ARI) enthalten, mit einer digitalen Filtervorrichtung die eine hohe Dämpfung des ARI Signals bewirkt
EP1804396B1 (de) Empfänger und Verfahren zum optimierten Demodulieren und Dekodieren von digitalen Funksignalen
EP0642712B1 (de) Schaltungsanordnung zur ableitung eines störungen in einem empfangenen stereo-multiplexsignal anzeigenden signals
EP0691049B1 (de) Verfahren zur ableitung eines von der qualität eines empfangenen multiplexsignals abhängigen qualitätssignals
DE2653508C2 (de) Schaltungsanordnung zur Störimpulsaustastung mit Momentanwertspeicherung bei Stereo-Rundfunkempfängern
DE60129342T2 (de) FM-Empfänger mit digitaler Bandbreitensteuerung
DE2826524A1 (de) Schaltungsanordnung zur stoerverminderung in einem fm-radioempfaenger
EP0642713B1 (de) Schaltungsanordnung zur ableitung eines störungen in einem empfangenen stereo-multiplexsignal anzeigenden signals
EP0963684A1 (de) Verfahren zur beeinflussung der stereo-kanaltrennung eines audiosignals und anordnung dazu
DE4133197A1 (de) Fm-stereoempfangsanordnung
DE10131456A1 (de) Funkempfänger

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19951024

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17Q First examination report despatched

Effective date: 19960205

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59401348

Country of ref document: DE

Date of ref document: 19970130

ET Fr: translation filed
ITF It: translation for a ep patent filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19970227

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20100331

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20100324

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20100327

Year of fee payment: 17

Ref country code: DE

Payment date: 20100512

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20110322

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20111130

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110331

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111001

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59401348

Country of ref document: DE

Effective date: 20111001

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110322

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20110322