EP0686186B1 - Compositions détergentes comprenant des granules d'enzymes à grande activité - Google Patents

Compositions détergentes comprenant des granules d'enzymes à grande activité Download PDF

Info

Publication number
EP0686186B1
EP0686186B1 EP94923580A EP94923580A EP0686186B1 EP 0686186 B1 EP0686186 B1 EP 0686186B1 EP 94923580 A EP94923580 A EP 94923580A EP 94923580 A EP94923580 A EP 94923580A EP 0686186 B1 EP0686186 B1 EP 0686186B1
Authority
EP
European Patent Office
Prior art keywords
detergent
compositions
detergent compositions
acid
composition
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Revoked
Application number
EP94923580A
Other languages
German (de)
English (en)
Other versions
EP0686186A1 (fr
EP0686186A4 (fr
Inventor
Paul Amaat R. G. France
Andre Cesar Baeck
Jose Luis Vega
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Procter and Gamble Co
Original Assignee
Procter and Gamble Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=8215325&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0686186(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Procter and Gamble Co filed Critical Procter and Gamble Co
Priority to EP94923580A priority Critical patent/EP0686186B1/fr
Publication of EP0686186A4 publication Critical patent/EP0686186A4/fr
Publication of EP0686186A1 publication Critical patent/EP0686186A1/fr
Application granted granted Critical
Publication of EP0686186B1 publication Critical patent/EP0686186B1/fr
Anticipated expiration legal-status Critical
Revoked legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38627Preparations containing enzymes, e.g. protease or amylase containing lipase
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D17/00Detergent materials or soaps characterised by their shape or physical properties
    • C11D17/06Powder; Flakes; Free-flowing mixtures; Sheets
    • C11D17/065High-density particulate detergent compositions
    • CCHEMISTRY; METALLURGY
    • C11ANIMAL OR VEGETABLE OILS, FATS, FATTY SUBSTANCES OR WAXES; FATTY ACIDS THEREFROM; DETERGENTS; CANDLES
    • C11DDETERGENT COMPOSITIONS; USE OF SINGLE SUBSTANCES AS DETERGENTS; SOAP OR SOAP-MAKING; RESIN SOAPS; RECOVERY OF GLYCEROL
    • C11D3/00Other compounding ingredients of detergent compositions covered in group C11D1/00
    • C11D3/16Organic compounds
    • C11D3/38Products with no well-defined composition, e.g. natural products
    • C11D3/386Preparations containing enzymes, e.g. protease or amylase
    • C11D3/38672Granulated or coated enzymes

Definitions

  • the detergent composition may also contain optical whitening agents, antiredeposition agents, polycarboxylate polymers, stabilizers, anti-oxidants, sud-suppressors, perfume and the like.
  • Concentrated detergent powder compositions are described for instance in EP 340,013 (Unilever) and EP 509,787 (Unilever).
  • EP 340,013 is disclosed a granular detergent composition which is preferably free of phosphate builders, having a bulk density of at least 650 g/litre and comprises
  • EP 509,787 concentrated detergent powder compositions having a bulk density of above 600 g/l, preferably at least 610 g/l, more preferably around 850g/l as shown in Examples III-VII, and comprising a surfactant, a detergency builder, enzymes, a peroxygen compound bleach, and specific manganese complex as effective bleach catalyst.
  • a surfactant preferably at least 610 g/l, more preferably around 850g/l as shown in Examples III-VII
  • enzymes e.g. a peroxygen compound bleach
  • specific manganese complex as effective bleach catalyst.
  • EP 425 277 relates to a free-flowing granular detergent base composition of high bulk density having a surfactant system consisting essentially of fatty acid soap/nonionic surfactant and a builder system based on alumino silicate, prepared by densification of a spray-dried base powder in a high-speed mixer/granulator.
  • DE 41 16 701 describes a bleaching cleaning composition containing granulated Na 2 C 2 O 6 prepared by separately spraying in an aqueous solution of H 3 BO 3 aid of an alkali metal silicate onto said granulates.
  • Enzymatic granular detergent compositions especially containing lipase of high density are described in EP 381 397.
  • Cellulase-containing granular detergent compositions of a relatively high density with a low amount of inorganic filler salt is disclosed in EP 495 257.
  • the amount of enzyme described in both mentioned applications is substantial.
  • the amount of proteolytic enzymes used vary from 0.001% to 10% by weight, but preferably from 0.01% to 5% by weight, depending upon their activity.
  • Savinase 4T granulates Savinase 4T 1g/100 g detergent 1.4g/100 g detergent 1.9g/100 g detergent OR : expressed in g enzyme granulates/L detergent composition : 6g/ L detergent 9.8g / L detergent 15.8g/L detergent This clearly illustrates how, on an equal volume basis, the level of enzyme granulates has been increased by a factor 2.6x when moving from "fluffy" to very compact detergents ( d at least equal to 800). But also within the segment of compact detergents, increasing the density from 700 to 800 and higher and at the same time reducing the recommended usage from 126 to 95 g/wash requires an increase of 1.6X in the level of enzyme granulates/L detergent composition.
  • level of enzyme granulates refers to the sum of enzymes used in detergents i.e. proteases, lipases, amylases, cellulases, peroxidases, oxidases, etc. This also includes single enzyme granulates and mixtures of single enzyme granulates as well as so-called co-prills (e.g. protease plus lipase in one single prill).
  • high active enzyme granulate means that an enzyme is incorporated in the form of granules or so-called prills, in an amount such that the final detergent composition has a high enzymatic activity per liter of final product.
  • concentration of protease in the granulate has to be 2% or higher.
  • Preferred examples are the protease granulates Savinase 8T and Savinase 10T, wherein for instance Savinase 8T means 8 KNPU/g as 8 kilo Novo protease units per gram of granulate.
  • SavinaseTM has a specific activity of 395 KNPU/g.
  • An additional advantage using high active enzymes as described above is that the overall level of TiO2 in the finished product is much lower. For instance in high active enzyme granulates the TiO2 amount is 9.1% versus 5.2% for the low active enzyme granulates by which the percentage TiO2 in the finished product is 0.094% vs. 0.155%.
  • the detergent composition of the invention may be formulated in any convenient form, preferably as a powder.
  • Detergent compositions of the invention may contain as above-mentioned other detergent ingredients known in the art as e.g. builders, bleaching agents, bleach activators, anti soil redeposition agents, perfumes, etc.
  • detergent compositions comprise surfactants which may be of the anionic, non-ionic,amphoteric, cationic or zwitteronic type as well as mixtures of these types.
  • anionic surfactants are particularly suitable herein, especially mixtures of sulphonate and sulphate surfactants in a weight ratio of from 5:1 to 1:2, preferably from 3:1 to 2:3, more preferably from 3:1 to 1:1.
  • Preferred sulphonates include alkyl benzene sulphonates having from 9 to 15, especially 11 to 13 carbon atoms in the alkyl radical, and alpha-sulphonated methyl fatty acid esters in which the fatty acid is derived from a C 12 -C 18 fatty source preferably from a C 16 -C 18 fatty source.
  • the cation is an alkali metal, preferably sodium.
  • Preferred sulphate surfactants are alkyl sulphates having from 12 to 18 carbon atoms in the alkyl radical, optionally in admixture with ethoxy sulphates having from 10 to 20, preferably 10 to 16 carbon atoms in the alkyl radical and an average degree of ethoxylation of 1 to 6.
  • alkyl sulphates herein are tallow alkyl sulphate, coconut alkyl sulphate, and C 14-15 aikyl sulphates.
  • An example of a preferred ethoxy sulphate is the so-called AE3S (C 12-15 alkyl 3 times ethoxylated sulphate).
  • the cation in each instance is again an alkali metal cation, preferably sodium.
  • One class of nonionic surfactants useful in the present invention are condensates of ethylene oxide with a hydrophobic moiety to provide a surfactant having an average hydrophilic-lipophilic balance (HLB) in the range from 8 to 17, preferably from 9.5 to 13.5, more preferably from 10 to 12.5.
  • HLB hydrophilic-lipophilic balance
  • the hydrophobic (lipophilic) moiety may be aliphatic or aromatic in nature and the length of the polyoxyethylene group which is condensed with any particular hydrophobic group can be readily adjusted to yield a water-soluble compound having the desired degree of balance between hydrophilic and hydrophobic elements.
  • Especially preferred nonionic surfactants of this type are the C 9 -C 15 primary alcohol ethoxylates containing 3-8 moles of ethylene oxide per mole of alcohol, particularly the C 14 -C 15 primary alcohols containing 6-8 moles of ethylene oxide per mole of alcohol and the C 12 -C 14 primary alcohols containing 3- 5 moles of ethylene oxide per mole of alcohol.
  • Nonionic surfactants comprises alkyl polyglucoside compounds of general formula RO (C n H 2n O) t Z x wherein Z is a moiety derived from glucose; R is a saturated hydrophobic alkyl group that contains from 12 to 18 carbon atoms; t is from 0 to 10 and n is 2 or 3; x is from 1.3 to 4, the compounds including less than 10% unreacted fatty alcohol and less than 50% short chain alkyl polyglucosides.
  • Compounds of this type and their use in detergent are disclosed in EP-B 0 070 077, 0 075 996 and 0 094 118.
  • nonionic surfactants are poly hydroxy fatty acid amide surfactants of the formula wherein R 1 is H, C 1-4 hydrocarbyl, 2-hydroxy ethyl, 2-hydroxy propyl or a mixture thereof, R 2 is C 5-31 hydrocarbyl, and Z is a polyhydroxyhydrocarbyl having a linear hydrocarbyl chain with at least 3 hydroxyls directly connected to the chain, or an alkoxylated derivative thereof.
  • R 1 is methyl
  • R 2 is a straight C 11-15 alkyl or alkenyl chain such as coconut alkyl or mixtures thereof
  • Z is derived from a reducing sugar such as glucose, fructose, maltose, lactose, in a reductive amination reaction.
  • a further class of surfactants are the semi-polar surfactants such as amine oxides.
  • Suitable amine oxides are selected from mono C 8 -C 20 , preferably C 10 -C 14 N-alkyl or alkenyl amine oxides and propylene-1,3-diamine dioxides wherein the remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • amphoteric surfactants such as polyamine-based species.
  • Cationic surfactants can also be used in the detergent compositions herein and suitable quaternary ammonium surfactants are selected from mono C 8 -C 16 , preferably C 10 -C 14 N-alkyl or alkenyl ammonium surfactants wherein remaining N positions are substituted by methyl, hydroxyethyl or hydroxypropyl groups.
  • the detergent compositions can comprise from 1%-70% by weight of surfactant, but usually the surfactant is present in the compositions herein an amount of from 1% to 30%, more preferably from 10-25% by weight.
  • Builder materials will typically be present at from 10% to 60% of the detergent compositions herein.
  • the compositions herein are free or substantially free of phosphate-containing builders (substantially free being herein defined to constitute less than 1% of the total detergent builder system), and the builder system herein consists of water-soluble builders, water-insoluble builders, or mixtures thereof.
  • Water insoluble builders can be an inorganic ion exchange material,commonly an inorganic hydrated aluminosilicate material, more particularly a hydrated synthetic zeolite such as hydrated Zeolite A, X, B or HS.
  • Preferred aluminosilicate ion-exchange materials have the unit cell formula M Z [(A10 2 ) z (SiO 2 ) y ] xH 2 O wherein M is a calcium-exchange cation, z and y are at least 6; the molar ratio of z to y is from 1.0 to 0.5 and x is at least 5, preferably from 7.5 to 276, more preferably from 10 to 264.
  • the aluminosilicate materials are in hydrated form and are preferably crystalline containing from 10% to 28%, more preferably from 18% to 22% water.
  • the above aluminosilicate ion exchange materials are further charaterized by a particle size diameter of from 0.1 to 10 micrometers, preferably from 0.2 to 4 micrometers.
  • particle size diameter herein represents the average particle size diameter of a given ion exchange material as determined by conventional analytical techniques such as, for example, microscopic determination utilizing a scanning electron microscope.
  • the aluminosilicate ion exchange materials are further characterized by their calcium ion exchange capacity, which is at least 200 mg equivalent of CaCO 3 water hardness/g of aluminosilicate, calculated on an anhydrous basis, and which generally is in the range of from 300 mg eq./g to 352 mg eq./g.
  • the aluminosilicate ion exchange materials herein are still further characterized by their calcium ion exchange rate which is described in detail in GB-1,429,143.
  • Aluminosilicate ion exchange materials useful in the practice of this invention are commercially available and can be naturally occurring materials, but are preferably synthetically derived. A method for producing aluminosilicate ion exchange materials is discussed in US Patent No. 3,985,669.
  • Preferred synthetic crystalline aluminosilicate ion exchange materials useful herein are available under the designation Zeolite A, Zeolite B, Zeolite X, Zeolite HS and mixtures thereof.
  • the crystalline aluminosilicate ion exchange material is Zeolite A and has the formula Na 12 [(A10 2 ) 12 (SiO 2 ) 12 ] xH 2 O wherein x is from 20 to 30, especially 27.
  • Zeolite X of formula Na 86 [(A10 2 ) 86 (SiO 2 ) 106 ] - 10 .276H 2 O is also suitable, as well as Zeolite HS of formula Na 6 [(A10 2 ) 6 (SiO 2 ) 6 ] 7.5 H 2 O).
  • SKS-6 is a crystalline layered silicate consisting of sodium silicate (Na 2 Si 2 O 5 ).
  • the high Ca ++ /Mg ++ binding capacity is mainly a cation exchange mechanism. In hot water, the material becomes more soluble.
  • the water-soluble builder can be a monomeric or oligomeric carboxylate chelating agent.
  • Suitable carboxylates containing one carboxy group include lactic acid, glycolic acid and ether derivatives thereof as disclosed in Belgian Patent Nos. 831,368, 821,369 and 821,370.
  • Polycarboxylates containing two carboxy groups include the water-soluble salts of succinic acid, malonic acid, (ethylenedioxy) diacetic acid, maleic acid, diglycollic acid, tartaric acid, tartronic acid and fumaric acid, as well as the ether carboxylates described in German Offenlegenschrift 2,446,686, and 2,446,687 and U.S. Patent No. 3,935,257 and the sulfinyl carboxylates described in Belgian Patent No. 840,623.
  • Polycarboxylates containing three carboxy groups include, in particular, water-soluble citrates, aconitrates and citraconates as well as succinate derivatives such as the carboxymethyloxysuccinates described in British Patent No. 1,379,241, lactoxysuccinates described in Netherlands Application 7205873, and the oxypolycarboxylate materials such as 2-oxa-1,1,3-propane tricarboxylates described in British Patent No. 1,387,447.
  • Polycarboxylates containing four carboxy groups include oxydisuccinates disclosed in British Patent No. 1,261,829, 1,1,2,2-ethane tetracarboxylates, 1,1,3,3-propane tetracarboxylates and 1,1,2,3-propane tetracarboxylates.
  • Polycarboxylates containing sulfo substituents include the sulfosuccinate derivatives disclosed in British Patent Nos. 1,398,421 and 1,398,422 and in U.S. Patent No. 3,936,448, and the sulfonated pyrolysed citrates described in British Patent No. 1,082,179, while polycarboxylates containing phosphone substituents are disclosed in British Patent No. 1,439,000.
  • Alicyclic and heterocyclic polycarboxylates include cyclopentane-cis,cis,cis-tetracarboxylates, cyclopentadienide pentacarboxylates, 2,3,4,5-tetrahydrofuran - cis, cis, cis-tetracarboxylates, 2,5-tetrahydrofuran -cis - dicarboxylates, 2,2,5,5-tetrahydrofuran - tetracarboxylates, 1,2,3,4,5,6-hexane -hexacarboxylates and and carboxymethyl derivatives of polyhydric alcohols such as sorbitol, mannitol and xylitol.
  • Aromatic polycarboxylates include mellitic acid, pyromellitic acid and the phtalic acid derivatives disclosed in British Patent No. 1,425,343.
  • the preferred polycarboxylates are hydroxycarboxylates containing up to three carboxy groups per molecule, more particularly citrates.
  • Preferred builder systems for use in the present compositions include a mixture of a water-insoluble aluminosilicate builder such as zeolite A, and a water-soluble carboxylate chelating agent such as citric acid.
  • builder materials that can form part of the builder system for the purposes of the invention include inorganic materials such as alkali metal carbonates, bicarbonates, silicates, and organic materials such as the organic phosphonates, amino polyalkylene phosphonates and amino polycarboxylates.
  • Suitable water-soluble organic salts are the homo- or co-polymeric acids or their salts, in which the polycarboxylic acid comprises at least two carboxyl radicals separated from each other by not more than two carbon atoms.
  • Polymers of this type are disclosed in GB-A-1,596,756.
  • Examples of such salts are polyacrylates of MW 2000-5000 and their copolymers with maleic anhydride, such copolymers having a molecular weight of from 20,000 to 70,000, especially about 40,000.
  • compositions will typically include optional ingredients that normally form part of detergent compositions
  • Antiredeposition and soil suspension agents, optical brighteners, bleaches, bleach activators, suds suppressors, anticacking agents, dyes and pigments are examples of such optional ingredients and can be added in varying amounts as desired.
  • Antiredeposition and soil suspension agents suitable herein include cellulose derivatives such as methylcellulose, carboxymethylcellulose and hydroxyethylcellulose, and homo- or co-polymeric polycarboxylic acids or their salts.
  • Polymers of this type include the polyacrylates and maleic anhydride-acrylic acid copolymers previously mentioned as builders, as well as copolymers of maleic anhydride with ethylene, methylvinyl ether or methacrylic acid, the maleic anhydride constituting at least 20 mole percent of the copolymer. These materials are normally used at levels of from 0.5% to 10% by weight, more preferably from 0.75% to 8%, most preferably from 1% to 6% by weight of the composition.
  • Preferred optical brighteners are anionic in character, examples of which are disodium 4,4 1 -bis-(2-diethanolamino-4-anilino -s- triazin-6-ylamino)stilbene-2:2 1 disulphonate, disodium 4, - 4 1 -bis-(2-morpholino-4-anilino-s-triazin-6-ylaminostilbene-2:2 1 - disulphonate, disodium 4,4 1 - bis-(2,4-dianilino-s-triazin-6-ylamino)stilbene-2:2 1 -disulphonate, monosodium 4 1 ,4 11 -bis-(2,4-dianilino-s-triazin-6 ylamino)stilbene-2-sulphonate, disodium 4,4 1 -bis-(2-anilino-4- (N-methyl-N-2-hydroxyethylamino)-s-triazin-6-ylamino)stilbene-2,2
  • any particulate inorganic perhydrate bleach can be used, in an amount of from 3% to 40% by weight, more preferably from 8% to 25% by weight and most preferably from 12% to 20% by weight of the compositions.
  • Preferred examples of such bleaches are sodium perborate monohydrate and tetrahydrate, percarbonate, and mixtures thereof.
  • Another preferred separately mixed ingredient is a peroxy carboxylic acid bleaching agent and salts thereof, which is preferably added in a prilled or agglomerated form.
  • Peroxygen bleaching agents are preferably combined with bleach activators, which lead to the in situ production in aqueous solution (i.e. during the washing process of the peroxy acid corresponding to the bleach activator).
  • bleach activators which lead to the in situ production in aqueous solution (i.e. during the washing process of the peroxy acid corresponding to the bleach activator).
  • suitable compounds of this type are disclosed in British Patent Nos. 1586769 and 2143231 and a method for their formation into a prilled form is described in European Published Patent Application No. 0 062 523.
  • Preferred examples of such compounds are tetracetyl ethylene diamine and sodium 3, 5, 5 trimethyl hexanoyloxybenzene sulphonate.
  • Bleach activators are normally employed at levels of from 0.5% to 10% by weight, more frequently from 1% to 8% and preferably from 2% to 6% by weight of the composition.
  • a suds suppressor exemplified by silicones, and silica-silicone mixtures.
  • Silicones can be generally represented by alkylated polysiloxane materials while silica is normally used in finely divided forms exemplified by silica aerogels and xerogels and hydrophobic silicas of various types. These materials can be incorporated as particulates in which the suds suppressor is advantageously releasably incorporated in a water-soluble or water-dispersible, substantially non-surface-active detergent impermeable carrier.
  • the suds suppressor can be dissolved or dispersed in a liquid carrier and applied by spraying on to one or more of the other components.
  • useful silicone suds controlling agents can comprise a mixture of an alkylated siloxane, of the type referred to hereinbefore, and solid silica. Such mixtures are prepared by affixing the silicone to the surface of the solid silica.
  • a preferred silicone suds controlling agent is represented by a hydrophobic silanated (most preferably trimethyl-silanated) silica having a particle size in the range from 10 millimicrons to 20 millimicrons and a specific surface area above 50 m 2 /g intimately admixed with dimethyl silicone fluid having a molecular weight in the range from about 500 to about 200,000 at a weight ratio of silicone to silanated silica of from about 1:1 to about 1:2.
  • a preferred silicone suds controlling agent is disclosed in Bartollota et al. U.S. Patent 3,933,672.
  • Other particularly useful suds suppressors are the self-emulsifying silicone suds suppressors, described in German Patent Application DTOS 2,646,126 published April 28, 1977.
  • An example of such a compound is DC-544, commercially availably from Dow Corning, which is a siloxane/glycol copolymer.
  • the suds suppressors described above are normally employed at levels of from 0.001% to 2% by weight of the composition, preferably from 0.01% to 1% by weight.
  • the incorporation of the suds modifiers is preferably made as separate particulates, and this permits the inclusion therein of other suds controlling materials such as C20-C24 fatty acids, microcrystalline waxes and high MW copolymers of ethylene oxide and propylene oxide which would otherwise adversely affect the dispersibility of the matrix.
  • Techniques for forming such suds modifying particulates are disclosed in the previously mentioned Bartolotta et al U.S. Patent No. 3,933,672.
  • polyethylene glycols particularly those of molecular weight 1000-10000, more particularly 2000 to 8000 and most preferably about 4000. These are used at levels of from 0.20% to 5% more preferably from 0.25% to 2.5% by weight. These polymers and the previously mentioned homo- or co-polymeric polycarboxylate salts are valuable for improving whiteness maintenance, fabric ash deposition, and cleaning performance on clay, proteinaceous and oxidizable soils in the presence of transition metal impurities.
  • Soil release agents useful in compositions of the present invention are conventionally copolymers or terpolymers of terephthalic acid with ethylene glycol and/or propylene glycol units in various arrangements. Examples of such polymers are disclosed in the commonly assigned US Patent Nos. 4116885 and 4711730 and European Published Patent Application No. 0 272 033.
  • a particular preferred polymer in accordance with EP-A-0 272 033 has the formula (CH 3 (PEG) 43 ) 0.75 (POH) 0.25 [T-PO) 2.8 (T-PEG) 0.4 ]T(PO-H] 0.25 ((PEG) 43 CH 3 ) 0.75 where PEG is -(OC 2 H 4 )O-,PO is (OC 3 H 6 O) and T is (pcOC 6 H 4 CO).
  • Certain polymeric materials such as polyvinyl pyrrolidones typically of MW 5000-20000, preferably 10000-15000, also form useful agents in preventing the transfer of labile dyestuffs between fabrics during the washing process.
  • Fabric softening agents can also be incorporated into detergent compositions in accordance with the present invention. These agents may be inorganic or organic in type. Inorganic softening agents are exemplified by the smectite clays disclosed in GB-A-1,400,898. Organic fabric softening agents include the water-insoluble tertiary amines as disclosed in GB-A-1514276 and EP-B-0 011 340 and their combination with mono C12-C14 quaternary ammonium salts are disclosed in EP-B-0 026 527 and EP-B-0 026 528 and di-long-chain amides as disclosed in EP-B-0 242 919. Other useful organic ingredients of fabric softening systems include high molecular weight polyethylene oxide materials as disclosed in EP-A-0 299 575 and 0 313 146.
  • Levels of smectite clay are normally in the range from 5% to 20%, more preferably from 8% to 15% by weight with the material being added as a dry mixed component to the remainder of the formulation.
  • Organic fabric softening agents such as the water-insoluble tertiary amines or di-long-chain amide materials are incorporated at levels of from 0.5% to 5% by weight, normally from 1% to 3% by weight whilst the high molecular weight polyethylene oxide materials and the water-soluble cationic materials are added at levels of from 0.1% to 2%, normally from 0.15% to 1.5% by weight.
  • These materials are normally added to the spray dried portion of the composition, although in some instances it may be more convenient to add them as a dry mixed particulate, or spray them as a molten liquid on to other solid components of the composition.
  • compositions according to the present invention can be made via a variety of methods including dry mixing, spray drying, agglomeration and granulation and combinations of any of these techniques.
  • a method of making the compositions herein involves a combination of spray drying, agglomeration in a high speed mixer and dry mixing.
  • a first granular component containing a relatively insoluble anionic surfactant is spray dried and part of the spray dried product is diverted and subjected to a low level of nonionic surfactant spray on before being reblended with the remainder.
  • a second granular component is made by dry neutralisation of an anionic surfactant acid using sodium carbonate as the neutralising agent in a continuous high speed blender such as a Lodige KM mixer.
  • the first and second components together with other dry mix ingredients such as the carboxylate chelating agent, inorganic peroxygen bleach, bleach activator, soil suspension agent, silicate and enzyme are then fed to a conveyor belt from which they are transferred to a horizontally rotating drum in which perfume and silicone suds suppressor are sprayed on to the product.
  • a further drum mixing step is employed in which a low (approx. 2%) level of finely divided crystalline aluminosilicate is introduced to increase density and improve granular flow characteristics.
  • the present detergent compositions are in granular form and are characterized by their density, which is higher than the density of conventional detergent compositions.
  • the density of the compositions herein ranges from 800 to 1100g/liter, preferably 850 to 1000 g/liter of composition, measured at 20°C.
  • compositions herein are best reflected, in terms of composition, by the amount of inorganic filler salt; inorganic filler salts are conventional ingredients of detergent compositions in powder form; In conventional detergent compositions, the filler salts are present in substantial amounts, typically 17-35% by weight of the total composition.
  • the filler salt is present in amounts not exceeding 15% of the total composition, preferably not exceeding 10%, most preferably not exceeding 5% by weight of the composition.
  • Inorganic filler salts such as meant in the present compositions are selected from the alkali and alkaline-earth-metal salts of sulphates and chlorides.
  • a preferred filler salt is sodium sulphate.
  • the compact detergent compositions herein have the ability to achieve the same efficiency than conventional detergent compositions, when a considerably lesser amount of composition herein, is used in the main wash cycle of a washing machine.
  • the recommended usage is from 80 to 140 g of detergent composition for the main wash cycle, without the need of a pre-wash.
  • the detergent compositions herein are preferably delivered directly to the drum and not indirectly via the outer casing of the machine. This can most easily be achieved by incorporation of the composition in a bag or container from which it can be released at the start of the wash cycle in response to agitation, a rise in temperature or immersion in the wash water in the drum. Such a container will be placed in the drum, together with the fabrics to be washed.
  • the washing machine itself may be adapted to permit direct addition of the composition to the drum e.g. by a dispensing arrangement in the access door.
  • Products comprising a detergent composition enclosed in a bag or container are usually designed in such a way that container integrity is maintained in the dry state to prevent egress of the contents when dry, but are adapted for release of the container contents on exposure to a washing environment, normally on immersion in an aqueous solution.
  • the container will be flexible, such as a bag or pouch.
  • the bag may be of fibrous construction coated with a water impermeable protective material so as to retain the contents, such as is disclosed in European published Patent Application No. 0 018 678.
  • it may be formed of a water insoluble synthetic polymeric material provided with an edge seal or closure designed to rupture in aqueous media as disclosed in European published Patent Application Nos. 0 011 500, 0 011 501, 0 011 502, and 0 011 968.
  • a convenient form of water frangible closure comprises a water soluble adhesive disposed along and sealing one edge of a pouch formed of a water impermeable polymeric film such as polyethylene or polypropylene.
  • laminated sheet products can be employed in which a central flexible layer is impregnated and/or coated with a composition and then one or more outer layers are applied to produce a fabric-like aesthetic effect.
  • the layers may be sealed together so as to remain attached during use or may separate on contact with water to facilitate the release of the coated or impregnated material.
  • An alternative laminate form comprises one layer embossed or deformed to provide a series of pouch-like containers into each of which the detergent components are deposited in measured amounts, with a second layer overlying the first layer and sealted thereto in those areas between the pouch-like containers where the two layers are in contact.
  • the components may be deposited in particulate, paste or molten form and the laminate layers should prevent egress of the contents of the pouch-like containers prior to their addition to water.
  • the layers may separate or may remain attached together on contact with water, the only requirement being that the structure should permit rapid release of the contents of the pouch-like containers into solution.
  • the number of pouch-like containers per unit area of substrate is a matter of choice but will normally vary between 500 and 25,000 per square metre.
  • Suitable materials which can be used for the flexible laminate layers in this aspect of the invention include, among others, sponges, paper and woven and non-woven fabrics.
  • the preferred means of carrying out the washing process according to the present invention includes the use of a reusable dispensing device having walls that are permeable to liquid but impermeable to the solid composition.
  • the support ring is provided with a masking arrangement to prevent egress of wetted, undissolved, product, this arrangement typically comprising radially extending walls extending from a central boss in a spoked wheel configuration, or a similar structure in which the walls have a helical form.
  • Linear alkyl benzene sulphonate sodium salt 8.0 C 45 alkyl sulphate sodium salt 2.5 C 45 alcohol 7 times ethoxylated 6.0 Tallow alcohol 11 times ethoxylated 2.0 Layered silicate 15.0 Trisodium citrate 5.0 Carbonate sodium salt 6.5 Zeolite 15.0 Maleic acid acrylic acid copolymer 5.0 DETMPA 0.3 SavinaseTM 10T 0.8 LipolaseTM 100T 0.25 Sodium silicate 2.0 Sodium sulphate 3.5 PVP 1.0 Perborate 15.0 TAED 6.0 Minors up to 100

Landscapes

  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Oil, Petroleum & Natural Gas (AREA)
  • Wood Science & Technology (AREA)
  • Organic Chemistry (AREA)
  • Detergent Compositions (AREA)

Claims (3)

  1. Composition détergente granulaire ayant une masse volumique de 800 g/L ou plus, comprenant des granulés d'enzyme, caractérisée en ce que la concentration de la protéase hautement alcaline dans le granulat est d'au moins 2% en poids.
  2. Composition détergente granulaire selon la revendication 1, dans laquelle les granulés d'enzyme sont colorés.
  3. Composition détergente granulaire selon les revendications 1-2, dans laquelle TiO2 est ajouté à la composition.
EP94923580A 1993-02-26 1994-02-10 Compositions détergentes comprenant des granules d'enzymes à grande activité Revoked EP0686186B1 (fr)

Priority Applications (1)

Application Number Priority Date Filing Date Title
EP94923580A EP0686186B1 (fr) 1993-02-26 1994-02-10 Compositions détergentes comprenant des granules d'enzymes à grande activité

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
EP93870035 1993-02-26
EP93870035 1993-02-26
EP94923580A EP0686186B1 (fr) 1993-02-26 1994-02-10 Compositions détergentes comprenant des granules d'enzymes à grande activité
PCT/US1994/001528 WO1994019444A1 (fr) 1993-02-26 1994-02-10 Granules d'enzyme a grande activite

Publications (3)

Publication Number Publication Date
EP0686186A4 EP0686186A4 (fr) 1995-09-19
EP0686186A1 EP0686186A1 (fr) 1995-12-13
EP0686186B1 true EP0686186B1 (fr) 1998-04-22

Family

ID=8215325

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94923580A Revoked EP0686186B1 (fr) 1993-02-26 1994-02-10 Compositions détergentes comprenant des granules d'enzymes à grande activité

Country Status (12)

Country Link
US (1) USH1653H (fr)
EP (1) EP0686186B1 (fr)
JP (1) JPH08507098A (fr)
CN (1) CN1071786C (fr)
AU (1) AU6267694A (fr)
CA (1) CA2156829C (fr)
CZ (1) CZ214795A3 (fr)
DE (1) DE69409797T2 (fr)
ES (1) ES2115246T3 (fr)
MA (1) MA23121A1 (fr)
PE (1) PE11295A1 (fr)
WO (1) WO1994019444A1 (fr)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807498B2 (fr) 2004-11-02 2019-02-20 Henkel AG & Co. KGaA Procede de preparation des granules / agglomerats pour compositions detergentes
EP3353274B1 (fr) 2015-09-17 2020-11-04 Henkel AG & Co. KGaA Utilisation d'enzymes sous forme de granulés à concentration élevée pour augmenter la stabilité au stockage d'enzymes

Families Citing this family (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08507098A (ja) * 1993-02-26 1996-07-30 ザ、プロクター、エンド、ギャンブル、カンパニー 高活性酵素粒状物
EP0628624A1 (fr) * 1993-06-09 1994-12-14 The Procter & Gamble Company Compositions détergentes contenant une protéase et des additifs pour empêcher le transfert de colorant
US5883064A (en) * 1993-12-21 1999-03-16 The Procter & Gamble Company Protease containing dye transfer inhibiting composition
WO2019206994A1 (fr) 2018-04-26 2019-10-31 Basf Se Enzymes lipases
US20210115422A1 (en) 2018-05-03 2021-04-22 Basf Se Amylase enzymes
CN114096676A (zh) 2019-02-20 2022-02-25 巴斯夫欧洲公司 用确定成分培养基和镁补料的芽孢杆菌工业发酵工艺
WO2020169564A1 (fr) 2019-02-20 2020-08-27 Basf Se Procédé de fermentation industrielle pour bacillus utilisant un milieu défini et une alimentation en élément trace
EP3947665A2 (fr) 2019-03-25 2022-02-09 Basf Se Enzymes amylase
WO2020193534A2 (fr) 2019-03-25 2020-10-01 Basf Se Enzymes amylase
WO2020193532A1 (fr) 2019-03-25 2020-10-01 Basf Se Composition de nettoyage ayant des enzymes amylase
CN113993878A (zh) 2019-06-13 2022-01-28 巴斯夫欧洲公司 用二价阳离子从发酵液中回收蛋白的方法
WO2021001297A1 (fr) 2019-07-02 2021-01-07 Basf Se Procédé de préparation d'un milieu de fermentation
CN114096677A (zh) 2019-07-05 2022-02-25 巴斯夫欧洲公司 使用补料分批预培养的微生物细胞工业发酵方法
BR112022000573A2 (pt) 2019-08-22 2022-03-15 Basf Se Polipeptídeo isolado, sintético ou recombinante com atividade alfa-amilase, ácido nucleico isolado, sintético ou recombinante, construto de ácido nucleico, vetor de expressão, célula hospedeira, composição, método para produzir polipeptídeo isolado, sintético ou recombinante, método para preparar uma massa ou um produto de panificação, e, métodos para usar o polipeptídeo isolado, sintético ou recombinante e um domínio c de uma primeira amilase
BR112023003778A2 (pt) 2020-09-04 2023-03-28 Basf Se Método para separar uma molécula de interesse de um agente antiespumante em um caldo de fermentação, e, processo para purificar uma molécula de interesse de um caldo de fermentação
CN116323635A (zh) 2020-09-22 2023-06-23 巴斯夫欧洲公司 从包含高度裂解细胞的发酵液中回收蛋白的方法
EP4047088A1 (fr) 2021-02-22 2022-08-24 Basf Se Variants d'amylase
KR20230147071A (ko) 2021-02-22 2023-10-20 헨켈 아게 운트 코. 카게아아 아밀라제 변이체
WO2024028340A1 (fr) 2022-08-02 2024-02-08 Basf Se Procédé de production de protéines stabilisées à l'aide de cellules hôtes de bacillus avec alimentation en sel
WO2024033134A1 (fr) 2022-08-11 2024-02-15 Basf Se Compositions enzymatiques à base de protéase, mannanase et/ou cellulase
WO2024033135A2 (fr) 2022-08-11 2024-02-15 Basf Se Variants d'amylase
WO2024033136A1 (fr) 2022-08-11 2024-02-15 Basf Se Variants d'amylase
WO2024033133A2 (fr) 2022-08-11 2024-02-15 Basf Se Compositions enzymatiques contenant une amylase
WO2024094735A1 (fr) 2022-11-04 2024-05-10 Basf Se Polypeptides présentant une activité protéasique pour utilisation dans des compositions détergentes
WO2024094732A1 (fr) 2022-11-04 2024-05-10 Basf Se Polypeptides présentant une activité protéasique pour utilisation dans des compositions détergentes
WO2024094733A1 (fr) 2022-11-04 2024-05-10 Basf Se Polypeptides présentant une activité protéasique pour utilisation dans des compositions détergentes

Family Cites Families (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US4219436A (en) * 1977-06-01 1980-08-26 The Procter & Gamble Company High density, high alkalinity dishwashing detergent tablet
US4406808A (en) * 1977-10-06 1983-09-27 Colgate-Palmolive Company High bulk density carbonate-zeolite built heavy duty nonionic laundry detergent
DE3434854A1 (de) * 1984-09-22 1986-04-03 Henkel KGaA, 4000 Düsseldorf Verfahren zur herstellung einer koernigen, freifliessenden waschmittelkomponente
JPS6192570A (ja) * 1984-10-12 1986-05-10 Showa Denko Kk 酵素造粒法
ES2020949B3 (es) * 1986-01-17 1991-10-16 Kao Corp Composicion detergente granular de alta densidad.
JP2787941B2 (ja) * 1986-09-12 1998-08-20 花王株式会社 酵素含有高密度粒状洗剤組成物
DK435687D0 (da) * 1987-08-21 1987-08-21 Novo Industri As Enzymholdigt granulat og fremgangsmaade til fremstilling deraf
MY103969A (en) * 1988-01-19 1993-10-30 Kao Corp Detergent composition containing perfume
GB8811447D0 (en) * 1988-05-13 1988-06-15 Procter & Gamble Granular laundry compositions
JPH0633439B2 (ja) * 1988-07-28 1994-05-02 花王株式会社 高密度粒状濃縮洗剤組成物
GB8826110D0 (en) * 1988-11-08 1988-12-14 Unilever Plc Enzyme-containing detergent compositions
GB8902009D0 (en) * 1989-01-30 1989-03-22 Unilever Plc Particulate detergent compositions and their use
CA2017921C (fr) * 1989-06-09 1995-05-16 John Michael Jolicoeur Preparation de granules detergentes par voie de separation d'une pate detergente
GB8924294D0 (en) * 1989-10-27 1989-12-13 Unilever Plc Detergent compositions
EP0506791B1 (fr) * 1989-12-21 1993-09-08 Novo Nordisk A/S Preparation contenant des enzymes et detergent contenant une telle preparation
JP2918991B2 (ja) * 1990-05-25 1999-07-12 三菱瓦斯化学株式会社 漂白洗浄剤組成物
DE69133035T2 (de) * 1991-01-16 2003-02-13 Procter & Gamble Kompakte Waschmittelzusammensetzungen mit hochaktiven Cellulasen
SK278834B6 (sk) * 1992-01-17 1998-03-04 Unilever Nv Časticová bieliaca detergentná zmes
JPH08507098A (ja) * 1993-02-26 1996-07-30 ザ、プロクター、エンド、ギャンブル、カンパニー 高活性酵素粒状物

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1807498B2 (fr) 2004-11-02 2019-02-20 Henkel AG & Co. KGaA Procede de preparation des granules / agglomerats pour compositions detergentes
EP3353274B1 (fr) 2015-09-17 2020-11-04 Henkel AG & Co. KGaA Utilisation d'enzymes sous forme de granulés à concentration élevée pour augmenter la stabilité au stockage d'enzymes

Also Published As

Publication number Publication date
MA23121A1 (fr) 1994-10-01
DE69409797T2 (de) 1998-12-10
WO1994019444A1 (fr) 1994-09-01
EP0686186A1 (fr) 1995-12-13
ES2115246T3 (es) 1998-06-16
CA2156829A1 (fr) 1994-09-01
CN1121354A (zh) 1996-04-24
CA2156829C (fr) 1999-06-08
PE11295A1 (es) 1995-05-18
USH1653H (en) 1997-06-03
CZ214795A3 (en) 1996-02-14
JPH08507098A (ja) 1996-07-30
CN1071786C (zh) 2001-09-26
DE69409797D1 (de) 1998-05-28
AU6267694A (en) 1994-09-14
EP0686186A4 (fr) 1995-09-19

Similar Documents

Publication Publication Date Title
EP0686186B1 (fr) Compositions détergentes comprenant des granules d'enzymes à grande activité
EP0508034B1 (fr) Composition détergente contenant des polyvinylpyrrolidones
WO1992018597A1 (fr) Composition detersive compacte contenant de la polyvinylpyrrolidone
EP0543911B2 (fr) Compositions de detergents
CA2141586A1 (fr) Compositions precurseurs de blanchiment a base de peroxyacide
EP0586354B1 (fr) Utilisation de polyesters modifiés pour enlever des graisses sur des tissus
EP0675978B1 (fr) Composition de precurseurs de peroxyacide enrobes, servant d'agents de blanchiment
AU4279393A (en) Use of modified polyesters for the washing of cotton-containing fabrics
EP0628625B1 (fr) Protéase compatible avec lipase dans les compositions solides de blanchiment
IE911056A1 (en) Fabric cleaning process
IE922014A1 (en) Compact detergent composition containing¹polyvinylpyrrolidone (pvp)
EP0652848A1 (fr) Compositions de precurseurs de blanchiment a base de peroxyacide

Legal Events

Date Code Title Description
A4 Supplementary search report drawn up and despatched
AK Designated contracting states

Kind code of ref document: A4

Designated state(s): DE ES FR GB IT

PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17Q First examination report despatched

Effective date: 19960115

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RBV Designated contracting states (corrected)

Designated state(s): DE ES FR GB IT

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

REF Corresponds to:

Ref document number: 69409797

Country of ref document: DE

Date of ref document: 19980528

ET Fr: translation filed
REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2115246

Country of ref document: ES

Kind code of ref document: T3

ITF It: translation for a ep patent filed

Owner name: ING. C. GREGORJ S.P.A.

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: NOVO NORDISK A/S

Effective date: 19990122

Opponent name: GENENCOR INTERNATIONAL INC.,

Effective date: 19990122

26 Opposition filed

Opponent name: UNILEVER N.V.

Effective date: 19990122

Opponent name: NOVO NORDISK A/S

Effective date: 19990122

Opponent name: GENENCOR INTERNATIONAL INC.,

Effective date: 19990122

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: GENENCOR INTERNATIONAL INC., * 19990122 NOVO NORDI

Effective date: 19990122

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: GENENCOR INTERNATIONAL INC., * 19990122 NOVOZYMES

Effective date: 19990122

RDAH Patent revoked

Free format text: ORIGINAL CODE: EPIDOS REVO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

APAE Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOS REFNO

APAC Appeal dossier modified

Free format text: ORIGINAL CODE: EPIDOS NOAPO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20030219

Year of fee payment: 10

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

R26 Opposition filed (corrected)

Opponent name: UNILEVER N.V.

Effective date: 19990122

Opponent name: NOVOZYMES A/S

Effective date: 19990122

Opponent name: GENENCOR INTERNATIONAL INC.,

Effective date: 19990122

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20040107

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20040202

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20040227

Year of fee payment: 11

APBU Appeal procedure closed

Free format text: ORIGINAL CODE: EPIDOSNNOA9O

RDAG Patent revoked

Free format text: ORIGINAL CODE: 0009271

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: PATENT REVOKED

27W Patent revoked

Effective date: 20040812

GBPR Gb: patent revoked under art. 102 of the ep convention designating the uk as contracting state

Free format text: 20040812

APAH Appeal reference modified

Free format text: ORIGINAL CODE: EPIDOSCREFNO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO

PLAB Opposition data, opponent's data or that of the opponent's representative modified

Free format text: ORIGINAL CODE: 0009299OPPO