EP0682751B1 - Vakuum-pumpeinrichtung - Google Patents

Vakuum-pumpeinrichtung Download PDF

Info

Publication number
EP0682751B1
EP0682751B1 EP94903814A EP94903814A EP0682751B1 EP 0682751 B1 EP0682751 B1 EP 0682751B1 EP 94903814 A EP94903814 A EP 94903814A EP 94903814 A EP94903814 A EP 94903814A EP 0682751 B1 EP0682751 B1 EP 0682751B1
Authority
EP
European Patent Office
Prior art keywords
ejector
compressed air
valve
vacuum pump
pressure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94903814A
Other languages
English (en)
French (fr)
Other versions
EP0682751A1 (de
Inventor
Dieter Bergemann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Putzmeister Concrete Pumps GmbH
Original Assignee
Putzmeister AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Putzmeister AG filed Critical Putzmeister AG
Publication of EP0682751A1 publication Critical patent/EP0682751A1/de
Application granted granted Critical
Publication of EP0682751B1 publication Critical patent/EP0682751B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • F04B43/1253Machines, pumps, or pumping installations having flexible working members having peristaltic action by using two or more rollers as squeezing elements, the rollers moving on an arc of a circle during squeezing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04BPOSITIVE-DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS
    • F04B43/00Machines, pumps, or pumping installations having flexible working members
    • F04B43/12Machines, pumps, or pumping installations having flexible working members having peristaltic action
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B28WORKING CEMENT, CLAY, OR STONE
    • B28CPREPARING CLAY; PRODUCING MIXTURES CONTAINING CLAY OR CEMENTITIOUS MATERIAL, e.g. PLASTER
    • B28C5/00Apparatus or methods for producing mixtures of cement with other substances, e.g. slurries, mortars, porous or fibrous compositions
    • B28C5/42Apparatus specially adapted for being mounted on vehicles with provision for mixing during transport
    • B28C5/4203Details; Accessories
    • B28C5/4234Charge or discharge systems therefor
    • B28C5/4244Discharging; Concrete conveyor means, chutes or spouts therefor
    • B28C5/4258Discharging; Concrete conveyor means, chutes or spouts therefor using pumps or transporting screws
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/14Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid
    • F04F5/16Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids
    • F04F5/20Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow the inducing fluid being elastic fluid displacing elastic fluids for evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04FPUMPING OF FLUID BY DIRECT CONTACT OF ANOTHER FLUID OR BY USING INERTIA OF FLUID TO BE PUMPED; SIPHONS
    • F04F5/00Jet pumps, i.e. devices in which flow is induced by pressure drop caused by velocity of another fluid flow
    • F04F5/54Installations characterised by use of jet pumps, e.g. combinations of two or more jet pumps of different type

Definitions

  • the invention relates to a vacuum pump device for evacuating the housing of a peristaltic pump that can be used as a thick matter feed pump and is installed on a road vehicle, with a device for generating compressed air for the operation of facilities of the road vehicle, e.g. a compressed air brake system of the vehicle and / or other compressor that can be carried on or installed on the vehicle, and with a vacuum pump unit, to the suction side of which the housing of the peristaltic pump is connected as a recipient.
  • a vacuum pump device for evacuating the housing of a peristaltic pump that can be used as a thick matter feed pump and is installed on a road vehicle
  • a device for generating compressed air for the operation of facilities of the road vehicle e.g. a compressed air brake system of the vehicle and / or other compressor that can be carried on or installed on the vehicle
  • a vacuum pump unit to the suction side of which the housing of the peristaltic pump is connected as a recipient.
  • vacuum pump devices The purpose of such vacuum pump devices is to partially accelerate the regression of the circular cross-sectional shape of the pump hose after it has been pressed against a housing wall by the squeeze rollers of the pump rotor and thereby squeezed together, so that the maximum suction and delivery cross-section is as fast as possible to achieve the appropriate shape of the hose again (DE 36 07 836 A1).
  • the pump unit to which the housing of the peristaltic pump is connected as a recipient, is usually designed as a positive displacement pump, for example as a capsule pump, which has a pump rotor, for the drive of which either its own - electric or hydraulic drive motor or a gear that can be engaged and disengaged is provided, via which a drive coupling of the pump rotor to a power take-off of the vehicle engine is possible if necessary.
  • a positive displacement pump for example as a capsule pump, which has a pump rotor, for the drive of which either its own - electric or hydraulic drive motor or a gear that can be engaged and disengaged is provided, via which a drive coupling of the pump rotor to a power take-off of the vehicle engine is possible if necessary.
  • the vacuum pump unit is designed as an ejector working on the principle of the jet pump, which is preferably designed as an air jet pump, the propellant gas jet of which can be branched off from the compressed air provided by the compressor.
  • the ejector provided as a vacuum pump unit which, in a design and functional arrangement known per se, consists of a driving nozzle that can be connected to the pressure outlet of the compressor, a collecting nozzle that forms the outlet of the ejector, and a mouth opening of the driving and the housing containing the catch nozzle, to which the housing of the peristaltic pump to be evacuated can be connected as a recipient, is a structurally very simple functional element which can be manufactured at a correspondingly low cost or is commercially available and, since it contains no moving parts, is not subject to any significant wear and tear and therefore also requires no maintenance work.
  • a non-return valve As a valve responding to the pressure difference between the recipient and the ejector, a non-return valve is suitable which, in a simple design of the vacuum pump device, is designed as a flap valve which responds to very small values of the pressure difference of only a few millibars and can be switched reliably between its functional positions.
  • an overflow valve controlled by the outlet pressure of the compressed air source is provided between the outlet of the compressed air source and the compressed air inlet of the air jet ejector, which blocks the compressed air flow to the ejector when the outlet pressure of the compressed air source drops and / or falls below an adjustable or fixed predetermined threshold value
  • the air flow output of the ejector against the ambient atmosphere by means of a response to the pressure difference between the ejector output and the ambient atmosphere Valve can be shut off, which is controlled into its open position by a relatively higher pressure at the outlet of the ejector than the ambient pressure and reaches its blocking position when the pressure difference falls below a minimum value, also possible in the event of a failure of the compressed air source or a pressure drop at its outlet maintain a minimum vacuum - at least for a limited time - in the housing of the peristaltic pump
  • This pressure-sensitive valve which conveys a shut-off of the ejector on the outlet side from the ambient pressure, and thus, if the ejector is shut off on the inlet side by a response of the overflow valve, also shuts off the housing of the peristaltic pump against the ambient atmosphere, can be designed as a simple flutter valve.
  • the housing of the peristaltic pump can be ventilated via the ejector if necessary, whereby the housing of the peristaltic pump is ventilated when the vacuum pump device is switched off.
  • this can also be achieved by providing a 3/3-way valve directly upstream of the housing of the peristaltic pump, which has a first flow position in which the housing of the peristaltic pump forming the recipient with the The vacuum chamber of the ejector is connected and at the same time is sealed off from the surrounding atmosphere, via a blocking position in which both the recipient and the negative pressure chamber of the ejector are blocked from the surrounding atmosphere, and can be switched over to a second flow position - an aeration position - in which the recipient is connected to the Ambient atmosphere is in communicating connection, but is blocked against the negative pressure chamber of the ejector, which in this configuration remains in communicating connection with the ambient atmosphere through the capture nozzle.
  • Such 3/3-way valves can be designed as simple, manually operable 3-way valves with L-plug.
  • Low-noise operation of the vacuum pump device can be achieved in a simple manner by means of a conventional type of silencer connected downstream of its ejector.
  • the vacuum pump device serves to generate a negative pressure in the housing 11 of a thick matter feed pump designed as a peristaltic pump, generally designated 12, by means of which the pump hose 13 relaxes on both sides of its length during pump operation promoted squeezing point and thereby the inflow of material to be pumped into the pump 12 is to be facilitated.
  • an essentially circular disk-shaped rotor 16 is mounted rotatably about its central axis 14, which rotor e.g. Via the power take-off of the engine of a construction vehicle, not shown, can be driven in rotation, on which the peristaltic pump together with other devices, e.g. a concrete mixer and / or a placing boom for concrete is mounted.
  • Two pinch rollers are freely rotatably mounted on the rotor about axes of rotation 19 and 21 which are parallel to the central axis 14 of the pump 12 and are arranged at the same distance from the central axis 14 at an azimuthal distance of 180 ° on the rotor.
  • a support wall 24 Arranged within the housing 11 of the pump 12 is a support wall 24, which extends between the pump inlet 22 and the pump outlet 23 and coaxially surrounds the rotor on a 180 ° circumferential area, which is fastened between the side walls of the pump housing 11 and has the shape of a half cylinder jacket .
  • the pump hose is between the support wall 24 and the two pinch rollers 17 and 18, which alternately on the inside of the support wall on the Attack the hose 13, squeezed, the pinch point 27 migrating from the pump inlet 22 over the inner circumferential region of the support wall 24 to the pump outlet 23 and the material to be conveyed thereby being pushed through the pump hose 13.
  • an air jet ejector As a vacuum pump unit, by means of which the housing 11 of the peristaltic pump 12 partially, ie can be evacuated to an absolute value of the pressure of approximately 0.2 bar, an air jet ejector, designated overall by 28, is provided, which flows through a compressed air jet, which is represented by a flow arrow 31, as a propellant jet, input-side propelling nozzle 32 and an exit-side catch nozzle 33 as well as a housing 29 with a suction connection piece 38, which delimits a vacuum chamber 37 and contains the orifices 34 and 36 of the propulsion nozzle 32 and the catch nozzle 33, seen in the flow direction of the propulsion jet 31, adjacent to one another Via an inlet check valve 39 and a 3-way valve 41, the chamber 42 of the peristaltic pump 12 delimited by the housing 11 of the peristaltic pump 12 can be connected as a recipient.
  • the compressed air flow passed through the ejector 28 in the evacuation mode of the ejector 28 and the pump chamber 42 connected to its suction port 38 is generated by a compressor 43 which is provided as an on-board unit of the vehicle and is also used for supplying compressed air to the compressed air braking system of the vehicle.
  • This compressor 43 is driven by the engine of the vehicle, while the peristaltic pump 12 can be driven via a power take-off of the drive unit of the vehicle that can be switched on and off, not shown.
  • a pressure-controlled overflow valve 47 is switched, which releases the passage of a compressed air flow from the compressed air outlet 44 of the compressor 43 to the inlet 46 of the ejector 28, so as long as the output pressure of the compressor is greater than a defined threshold value of, for example, 8 bar, but blocks this flow path as soon as the output pressure of the compressor 43 drops below this threshold value.
  • the blowing air jet 31 emerging at high speed at the inner opening 34 of the driving nozzle which, viewed in the direction of flow of the driving jet 31, has a continuously tapering flow cross-section, entrains air in the vacuum chamber 37 of the ejector 28 into the catching nozzle 33 of the ejector 28 , which is transported together with the propellant air flow 31 to the compressed air outlet of the ejector 28 formed by the outer opening 48 of the trap nozzle, where, due to a design of the trap nozzle which widens in the flow direction, the speed of the emerging air flow is significantly reduced.
  • the catch nozzle 33 has a flow cross-section which initially tapered and then widened again towards the outer mouth opening 48, which in the region of outer mouth opening 48 is significantly larger than that Clear cross-section of the compressor-side, outer mouth opening 46 of the driving nozzle in order to achieve a clear calming of the air flow emerging at the outlet 48 of the ejector 28, which is passed through a silencer 49 connected downstream of the ejector 28 to reduce the operating noise.
  • the flap valve 39 which comes into its blocking position when the propellant air jet is exposed and the pressure increase in the vacuum chamber 37 of the ejector connected with it, provided that the 3-way valve is in its - shown - evacuation position, the vacuum in the connected recipient is maintained.
  • the 3-way valve 41 is designed as a valve with a rotatable L-plug, which conveys the function of a 3/3-way valve which, from a first - shown - flow position, in which the pump housing 11 can be evacuated, Via a blocking position, in which the pump housing 11 is blocked against both the ambient atmosphere and the ejector 28, can be switched into a second flow position, the ventilation position, in which the evacuable chamber 42 of the peristaltic pump 12 via the tap 41 directly with the ambient atmosphere communicates.
  • a vacuum pump device 10 'suitable for evacuating the housing chamber 42 accommodating the rotor 16 and the delivery hose 13 of a peristaltic pump is assumed that its functional elements - compressor 43, overflow valve 47, 3-way -Cock 41, ejector 28, flutter valve 39 and muffler 49 with the correspondingly designated functional elements of the embodiment shown in FIG. 1 are identical.
  • the suction port 38 of the ejector 28 is connected directly to the evacuable chamber 42 of the housing 11 of the peristaltic pump 12; the 3-way valve 41 is between the overflow valve 47 and the Ejector 28 is switched, and the flutter valve 39, which is used here as an output check valve of the ejector 28, is connected between the ejector 28 and the silencer 49.
  • the recipient 42 is ventilated via the 3-way valve 41 and the drive nozzle 32 of the ejector 28, which - when the delivery valve 39 is closed - can be connected to the ambient atmosphere by means of the 3-way valve.
  • the outlet pressure of the compressor 43 is between 6 and 8 bar
  • the compressed air flow used as the driving jet of the ejector 28 based on normal conditions (pressure 1 bar and air temperature by 20 °) has an amount of 200 l / min.
  • the amount of air that can be conveyed from the recipient 42 in this configuration of the vacuum pumping devices 10, 10 'at the start of the evacuation operation is then approx. 150 l / min, a negative pressure being established in the recipient 42 in the stationary operating state of the pump device 10, 10 ′, which has an absolute value of approx. 0.2 to 0.3 bar.
  • the vacuum pump unit 28 is the housing 11 of the hose squeeze pump 12 on the suction side thereof Recipient is connected as an ejector working on the principle of the steam jet pump, the motive air jet of which can be branched off from the compressed air generated by the compressor 43 of the vehicle brake system.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Fluid Mechanics (AREA)
  • Structural Engineering (AREA)
  • Jet Pumps And Other Pumps (AREA)
  • Applications Or Details Of Rotary Compressors (AREA)
  • Valves And Accessory Devices For Braking Systems (AREA)
  • Compressors, Vaccum Pumps And Other Relevant Systems (AREA)

Abstract

Bei einer Vakuum-Pumpeinrichtung für die Evakuierung des Gehäuses (11) einer als Betonförderpumpe benutzbaren Schlauchquetschpumpe (12), die auf einem Straßenfahrzeug mit einer Druckluftbremsanlage installiert ist, ist das Vakuum-Pumpaggregat (28) an dessen Saugseite das Gehäuse (11) der Schlauchquetschpumpe (12) als Rezipient angeschlossen ist, als ein nach dem Prinzip der Luftstrahlpumpe arbeitender Ejektor ausgebildet, dessen Treibluftstrahl von der mittels des Kompressors (43) der Fahrzeug-Bremsanlage erzeugten Druckluft abzweigbar ist.

Description

  • Die Erfindung betrifft eine Vakuum-Pumpeinrichtung für die Evakuierung des Gehäuses einer als Dickstoff-Förderpumpe benutzbaren Schlauchquetschpumpe, die auf einem Straßenfahrzeug installiert ist, mit einem zur Erzeugung von Druckluft für den Betrieb von Einrichtungen des Straßenfahrzeugs, z.B. einer Druckluft-Bremsanlage des Fahrzeuges und/oder weiterer auf dem Fahrzeug mitführbarer oder auf diesem installierter Geräte benötigten Kompressor, und mit einem Vakuum-Pumpaggregat, an dessen Saugseite das Gehäuse der Schlauchquetschpumpe als Rezipient angeschlossen ist.
  • Zweck solcher Vakuumpumpeinrichtungen ist es, durch eine partielle Evakuierung des Gehäuses der SchlauchQuetschpumpe die Rückbildung der kreisrunden Querschnittsform des Pumpenschlauches, nachdem er durch die Quetschrollen des Pumpenrotors gegen eine Gehäusewand gedrückt und dabei zusammengequetscht worden war, zu beschleunigen um möglichst rasch die maximalem Ansaug- und Förderquerschnitt entsprechende Form des Schlauches wieder zu erreichen (DE 36 07 836 A1).
  • Bei derartigen Vakuum-Pumpeinrichtungen ist das Pumpaggregat, an das als Rezipient das Gehäuse der Schlauchquetschpumpe angeschlossen ist, üblicherweise als Verdrängerpumpe, z.B. als Kapselpumpe ausgebildet, die einen Pumpenrotor hat, zu dessen Antrieb entweder ein eigener - elektrischer oder hydraulischer Antriebsmotor oder ein ein- und auskuppelbares Getriebe vorgesehen ist, über das eine Antriebskopplung des Pumpenrotors mit einem Nebenabtrieb des Fahrzeugmotors im Bedarfsfall möglich ist.
  • Der hiernach durch die für einen effizienten Betrieb der Schlauchquetschpumpe erforderliche Evakuierung ihres Gehäuses bedingte technische Aufwand ist erheblich und trägt daher entsprechend sowohl zu den Investitionskosten für das Fahrzeug als auch zu den Betriebskosten bei, da sowohl das Vakuum-Pumpaggregat als auch sein Antrieb verschleißbehaftet und daher wartungsbedürftig sind. Es kommt hinzu, daß übliche nach dem Verdrängerprinzip arbeitende Vakuumpumpen gegen Kondenswasser anfällig sind, das sich aus Wasser bilden kann, welches z.B. im Zuge einer bei einem Schlauchwechsel erfolgten Reinigung der Schlauchquetschpumpe in deren Gehäuse verblieben ist und bei normaler Betriebstemperatur verdampfen und in der Vakuumpumpe kondensieren kann, wodurch sowohl deren Funktionsfähigkeit beeinträchtigt als auch deren Standzeit reduziert werden kann.
  • Aufgabe der Erfindung ist es daher, eine Vakuum-Pump-einrichtung der eingangs genannten Art anzugeben, die bei deutlich reduzierter Störanfälligkeit und, damit einhergehend, erhöhter Funktionszuverlässigkeit und Lebensdauer gleichwohl mit erheblich geringerem technischen Aufwand und entsprechend reduzierten Kosten realisierbar ist.
  • Diese Aufgabe wird erfindungsgemäß dadurch gelöst, daß das Vakuum-Pumpaggregat als ein nach dem Prinzip der Strahl-Pumpe, die bevorzugt als Luftstrahlpumpe ausgebildet ist, arbeitender Ejektor ausgebildet ist, dessen Treibgasstrahl von der mittels des Kompressors bereitgestellten Druckluft abzweigbar ist.
  • Die erfindungsgemäße Vakuum-Pumpeinrichtung vermittelt zumindest die folgenden Vorteile:
  • Der als Vakuum-Pumpaggregat vorgesehene Ejektor, der, in für sich bekannter Gestaltung und funktioneller Anordnung aus einer an den Druckausgang des Kompressors anschließbaren Treibdüse, einer den Auslaß des Ejektors bildenden Fangdüse und einem die in Strömungsrichtung der Druckluft gesehen einander benachbarten Mündungsöffnungen der Treib- und der Fangdüse enthaltenden Gehäuse besteht, an das als Rezipient das zu evakuierende Gehäuse der Schlauchquetschpumpe anschließbar ist, ist ein konstruktiv sehr einfaches Funktionselement, das entsprechend preisgünstig herstellbar oder kommerziell erhältlich ist und, da es keine beweglichen Teile enthält, keinem nennenswerten Verschleiß unterworfen ist und daher auch keinerlei Wartungsarbeiten erfordert.
  • Durch ein zwischen den Ansaugstutzen des Luftstrahl-Ejektors und das Gehäuse der Schlauchquetschpumpe geschaltetes, auf die innerhalb des Gehäuses des Ejektors sowie im Rezipienten herrschenden Drücke ansprechendes Ventil, das durch relativ höheren Druck im Gehäuse der Schlauchquetschpumpe als in der Unterdruckkammer des Ejektors in seine Offen-Stellung und durch relativ höheren Druck in der Unterdruckkammer des Ejektors in seine Sperrstellung steuerbar ist, wird erreicht, daß bei einem Ausfall der Druckluftquelle in dem Gehäuse der Schlauchquetschpumpe ein Unterdruck aufrechterhalten bleibt.
  • Als auf die Druckdifferenz zwischen Rezipient und Ejektor ansprechendes Ventil eignet sich ein Rückschlagventil, das in einfacher Gestaltung der Vakuum-Pumpeinrichtung als Flatterventil ausgebildet, das bei sehr kleinen Werten der Druckdifferenz von nur einigen Millibar anspricht und zwischen seinen Funktionsstellungen zuverlässig umschaltbar ist.
  • Wenn, wie in bevorzugter Gestaltung der Vakuum-Pumpeinrichtung vorgesehen, zwischen den Ausgang der Druckluftquelle und den Druckluft-Eingang des Luftstrahl-Ejektors ein durch den Ausgangsdruck der Druckluftquelle gesteuertes Überströmventil vorgesehen ist, das den Druckluftstrom zum Ejektor sperrt, wenn der Ausgangsdruck der Druckluftquelle abfällt und/oder einen einstellbar oder fest vorgegebenen Schwellenwert unterschreitet, so ist es, wenn, wie in weiterer Ausgestaltung der Vakuum-Pumpeinrichtung vorgesehen, der Luftstrom-Ausgang des Ejektors gegen die Umgebungsatmosphäre mittels eines auf die Druckdifferenz zwischen dem Ejektor-Ausgang und der Umgebungsatmosphäre ansprechenden Ventils absperrbar ist, das durch relativ höheren Druck am Ausgang des Ejektors als dem Umgebungsdruck in seine Offen-Stellung gesteuert ist und mit dem Unterschreiten eines Mindestwertes dieser Druckdifferenz in seine Sperrstellung gelangt, ebenfalls möglich, bei einem Ausfall der Druckluftquelle oder einem Druckabfall an deren Ausgang in dem Gehäuse der Schlauchquetschpumpe noch ein Mindest-Vakuum - zumindest für eine begrenzte Zeit - aufrechtzuerhalten
  • Auch dieses druckempfindliche Ventil, das eine ausgangsseitige Absperrung des Ejektors gegen den Umgebungsdruck vermittelt, und damit, wenn der Ejektor eingangsseitig durch ein Ansprechen des Überströmventils abgesperrt ist, auch das Gehäuse der Schlauchquetschpumpe gegen die Umgebungsatmosphäre absperrt, kann als einfaches Flatterventil ausgebildet sein.
  • Mittels eines dem Druckluft-Eingang des Ejektors unmittelbar vorgeschalteten 3/3-Wegeventils, das aus einer ersten Durchflußstellung, in welcher ein von der Druckluftquelle zur Treibdüse des Ejektors führender Druckluft-Strömungspfad freigegeben, der Treibdüsen-Anschlußstutzen des Ejektors jedoch gegen die Umgebungsatmosphäre abgesperrt ist, über eine Sperrstellung, in welcher der Treibdüsen-Anschlußstutzen des Ejektors sowohl gegen den Druckluft-Ausgang der Druckluftquelle als auch gegen die Umgebungsatmosphäre abgesperrt ist, in eine zweite Durchflußstellung steuerbar ist, in welcher der Treibdüsen-Anschlußstutzen des Ejektors mit der Umgebungsatmosphäre in Verbindung steht und gegen den Druckluftausgang der Druckluftquelle abgesperrt ist, kann im Bedarfsfall das Gehäuse der Schlauchquetschpumpe über den Ejektor belüftet werden, wodurch im ausgeschalteten Zustand der Vakuum-Pumpeinrichtung das Gehäuse der Schlauchquetschpumpe belüftet ist.
  • Dies kann in hierzu alternativer Gestaltung der Vakuum-Pumpeinrichtung auch dadurch erreicht werden, daß ein dem Gehäuse der Schlauchquetschpumpe unmittelbar vorgeschaltetes 3/3-Wege-Ventil vorgesehen ist, das aus einer ersten Durchflußstellung, in welcher das den Rezipienten bildende Gehäuse der Schlauchquetschpumpe mit der Unterdruckkammer des Ejektors verbunden und gleichzeitig gegen die Umgebungsatmosphäre abgesperrt ist, über eine Sperrstellung, in welcher sowohl der Rezipient als auch die Unterdruckkammer des Ejektors gegen die Umgebungsatmosphäre abgesperrt sind, in eine zweite Durchflußstellung - eine Belüftungsstellung - umschaltbar ist, in welcher der Rezipient mit der Umgebungsatmosphäre in kommunizierender Verbindung steht, jedoch gegen die Unterdruckkammer des Ejektors abgesperrt ist, die bei dieser Gestaltung über die Fangdüse mit der Umgebungsatmospähre in kommunizierender Verbindung bleibt.
  • Derartige 3/3-Wege-Ventile können als einfache, von Hand betätigbare 3-Wege-Hähne mit L-Küken ausgebildet sein.
  • Ein geräuscharmer Betrieb der Vakuum-Pump-Einrichtung kann auf einfache Weise mittels eines deren Ejektor nachgeschalteten Schalldämpfers üblicher Bauart erzielt werden.
  • Weitere Einzelheiten und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung zweier Ausführungsbeispiele anhand der Zeichnung. Es zeigen
  • Fig. 1
    ein Blockschaltbild einer Vakuum-Pumpeinrichtung mit einem Luftstrahl-Ejektor als Vakuum-Pumpaggregat und einem zwischen dieses und den Rezipienten geschalteten Absperrventil und
    Fig. 2
    eine Vakuum-Pumpeinrichtung mit einem Luftstrahl-Ejektor als Vakuum-Pumpaggregat und einem diesem nachgeschalteten Absperrventil, in einer der Fig. 1 entsprechenden Blockschaltbilddarstellung.
  • Die in der Fig. 1 insgesamt mit 10 bezeichnete Vakuum-Pumpeinrichtung dient dazu, im Gehäuse 11 einer als Schlauchquetschpumpe ausgebildeten, insgesamt mit 12 bezeichnete Dickstoff-Förderpumpe einen Unterdruck zu erzeugen, durch den die Entspannung des Pumpenschlauches 13 beidseits der im Pumpbetrieb über seine Länge hinweglaufenden Quetschstelle gefördert und dadurch das Nachströmen von Fördergut in die Pumpe 12 erleichtert werden soll.
  • In dem der Grundform nach trommelförmigen Gehäuse 12 ist um dessen zentrale Achse 14 drehbar ein im wesentlichen kreisscheibenförmiger Rotor 16 gelagert, der z.B. über den Nebenabtrieb des Motors eines nicht dargestellten Baufahrzeuges rotatorisch antreibbar ist, auf dem die Schlauchquetschpumpe zusammen mit weiteren Einrichtungen, z.B. einem Betonmischer und/oder einem Verteilermast für Beton montiert ist. An dem Rotor sind zwei Quetschrollen frei drehbar um zu der zentralen Achse 14 der Pumpe 12 parallele Drehachse 19 und 21 gelagert, die in gleichem Abstand von der zentralen Achse 14 in einem azimutalen Abstand von 180° an dem Rotor angeordnet sind. Innerhalb des Gehäuses 11 der Pumpe 12 ist eine sich zwischen dem Pumpeneingang 22 und dem Pumpenausgang 23 erstreckende, den Rotor auf einem 180°-Umfangsbereich koaxial umgebende Stützwand 24 angeordnet, die zwischen den Seitenwänden des Pumpengehäuses 11 befestigt ist und die Form eines halben Zylindermantels hat. Im Förderbetrieb der Pumpe, in dem sich deren Rotor 16 in Richtung des Pfeils 26, bei der gewählten Darstellung im Uhrzeigersinn, dreht, wird der Pumpenschlauch zwischen der Stützwand 24 und den beiden Quetschrollen 17 und 18, die alternierend an der Innenseite der Stützwand an dem Schlauch 13 angreifen, zusammengequetscht, wobei die Quetschstelle 27 vom Pumpeneingang 22 über den inneren Umfangsbereich der Stützwand 24 zum Pumpenausgang 23 wandert und dadurch das Fördergut durch den Pumpenschlauch 13 gedrängt wird.
  • Als Vakuum-Pumpaggregat, mittels dessen das Gehäuse 11 der Schlauchquetschpumpe 12 partiell, d.h. bis auf einen Absolutwert des Druckes von etwa 0,2 bar evakuierbar ist, ist ein insgesamt mit 28 bezeichneter Luftstrahl-Ejektor vorgesehen, der eine von einem Druckluftstrahl, der durch einen Strömungspfeil 31 repräsentiert ist, als Treibstrahl durchströmte, eingangsseitige Treibdüse 32 und eine austrittsseitige Fangdüse 33 sowie ein die in Strömungsrichtung des Treibstrahls 31 gesehen, einander benachbarten Mündungen 34 und 36 der Treibdüse 32 bzw. der Fangdüse 33 enthaltendes, eine Unterdruckkammer 37 begrenzendes Gehäuse 29 mit einem Saug-Anschlußstutzen 38 umfaßt, an den über ein Eingangs-Rückschlagventil 39 und einen 3-Wege-Hahn 41 die durch das Gehäuse 11 der Schlauchquetschpumpe 12 begrenzte Kammer 42 der Schlauchquetschpumpe 12 als Rezipient anschließbar ist.
  • Der im Evakuierungsbetrieb des Ejektors 28 und der an seinen Saugstutzen 38 angeschlossenen Pumpenkammer 42 durch den Ejektor 28 geleitete Druckluftstrom wird von einem Kompressor 43 erzeugt, der als bordeigenes Aggregat des Fahrzeuges vorgesehen ist und auch für die Druckluftversorgung der Druckluft-Bremsanlage des Fahrzeuges dient. Dieser Kompressor 43 ist vom Motor des Fahrzeuges angetrieben, während die Schlauchquetschpumpe 12 über einen - nicht dargestellten - ein- und ausschaltbaren Nebenabtrieb des Antriebsaggregates des Fahrzeuges antreibbar ist.
  • Zwischen den für die Druckluftversorgung des Ejektors vorgesehenen Druckluftausgang 44 des Kompressors 43 und den durch die äußere Mündungsöffnung 46 der Treibdüse 32 des Ejektors gebildeten Drucklufteingang desselben ist ein druckgesteuertes Überströmventil 47 geschaltet, das den Durchgang eines Druckluftstromes vom Druckluft-ausgang 44 des Kompressors 43 zum Eingang 46 des Ejektors 28 freigibt, so lange der Ausgangsdruck des Kompressors größer ist als ein definierter Schwellenwert von z.B. 8 bar, diesen Strömungspfad jedoch absperrt, sobald der Ausgangsdruck des Kompressors 43 unter diesen Schwellenwert absinkt. Der an der inneren Mündungsöffnung 34 der Treibdüse, die, in Strömungsrichtung des Treibstrahls 31 gesehen, einen sich stetig verjüngenden Strömungsquerschnitt hat, mit hoher Geschwindigkeit austretende Treibluftstrahl 31 reißt in der Unterdruckkammer 37 des Ejektors 28 befindliche Luft in die Fangdüse 33 des Ejektors 28 hinein mit, die zusammen mit dem Treibluftstrom 31 zu dem durch die äußere Mündungsöffnung 48 der Fangdüse gebildeten Druckluftausgang des Ejektors 28 transportiert wird, wo, bedingt durch eine in Strömungsrichtung sich erweiterende Gestaltung der Fangdüse die Geschwindigkeit des austretenden Luftstromes deutlich reduziert ist. Zwischen ihrer inneren Mündungsöffnung 36, deren Querschnitt deutlich größer ist als die benachbarte innere Mündungsöffnung 34 der Treibdüse 32 und ihrer äußeren Mündungsöffnugn 48 hat die Fangdüse 33 einen sich zunächst verjüngenden und danach sich wieder zur äußeren Mündungsöffnung 48 hin stetig erweiterenden Strömungsquerschnitt, der im Bereich der äußeren Mündungsöffnung 48 deutlich größer ist als der lichte Querschnitt der kompressorseitigen, äußeren Mündungsöffnung 46 der Treibdüse, um eine deutliche Beruhigung des am Ausgang 48 des Ejektors 28 austretenden Luftstromes zu erzielen, der zur Reduzierung der Betriebsgeräusche noch durch einen dem Ejektor 28 nachgeschalteten Schalldämpfer 49 geleitet wird.
  • Das beim Ausführungsbeispiel gemäß Fig. 1 zwischen dem Ansaugstutzen 38 des Ejektors 28 und den zweckmäßigerweise am Gehäuse 11 der Schlauchquetschpumpe 12 angeordneten 3-Wege-Hahn 41 vorgesehene Rückschlagventil 39 ist als Flatterventil ausgebildet, das bei sehr geringen Druckunterschieden zwischen der Unterdruckkammer 37 des Ejektors und der den Rezipienten bildenden Kammer 42 des Quetschpumpengehäuses 11 in seine Offen- bzw. seine Sperrstellung übergeht, wobei dieses Flatterventil 39 durch geringfügig höheren Druck in der Unterdruckkammer 37 des Ejektors 28 als im Rezipienten 42 in seiner Sperrstellung gehalten ist und durch relativ höheren Druck in der Kammer 42 des Pumpengehäuses 11 als in der Unterdruckkammer 37 des Ejektors 28 in seine Offen-Stellung geschaltet ist.
  • Durch das bei einem Aussetzen des Treibluftstrahles und der damit verbundenen Druckerhöhung in der Unterdruckkammer 37 des Ejektors in seine Sperrstellung gelangende Flatterventil 39 wird, sofern sich gleichzeitig der 3-Wege-Hahn in seiner - dargestellten - Evakuierungsstellung befindet, der Unterdruck im angeschlossenen Rezipienten aufrechterhalten.
  • Der 3-Wege-Hahn 41 ist beim dargestellten Ausführungsbeispiel als Hahn mit drehbarem L-Küken ausgebildet, der die Funktion eines 3/3-Wege-Ventils vermittelt, das aus einer ersten - dargestellten - Durchflußstellung, in welcher das Pumpengehäuse 11 evakuierbar ist, über eine Sperrstellung, in welcher das Pumpengehäuse 11 sowohl gegen die Umgebungsatmosphäre als auch gegen den Ejektor 28 abgesperrt ist, in eine zweite Durchflußstellung, die Belüftungsstellung, umschaltbar ist, in welcher die evakuierbare Kammer 42 der Schlauchquetschpumpe 12 über den Hahn 41 unmittelbar mit der Umgebungsatmosphäre in Verbindung steht.
  • Für das nunmehr anhand der Fig. 2 zu erläuternde weitere Ausführungsbeispiel einer zur Evakuierung der den Rotor 16 sowie den Förderschlauch 13 einer Schlauchquetschpumpe aufnehmenden Gehäusekammer 42 geeigneten Vakuum-Pumpeinrichtung 10' wird vorausgesetzt, daß deren Funktionselemente - Kompressor 43, Überströmventil 47, 3-Wege-Hahn 41, Ejektor 28, Flatterventil 39 und Schalldämpfer 49 mit den entsprechend bezeichneten Funktionselementen des Ausführungsbeispiels gemäß Fig. 1 baugleich sind.
  • Im Unterschied zu diesem ist beim Ausführungsbeispiel gemäß Fig. 2 der Ansaugstutzen 38 des Ejektors 28 unmittelbar an die evakuierbare Kammer 42 des Gehäuses 11 der Schlauchquetschpumpe 12 angeschlossen; der 3-Wege-Hahn 41 ist zwischen das Überströmventil 47 und den Ejektor 28 geschaltet, und das Flatterventil 39, das hier als Ausgangs-Rückschlagventil des Ejektors 28 ausgenutzt ist, ist zwischen den Ejektor 28 und den Schalldämpfer 49 geschaltet.
  • Die beiden Ausführungsbeispiele sind funktionsäquivalent, wobei jeweils das Flatterventil 39, wenn das Überströmventil 47 in seine Sperrstellung gelangt, z.B. weil der Ausgangsdruck des Kompressors 43 unterhalb des Druck-Schwellenwertes abgesunken ist, ab welchem das Überströmventil 47 öffnet, durch seine einseitige Beaufschlagung mit dem Atmosphärendruck ebenfalls in seine Sperrstellung gelangt und dadurch den Rezipienten 42 gegen die Umgebungsatmosphäre absperrt, so daß ein in diesem vorhandener Unterdruck erhalten bleibt. Die Belüftung des Rezipienten 42 erfolgt beim Ausführungsbeispiel gemäß Fig. 2 über den 3-Wege-Hahn 41 und die Treibdüse 32 des Ejektors 28, die - bei geschlossenem Förderventil 39 - mittels des 3-Wege-Hahns mit der Umgebungsatmosphäre in Verbindung bringbar ist.
  • In einer typischen Auslegung der Vakuum-Pumpeinrichtungen 10,10' gemäß den Fig. 1 und 2 beträgt der Ausgangsdruck des Kompressors 43 zwischen 6 und 8 bar, wobei der als Treibstrahl des Ejektors 28 ausgenutzte Druckluftstrom, bezogen auf Normalbedingungen (Druck 1 bar und Lufttemperatur um 20°) einen Betrag von 200 l/min hat. Die bei dieser Auslegung der Vakuum-Pumpeinrichtungen 10,10' am Beginn des Evakuierungsbetriebes aus dem Rezipienten 42 förderbare Luftmenge beträgt dann ca. 150 l/min, wobei sich im stationären Betriebszustand der Pumpeinrichtung 10,10' im Rezipienten 42 ein Unterdruck einstellt, der einen Absolutwert von ca. 0,2 bis 0,3 bar hat.
  • Zusammenfassend ist folgendes festzustellen: Bei einer Vakuum-Pumpeinrichtung für die Evakuierung des Gehäuses 17 einer als Betonförderpumpe, benutzbaren Schlauchquetschpumpe 12, die auf einem Straßenfahrzeug mit einer Druckluftbremsanlage installiert ist, ist das Vakuum-Pumpaggregat 28 an dessen Saugseite das Gehäuse 11 der Schlauchquetschpumpe 12 als Rezipient angeschlossen ist, als ein nach dem Prinzip der Dampfstrahlpumpe arbeitender Ejektor ausgebildet, dessen Treibluftstrahl von der mittels des Kompressors 43 der Fahrzeug-Bremsanlage erzeugten Druckluft abzweigbar ist.

Claims (10)

  1. Vakuum-Pumpeinrichtung für die Evakuierung des Gehäuses einer als Dickstoff-Förderpumpe, insbesondere Betonförderpumpe, benutzbaren Schlauchquetschpumpe (12), die auf einem Straßenfahrzeug installiert ist, mit einem zur Erzeugung von Druckluft für den Betrieb von Einrichtungen des Straßenfahrzeugs, z.B. einer Druckluft-Bremsanlage des Fahrzeuges und/oder weiterer auf dem Fahrzeug mitführbarer oder auf diesem installierter Geräte benötigten Kompressor (43), und mit einem Vakuum-Pumpaggregat (28) , an dessen Saugseite das Gehäuse (11) der Schlauchquetschpumpe (12) als Rezipient angeschlossen ist, dadurch gekennzeichnet, daß das Vakuum-Pumpaggregat (28) als ein nach dem Prinzip der Strahlpumpe arbeitender Ejektor ausgebildet ist, dessen Treibgasstrahl von der mittels des Kompressors (43) erzeugten Druckluft abzweigbar ist.
  2. Vakuum-Pumpeinrichtung nach Anspruch 1, dadurch gekennzeichnet, daß zwischen den Ansaugstutzen (38) des Luftstrahl-Ejektors (28) und das Gehäuse (11) der Schlauchquetschpumpe (12) ein auf den im Rezipienten herrschenden Unterdruck ansprechendes Ventil (39) geschaltet ist, das durch relativ höheren Druck im Pumpengehäuse (11) als in der Unterdruckkammer (37) des Ejektors (28) in seine Offen-Stellung und durch relativ höheren Druck in der Unterdruckkammer (37) des Ejektors (28) in seine Sperrstellung steuerbar ist.
  3. Vakuum-Pumpeinrichtung nach Anspruch 2, dadurch gekennzeichnet, daß das auf den Unterdruck im Rezipienten (11,42) ansprechende Ventil (39) als Flatterventil ausgebildet ist.
  4. Vakuum-Pumpeinrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß zwischen den Ausgang (44) der Druckluftquelle (43) und den Druckluft-Eingang (46) des Luftstrahl-Ejektors (28) ein durch den Ausgangsdruck der Druckluftquelle (43) gesteuertes Überströmventil (47) vorgesehen ist, das ab einem Mindestausgangsdruck der Druckluftquelle in eine einem maximalen Strömungsquerschnitt entsprechende Offen-Stellung gesteuert ist und in seine Sperrstellung übergeht, wenn der Ausgangsdruck der Druckluftquelle (43) unter einen einstellbar oder fest vorgegebenen Schwellenwert abfällt.
  5. Vakuum-Pumpeinrichtung nach Anspruch 1 oder nach Anspruch 1 in Kombination mit Anspruch 4, dadurch gekennzeichnet, daß der Luftstrom-Ausgang (48) des Luftstrahl-Ejektors (28) gegen die Umgebungsatmosphäre mittels eines auf die Druckdifferenz zwischen Ejektor-Ausgang (48) und Umgebungsatmosphäre ansprechenden Ventils (39) absperrbar ist, das durch relativ höheren Druck am Ausgang des Ejektors (28) als dem Umgebungsdruck in seine Offen-Stellung und durch höheren Umgebungsdruck als am Ausgang (48) des Ejektors (28) in seine Sperrstellung gelangt.
  6. Vakuum-Pumpeinrichtung nach Anspruch 5, dadurch gekennzeichnet, daß das auf die Druckdifferenz zwischen dem Umgebungsdruck und dem in der Unterdruckkammer (37) des Ejektors (28) herrschenden Druck ansprechende Ventil (39) als Flatterventil ausgebildet ist.
  7. Vakuum-Pumpeinrichtung nach Anspruch 5 oder Anspruch 6, dadurch gekennzeichnet, daß ein dem Druckluft-Eingang (46) des Ejektors (28) unmittelbar vorgeschaltetes 3/3-Wege-Ventil (41) vorgesehen ist, das aus einer ersten Durchflußstellung, in welcher ein von der Druckluftquelle (43) zur Treibdüse (32) des Ejektors (28) führender Druckluft-Strömungspfad freigegeben, der Treibdüsen-Anschlußstutzen des Ejektors (28) jedoch gegen die Umgebungsatmosphäre abgesperrt ist, über eine Sperrstellung, in welcher der Treibdüsen-Anschlußstutzen sowohl gegen den Druckluftausgang (44) der Druckluftquelle (43) als auch gegen die Umgebungsatmosphäre abgesperrt ist, in eine zweite Durchflußstellung steuerbar ist, in welcher der Treibdüsen-Anschlußstutzen mit der Umgebungsatmosphäre in Verbindung steht und gegen den Druckluftausgang (44) der Druckluftquelle (43) abgesperrt ist.
  8. Vakuum-Pumpeinrichtung nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß ein dem Gehäuse (11) der Schlauchquetschpumpe (12) unmittelbar vorgeschaltetes 3/3-Wegeventil (41) vorgesehen ist, das aus einer ersten Durchflußstellung, in welcher der Rezipient (42) mit der Unterdruckkammer (37) des Ejektors (28) verbunden und gleichzeitig gegen die Umgebungsatmosphäre abgesperrt ist, über eine Sperrstellung, in welcher sowohl der Rezipient (42) als auch die Unterdruckkammer (37) des Ejektors (28) gegen die Umgebungsatmosphäre abgesperrt sind, in eine zweite Durchflußstellung - eine Belüftungsstellung - umschaltbar ist, in welcher der Rezipient (42) mit der Umgebungsatmosphäre in kommunizierender Verbindung steht.
  9. Vakuum-Pumpeinrichtung nach Anspruch 7 oder 8, dadurch gekennzeichnet, daß das 3/3-Wege-Ventil (41) als ein vorzugsweise von Hand betätigbarer 3-Wege-Hahn mit L-Küken ausgebildet ist.
  10. Vakuum-Pumpeinrichtung nach einem der Ansprüche 1 bis 9, dadurch gekennzeichnet, daß dem Ejektor (28) ein Schalldämpfer (49) nachgeschaltet ist.
EP94903814A 1993-02-05 1993-12-17 Vakuum-pumpeinrichtung Expired - Lifetime EP0682751B1 (de)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
DE4303319 1993-02-05
DE4303319A DE4303319A1 (de) 1993-02-05 1993-02-05 Vakuum-Pumpeinrichtung
PCT/EP1993/003589 WO1994018453A1 (de) 1993-02-05 1993-12-17 Vakuum-pumpeinrichtung

Publications (2)

Publication Number Publication Date
EP0682751A1 EP0682751A1 (de) 1995-11-22
EP0682751B1 true EP0682751B1 (de) 1997-08-06

Family

ID=6479711

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94903814A Expired - Lifetime EP0682751B1 (de) 1993-02-05 1993-12-17 Vakuum-pumpeinrichtung

Country Status (6)

Country Link
EP (1) EP0682751B1 (de)
JP (1) JPH08506398A (de)
KR (1) KR100307938B1 (de)
DE (2) DE4303319A1 (de)
ES (1) ES2107803T3 (de)
WO (1) WO1994018453A1 (de)

Families Citing this family (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2420965C (en) 2000-09-01 2007-01-09 Katsuzo Somura Method and apparatus for producing clear, solid ice of spherical and other shapes
DE20205068U1 (de) 2002-03-30 2002-08-29 Festo Ag & Co Druckluft-Schalldämpfer
DE10357320A1 (de) * 2003-12-05 2005-06-30 Crane Process Flow Technologies Gmbh Schlauchpumpe mit Vorrichtung zur Vakuumerzeugung
JP4854302B2 (ja) * 2004-02-17 2012-01-18 パナソニック株式会社 可燃性冷媒及び冷凍機油処理装置及び処理方法
NL2000167C2 (nl) * 2006-07-28 2008-01-29 Bredel Hose Pumps B V Peristaltische pomp.
JP4821926B2 (ja) * 2010-11-29 2011-11-24 ソニー株式会社 信号処理装置及び信号処理方法
JP2015132180A (ja) * 2014-01-10 2015-07-23 東亜工業株式会社 チューブポンプ
DE102017203877A1 (de) * 2017-03-09 2018-09-13 Polytec Plastics Germany Gmbh & Co. Kg Geschaltete Saugstrahlpumpe
JP7372869B2 (ja) * 2020-03-31 2023-11-01 新明和工業株式会社 吸引車

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB669809A (en) * 1949-09-15 1952-04-09 Glacier Co Ltd Improvements in or relating to pumps
US3421447A (en) * 1966-10-26 1969-01-14 Challenge Cook Bros Inc Fluid pump
FR2239362A1 (en) * 1973-08-03 1975-02-28 Eta Sa Vehicle driven by I.C. engine - exhaust pipe is connected to tank to inspire fluid using exhaust vacuum
DE3431188A1 (de) * 1984-08-24 1986-03-06 Linnhoff & Thesenfitz Maschinen- und Anlagenbau GmbH, 8754 Großostheim Rotationsschlauchpumpe
DE3607836A1 (de) * 1986-03-10 1987-09-17 Wibau Ag Transport-, misch und foerderkombination zur herstellung und aufrechterhaltung der mischqualitaet breiiger massen, insbesondere zementbeton
DE3703124A1 (de) * 1987-02-03 1988-08-11 Manfred Streicher Schlauchpumpe
US5007803A (en) * 1989-09-28 1991-04-16 Global Pumps, Inc. Air operated vacuum pump

Also Published As

Publication number Publication date
DE59307092D1 (de) 1997-09-11
DE4303319A1 (de) 1994-08-11
KR100307938B1 (ko) 2001-11-30
WO1994018453A1 (de) 1994-08-18
EP0682751A1 (de) 1995-11-22
JPH08506398A (ja) 1996-07-09
KR960700413A (ko) 1996-01-20
ES2107803T3 (es) 1997-12-01

Similar Documents

Publication Publication Date Title
EP0723080B1 (de) Vakuum-Pumpstand
DE112012002478B4 (de) Gehäuseentlüftungsventil mit einem modularen unteren Aufbau mit integrierten Rückschlagventilen
EP0682751B1 (de) Vakuum-pumpeinrichtung
EP0848981A1 (de) Druckwechselanlage zur Gewinnung von Sauerstoff aus der Luft und Verfahren zum Betrieb einer solchen
EP0626516A1 (de) Zweifach-Verdrängerpumpe
DE60307662T2 (de) Kompressor mit leistungsregelung
WO2007115673A1 (de) Selbstentlüftende zentrifugalpumpe
EP0847791B1 (de) Verfahren zum Betrieb einer Druckwechselanlage zur Gewinnung von Sauerstoff aus der Luft
EP2349798B1 (de) Hydrodynamische maschine und verfahren zum betreiben derselben
WO2009141368A1 (de) Verdichterreinigung
WO2013087713A2 (de) Vorrichtung und verfahren zum evakuieren eines raums und zum reinigen des aus dem raum abgesaugten gases
EP0347706B1 (de) Mehrstufiges Vakuumpumpenaggregat
DE2558401A1 (de) Pumpanlage
EP0084084B1 (de) Ölgedichtete Vakuumpumpe
DE3150033A1 (de) Vakuumpumpe mit einem saugstutzen-ventil und betriebsverfahren dafuer
DE4415157A1 (de) Selbstansaugende mehrstufige Kreiselpumpe
DE4302951C1 (de) Strahlpumpe
EP0864756B1 (de) Leckagerückführanordnung bei einer Dichtungseinrichtung
DE102020111301A1 (de) Vakuumpumpe
EP2708745B1 (de) Mehrstufiger Kolbenverdichter mit Leerlaufventilen zur Erzeugung einer Leerlauffunktion
DE424138C (de) Schleusenkasten
DE102011005464B4 (de) Vorrichtung zur Erzeugung eines Unterdrucks
DE102012221492B4 (de) Membranpumpe mit Exzenterantrieb und integriertem Absperrventil
DE953280C (de) Mehrstufiger Strahlapparat zum Entlueften von Pumpen, Behaeltern u. dgl.
DE2629337A1 (de) Fluegelzellenvakuumpumpe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950601

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR IT

17Q First examination report despatched

Effective date: 19960515

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: PUTZMEISTER AKTIENGESELLSCHAFT

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR IT

REF Corresponds to:

Ref document number: 59307092

Country of ref document: DE

Date of ref document: 19970911

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2107803

Country of ref document: ES

Kind code of ref document: T3

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021111

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20021211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021220

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20031218

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 20051217