EP0681917A1 - Verfahren und Vorrichtung zur Befestigung eines flexiblen Materialbogens auf einer rotierenden Tragoberfläche - Google Patents
Verfahren und Vorrichtung zur Befestigung eines flexiblen Materialbogens auf einer rotierenden Tragoberfläche Download PDFInfo
- Publication number
- EP0681917A1 EP0681917A1 EP95107038A EP95107038A EP0681917A1 EP 0681917 A1 EP0681917 A1 EP 0681917A1 EP 95107038 A EP95107038 A EP 95107038A EP 95107038 A EP95107038 A EP 95107038A EP 0681917 A1 EP0681917 A1 EP 0681917A1
- Authority
- EP
- European Patent Office
- Prior art keywords
- clamping
- sheet
- cinching
- forces
- support surface
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Granted
Links
Images
Classifications
-
- B—PERFORMING OPERATIONS; TRANSPORTING
- B41—PRINTING; LINING MACHINES; TYPEWRITERS; STAMPS
- B41J—TYPEWRITERS; SELECTIVE PRINTING MECHANISMS, i.e. MECHANISMS PRINTING OTHERWISE THAN FROM A FORME; CORRECTION OF TYPOGRAPHICAL ERRORS
- B41J13/00—Devices or arrangements of selective printing mechanisms, e.g. ink-jet printers or thermal printers, specially adapted for supporting or handling copy material in short lengths, e.g. sheets
- B41J13/10—Sheet holders, retainers, movable guides, or stationary guides
- B41J13/22—Clamps or grippers
- B41J13/223—Clamps or grippers on rotatable drums
Definitions
- the present invention relates generally to securing a sheet medium onto a support surface and, more particularly, to a method of and apparatus for firmly securing a flexible film sheet medium, in a preferred wrapped position, on a rotary drum so as to allow the sheet to be imprinted.
- a wide variety of sheet processing systems have been proposed for effecting clamping of a sheet medium onto a cylindrical surface of a rotatable drum.
- a rotary drum whereby the medium can be imprinted while the drum is rotating.
- the rotary drums of the above devices are rotated at relatively slow speeds, for example, in the order of about 10-100 rpms.
- the resulting medical images are obviously less than the quality obtainable.
- the thickness of a human hair is about 70 microns.
- FIG. 810 Laser Imager machine Another known approach for clamping dry laser imaging film sheets to a rotary drum is present in a Helios 810 Laser Imager machine.
- the machine produces high quality 8x10-inch format radiographic images and is commercially available from the assignee of the present application.
- the clamping device employed clamps leading and trailing edges of a sheet to a cylindrical surface of a rotary drum.
- Each clamp is centrifugally actuated and has its center of gravity on one side of its pivot axis, whereby the center of gravity will pivot outwardly in response to centripetal acceleration forces, so as to provide corresponding and significant clamping forces directly radially inwardly on the medium by the clamp's claw.
- the method includes having the clamp apply a force to the sheet edge so that it will not bend or push the sheet away from a clamp pivot axis to thereby not cause the medium to otherwise buckle or bulge from its precision wrapped position.
- the method includes having a clamp apply automatically a cinching force to the medium's edge to thereby even more securely wrap the medium on the support so as to reduce the tendency of the medium to separate from its support surface under centrifugal forces.
- an apparatus which includes a rotatable supporting mechanism which has a surface for supporting a medium so that it can be imprinted while being rotated by such surface.
- a clamping mechanism mounted on the support which includes a pivotal clamp that has a center of gravity which pivots as the drum is rotated to drive the clamping edge thereof against the medium and the drum with a force which corresponds to the centrifugal acceleration of the drum.
- the centrifugal clamp is constructed so that it will not bend or push the medium away from the clamp's pivot axis to thereby cause the medium to otherwise buckle or bulge from its precision wrapped position.
- the clamp is constructed to pull the medium's edge toward its pivot axis so as to cinch the sheet on the rotatable surface and thereby even more securely wrap the medium on the support so as to reduce the tendency of the medium to separate from its support surface.
- Another object of invention is to clamp a sheet of film medium to a rotary drum in a manner whereby as centrifugal forces increase, the medium clamping forces that are applied to the edge of the sheet increase, and medium cinching forces are applied automatically to at least one sheet edge so as to even more tightly wrap it during high rotational speeds.
- Still another object of the invention is to clamp a sheet of film medium to a rotary drum in a manner whereby as centrifugal forces increase, the medium clamping forces that are applied to the edge of the sheet increase and a distal clamping end of the clamp deflects inwardly toward a pivot axis of the clamp and acts to cinch the medium to a rotary drum so that the medium does not bulge or buckle.
- Still another object of the invention is to clamp a sheet of film medium to a drum in a manner whereby it conforms as closely as possible to the drum's peripheral surface during laser printing.
- Still another object of the invention is to clamp a sheet of film medium to a drum in a manner whereby it avoids formation of voids between the drum and the sheet of a nature which will cause a laser head to be out-of-focus during printing, whereby inaccurate printing information results.
- the apparatus 10 includes a high speed rotary drum 14 upon which is the sheet is to be rotated at very high rotational speeds, such as in the order of about 1200-6000 rpm, while the sheet is being imprinted in a printer mechanism designated 16, by an axially movable laser writing mechanism 18, such as the type described in a commonly-assigned U.S. Patent No.: 5,159,352. While this embodiment is concerned with laser printing of a flexible sheet medium 12 in a printer, it will be understood that the clamping principles of this invention can have other applications.
- the flexible sheet 12 can be of a thermographic dry laser imaging type, such as is commercially available from Polaroid Corporation of Cambridge, Mass., USA. More specifically, the film can be like that described in commonly assigned U.S. Patent No. 5,155,003. The sheet can have a dimension of 14x17-inches. However, this invention is not limited to such type of film medium or the noted size thereof.
- the printer mechanism 16 includes the rotary drum 14 having a cylindrical sheet receiving and supporting surface 20 upon which the flexible sheet medium 12 is to wrapped and supported during printing. The rotary drum 14 is mounted for the noted high speed rotation on journal bearings located in endplate 22 (one of which is shown) forming part of the printer's frame assembly 24.
- An electric motor 26 is mounted on the frame assembly 24 and is appropriately coupled to a drum motor shaft 26a so as to drive the drum about its rotational axis; at the high speeds desired.
- the rotary drum 14 is balanced for facilitating desired high speed rotation and the cylindrical supporting surface 20 is precisely machined so that a wrapped sheet can be evenly supported in a preferred wrapped position.
- An encoder shaft 28 extends from the other end of the rotary drum so as to facilitate controlling angular orientations of the drum, which control operations do not form part of the present invention.
- the rotary drum 14 includes a clamp assembly mounting channel 30 extending along its axial extent for securely and removably receiving therein a centrifugally actuated clamping assembly 32.
- the mounting channel 30 is provided with a guide recess 34, 36 in each of the opposing channel sidewalls 38, 40; respectively.
- a plurality of axially spaced receiving notches 42 are formed along each channel sidewall 38, 40 for slidably cooperating with the centrifugally actuated clamping assembly 32, in a manner to be described.
- Figs. 1, 2 & 6 for describing the centrifugally actuated clamping assembly 32.
- the clamping assembly 32 includes a plurality of axially aligned and spaced apart pairs of leading and trailing edge clamps 44 and 46 for clamping leading and trailing sheet edges 48, 50; respectively.
- the clamping assembly 32 also includes a tension spring 52 connected to and between each pair of leading and trailing clamps 44 and 46 in order to bias them to their normally closed positions; see Fig. 7.
- a generally thin rectangular clamp baseplate 54 which extends along the length of the channel 30 and can be fixedly attached to the rotary drum 14.
- a plurality of vertical supports 56 are attached to the baseplate 54 in axially spaced apart relationship to each other to support therebetween a pair of the leading and trailing clamps 44 and 46.
- the vertical supports 56 have a pair of openings 58 (Fig. 1). Each opening 58 is located in a lateral ear 58a and removably receives therein an elongate pivot shaft 60, 62; respectively, for pivotally supporting the clamps.
- Each of the support ears 58a can slide within a respective guide recess 34,36 to retain the clamp assembly and cooperates with the notches 42 to retain the clamp assembly.
- the pivot shafts 60, 62 are adapted to pivotally mount each of the leading and trailing edge clamps 44, 46; respectively, to the vertical supports.
- Each of the outermost axial pair of clamps is adapted to cooperate with a cam follower shaft 66.
- Each of the shafts 66 has a cam roller 68 at its distal end which protrudes beyond the end of the rotary drum 14.
- the cam rollers 68 are to be selectively displaced radially inward relative to the drum's axis upon engagement and downward movement by a cam mechanism generally designated by reference numeral 70.
- camming mechanism 70 located at each end of the rotary drum 14, only one of which is shown in Figs. 1 and 3, for engaging the axial cam rollers 68 in a manner to be described.
- the camming mechanism 70 is mounted on the machine endplate assembly 22 which, as noted, is apertured and journalled to rotatably receive one end of the drum shaft.
- a slider 74 is mounted on the endplate assembly 22 for vertical movement between camming and non-camming positions.
- the slider 74 has mounted thereon an arcuate camming member 76 having a camming surface 76a which is adapted to engage one set of the cam rollers 68 associated with the leading edge clamps.
- a camming member 78 is fixedly mounted on the camming member 76 as shown in Fig. 3.
- the camming member 78 has an arcuate camming surface 78a which is adapted to engage the other set of cam rollers 68 associated with the trailing edge clamps.
- a solenoid assembly 80 is coupled to the slider 74 and is actuated to vertically move the latter between its camming and non-camming positions. It should be noted that the camming surfaces are in different planes and the cam rollers of the leading and trailing clamps are spaced at appropriately different axial distances from the end of the drum.
- the camming mechanism 70 does not, per se, form an aspect of the present invention, since other arrangements can be provided for opening the leading and trailing edge clamps independently of each other. It should be noted that whenever the cam mechanism 70 is in the non-camming position, the clamp springs 52 are operative to drive both the leading and trailing clamps to their normally closed or clamping positions.
- each clamp of every pair is the same as the other clamp of the same pair but this need not be the case.
- the middle pair of clamps is structured differently from those at axial ends for reasons which will be described.
- Each axial end pair of clamps only one is illustrated for purposes of clarity, presents a counterweight segment 82, a clamping segment 84, and a supporting segment 86 which extends upwardly from axial ends of the counterweight segment.
- the supporting segment 86 has aligned shaft openings 86a and cam shaft openings 86b.
- each clamp is spaced from the clamp's pivot axis 90 to provide the desired clamping forces.
- the further the clamp's center of gravity is from its pivot axis the higher the clamping forces which are exerted.
- higher clamping forces can be generated with heavier clamps, however, heavier clamps have the disadvantage of adding to inertia problems of rotating a drum at the high speeds desired for achieving low printing cycle times.
- the counterweight portion 82 is a relatively rigid and elongated member made of, for instance, steel and having a generally inclined and upstanding portion 92 and at a proximal end a flat base 94.
- the base 94 has integrally formed at its opposite ends the segments 86.
- the inclined portion 92 also has a centrally located recess 96 which accommodates the spring 52 so that the latter can move freely relative to the former during pivoting.
- the inclined portion 92 has an axial tab 98 which is arranged to contact and drive the adjacent clamp to its open condition. In this manner, the endmost clamp will drive its adjacent innermost clamp by the tab 98.
- the adjacent innnermost clamp also has a tab 98 which engages and opens the middle clamp.
- all the clamps will be operated to open when the camming mechanism engages the cam roller associated with a particular set of clamps in response to actuation by the camming mechanism 70.
- the inclined portion 92 of one clamp will not, however, contact the inclined portion 92 of the adjacent clamp of its pair during pivoting movement, see Fig. 6.
- clamping segment 84 which has a base beam 100, an upright deflecting beam portion 102, and a claw or sheet engaging portion 104 having a downwardly directed claw tip 106.
- the claw tip 106 is dimensioned to extend over a tab portion 12a of the sheet.
- a recessed tab 108 is present in the upright position 102 and has one end of the spring 52 attached to it. The other end of the spring is attached to a tab which is on the other clamp of the pair, see Fig. 6.
- the sheet clamping segment 84 can be made of a variety of materials and in this embodiment is made of steel.
- the segment 84 is dimensioned to be relatively lighter than the counterweight segment 82.
- clamping segments should allow it to deflect relative to the counterweight segment when subjected to the clamping forces applied to its claw, as will be described. Another advantage of the clamp segment being lighter than the counterweight segment is that it is easier to space the clamp's center of gravity farther from the pivot 90.
- this invention makes provision for the clamping segment 84 deflecting toward the pivot 90, as shown in Fig. 6.
- This deflection is caused by the reaction forces F of the drum being applied on the claw tip 106 which reaction forces are in opposition to the clamping forces caused by the centrifugal forces acting at the center of gravity of the clamp. It may then be seen that the centrifugal forces cause the claw to bear against the sheet and the drum.
- the base 100 and the upright 102 deflect as seen in Fig.6.
- Such deflection is effective to displace the claw tip and thereby the clamped sheet edge toward the pivot 90. This displacement acts to cinch or even more tightly wrap the sheet on the drum and counteracts the tendency of the sheet to otherwise separate and buckle relative to the surface 20.
- the cinching force generated can be selected to maintain the sheet in its preferred wrapped position relative to the laser head.
- the advantages of this are that the cinching inhibits the dynamic centrifugal clamping forces acting on the clamp in such a manner as would otherwise cause the claw to deflect such that tip and sheet moves away from the pivot to cause the sheet to thus deviate unacceptably from its precision wrapped position.
- the clamping forces of the claw increase as the centripetal acceleration forces increase and drive the center of gravity about the axis 90 in the clamping direction.
- the reaction forces increase as the centrifugal forces of the clamp increase due to drum speed increases.
- the reaction forces F increase and, therefore, so do the cinching forces since the reaction forces cause the deflection.
- the clamping portion is flexible at bend 108 which is positioned beneath the flexible portion at bend 110 of the claw 104 by an amount which permits the deflection of the clamping portion for achieving the cinching functions noted.
- the base 100 is flexible at bend 110 that allows the base to deflect upwardly in a manner which allows the tip 106 to displace and cinch the sheet.
- the amount of the displacement of the tip 106 can be controlled.
- the clamps can be made so that the portion 102 need not deflect, and that all the deflection for cinching comes from the base 100.
- the base can be rigid and the total amount of deflection can be controlled by the deflection of the portion 102.
- the amount of cinching can be controlled by the height of portion 102.
- the cinching can be regulated by contolling the geometry of the portions of the clamps as well as the mechanical properties of their components.
- Another advantage is that the automatic cinching can be accomplished by a relatively lightweight and compact configured clamps.
- the lightweight and compact advantages are highly advantageous for drums required to rotate at high speeds. If the centrifugal clamps were made heavier and larger in an effort to resist the outward deflection of the claw and to otherwise increase clamping forces then the clamps would be significantly heavier and this would therefore tend to make the speed up and slow down time of the drum commercially unacceptable. Furthermore, larger clamps would increase the circumferential deadtime during which time the laser is unable to print as it rotates over the clamps.
Landscapes
- Feeding Of Articles By Means Other Than Belts Or Rollers (AREA)
- Handling Of Cut Paper (AREA)
- Facsimiles In General (AREA)
- Facsimile Scanning Arrangements (AREA)
Applications Claiming Priority (2)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
US08/241,148 US5516096A (en) | 1994-05-10 | 1994-05-10 | Method and apparatus for securing a flexible sheet to a rotatable supporting surface |
US241148 | 1994-05-10 |
Publications (2)
Publication Number | Publication Date |
---|---|
EP0681917A1 true EP0681917A1 (de) | 1995-11-15 |
EP0681917B1 EP0681917B1 (de) | 2000-11-22 |
Family
ID=22909446
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
EP95107038A Expired - Lifetime EP0681917B1 (de) | 1994-05-10 | 1995-05-10 | Verfahren und Vorrichtung zur Befestigung eines flexiblen Materialbogens auf einer rotierenden Tragoberfläche |
Country Status (5)
Country | Link |
---|---|
US (1) | US5516096A (de) |
EP (1) | EP0681917B1 (de) |
JP (1) | JPH0867374A (de) |
CA (1) | CA2148566A1 (de) |
DE (1) | DE69519451D1 (de) |
Cited By (3)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0881074A2 (de) * | 1997-05-30 | 1998-12-02 | Scitex Corporation Ltd. | Dynamische Klemmen für flexible Platten |
EP1084842A2 (de) * | 1999-09-07 | 2001-03-21 | CreoScitex Corporation Ltd. | Bewegliche Klemmen zum Befestigen von Platten auf die äusseren Flächen von Trommeln |
EP1085744A3 (de) * | 1999-09-14 | 2002-06-12 | Agfa Corporation | Aussentrommelbebilderungssystem |
Families Citing this family (14)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
DE4433999C2 (de) * | 1994-09-23 | 1998-02-19 | Roland Man Druckmasch | Bogenführende Trommel für Rotationsdruckmaschinen |
US5772203A (en) * | 1995-09-25 | 1998-06-30 | Sterling Dry Imaging Systems, Inc. | Method and apparatus for desensitizing print media on a print drum to the effects of debris contamination and air turbulence |
US5904351A (en) * | 1995-09-25 | 1999-05-18 | Sterling Dry Imaging Systems, Inc. | Method and apparatus for desensitizing print media on a print drum to the effects of debris contamination and air turbulence |
JP3645131B2 (ja) * | 1998-08-04 | 2005-05-11 | 大日本スクリーン製造株式会社 | 描画装置 |
US6318262B1 (en) | 2000-02-25 | 2001-11-20 | Agfa Corporation | External drum imaging system |
US6412413B1 (en) | 2000-02-25 | 2002-07-02 | Agfa Corporation | Media clamp for external drum imaging system |
US6321651B1 (en) | 2000-02-25 | 2001-11-27 | Agfa Corporation | Pin registration system for mounting different width printing plates |
US6295929B1 (en) | 2000-02-25 | 2001-10-02 | Agfa Corporation | External drum imaging system |
DE60143638D1 (de) * | 2000-07-28 | 2011-01-27 | Fujifilm Corp | Blattmaterialhalter |
DE102004014868A1 (de) * | 2004-03-26 | 2005-10-13 | Heidelberger Druckmaschinen Ag | Drehzahlabhängige Andrückkraft |
CN101045365A (zh) * | 2006-03-28 | 2007-10-03 | 海德堡印刷机械股份公司 | 用于将粉末施加到印张上的装置 |
NL1033484C2 (nl) * | 2007-03-02 | 2008-09-03 | Drent Holding B V | Drukcilinder of drukhuls met inzetstuk. |
US8615185B2 (en) * | 2007-10-23 | 2013-12-24 | Hewlett-Packard Development Company, L.P. | Device for holding a photoreceptor sheet |
JP5740861B2 (ja) * | 2010-07-16 | 2015-07-01 | 富士ゼロックス株式会社 | 画像形成装置 |
Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US4250810A (en) * | 1979-09-25 | 1981-02-17 | International Business Machines Corporation | Centrifugal clamp on a high speed print drum |
JPS5617838A (en) * | 1979-07-19 | 1981-02-20 | Ricoh Co Ltd | Sheet clamp device |
JPH028074A (ja) * | 1988-06-27 | 1990-01-11 | Sharp Corp | カラー記録装置の記録紙クランプ機構 |
US5324023A (en) * | 1993-05-24 | 1994-06-28 | Eastman Kodak Company | Apparatus for securing flexible sheet material to a rotatable drum surface |
Family Cites Families (34)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US744538A (en) * | 1902-12-29 | 1903-11-17 | Barnhart Brothers & Spindler | Gripping device for printing-presses. |
US1519944A (en) * | 1922-05-01 | 1924-12-16 | August W Warsen | Gripper for printing presses and paper-using machines |
US1869403A (en) * | 1928-06-13 | 1932-08-02 | Frank R Belluche | Sheet transfer mechanism |
US1843754A (en) * | 1929-06-13 | 1932-02-02 | Goss Printing Press Co Ltd | Gripping mechanism |
US2049917A (en) * | 1932-03-03 | 1936-08-04 | Bell Telephone Labor Inc | Electrooptical system |
US2123997A (en) * | 1935-05-01 | 1938-07-19 | Chandler & Price Co | Sheet-holding means for cylinders of printing presses and the like |
US2618702A (en) * | 1950-06-23 | 1952-11-18 | Eastman Kodak Co | Variable underlap drum facsimile transmitting apparatus |
US3637202A (en) * | 1970-05-14 | 1972-01-25 | Miller Printing Machinery Co | Sheet-gripping device |
US3827803A (en) * | 1971-04-16 | 1974-08-06 | Addressograph Multigraph | Copier-duplicator machine |
JPS5513911B2 (de) * | 1972-06-17 | 1980-04-12 | ||
FR2199237B1 (de) * | 1972-09-14 | 1975-03-14 | Cit Alcatel | |
US3865362A (en) * | 1973-02-23 | 1975-02-11 | Miller Printing Machinery Co | Sheet transfer cylinder |
JPS5270834A (en) * | 1975-10-09 | 1977-06-13 | Ricoh Co Ltd | Apparatus for automatically supplying and discharging paper |
SE7701468L (sv) * | 1976-02-18 | 1977-08-19 | Maschf Augsburg Nuernberg Ag | Bojstyv griparvagn, serskilt avsedd for offsettryckmaskiner |
US4135198A (en) * | 1976-06-28 | 1979-01-16 | Ricoh Co., Ltd. | Sheet clamp apparatus |
US4138102A (en) * | 1977-03-30 | 1979-02-06 | Xerox Corporation | Automatic document processing device |
US4183652A (en) * | 1977-04-30 | 1980-01-15 | Ricoh Company, Ltd. | Photoconductor sheet clamp apparatus |
US4132403A (en) * | 1977-07-07 | 1979-01-02 | Veb Polygraph Leipzig Kombinat Fuer Polygraphische Maschinen Und Ausruestungen | Sheet transfer apparatus for printing machine |
DE2817300C2 (de) * | 1978-04-20 | 1982-07-08 | Olympia Werke Ag, 2940 Wilhelmshaven | Elektrofotografisches Kopiergerät mit einer austauschbaren endlichen Fotoleiterbahn |
US4660825A (en) * | 1979-07-26 | 1987-04-28 | Ricoh Company Ltd. | Sheet clamping device |
DD151134A1 (de) * | 1980-06-30 | 1981-10-08 | Otfried Rudolph | Antrieb fuer funktionsgruppen in bogenfuehrungszylindern von druckmaschinen |
JPS57174285A (en) * | 1981-04-20 | 1982-10-26 | Matsushita Electric Ind Co Ltd | Winding apparatus for recording paper |
EP0073955B1 (de) * | 1981-09-04 | 1985-11-13 | Motter Printing Press Co. | Greifer für bogenverarbeitende Maschinen |
DE8404981U1 (de) * | 1984-02-18 | 1984-05-10 | M.A.N.- Roland Druckmaschinen AG, 6050 Offenbach | Bogengreifer fuer druckmaschinen |
DE3628907A1 (de) * | 1986-08-26 | 1988-03-10 | Koenig & Bauer Ag | Bogenwendevorrichtung in einer bogenrotationsdruckmaschine |
US4824096A (en) * | 1987-07-17 | 1989-04-25 | Polaroid Corporation | Sheet clamp counterbalancing system for high speed sheet handling drums |
US4807867A (en) * | 1988-03-14 | 1989-02-28 | Eastman Kodak Company | Sheet handling apparatus |
JPH0832442B2 (ja) * | 1988-05-02 | 1996-03-29 | 桜精機株式会社 | シリンダ型スクリーン印刷機のグリッパ開閉装置 |
US4903957A (en) * | 1988-11-02 | 1990-02-27 | Polaroid Corporation | Dynamically stable sheet clamping system for high speed sheet handling drums |
JPH0698746B2 (ja) * | 1989-03-30 | 1994-12-07 | アキヤマ印刷機製造株式会社 | 枚葉印刷機の版締め装置 |
US5255056A (en) * | 1990-04-20 | 1993-10-19 | Minnesota Mining And Manufacturing Co. | Photoconductor film clamping and tensioning system and method of use |
ES2074866T3 (es) * | 1990-11-21 | 1995-09-16 | Polaroid Corp | Cabeza de impresion optica sobre un medio de impresion discontinuo fijado a un tambor impresor. |
JPH04301457A (ja) * | 1991-03-29 | 1992-10-26 | Tokyo Electric Co Ltd | オフセット印刷機 |
DE4210316C2 (de) * | 1992-03-30 | 1994-02-24 | Heidelberger Druckmasch Ag | Klemm- und Spannvorrichtung für eine Druckplatte in einer Druckmaschine |
-
1994
- 1994-05-10 US US08/241,148 patent/US5516096A/en not_active Expired - Fee Related
-
1995
- 1995-05-03 CA CA002148566A patent/CA2148566A1/en not_active Abandoned
- 1995-05-09 JP JP7110942A patent/JPH0867374A/ja active Pending
- 1995-05-10 DE DE69519451T patent/DE69519451D1/de not_active Expired - Lifetime
- 1995-05-10 EP EP95107038A patent/EP0681917B1/de not_active Expired - Lifetime
Patent Citations (4)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS5617838A (en) * | 1979-07-19 | 1981-02-20 | Ricoh Co Ltd | Sheet clamp device |
US4250810A (en) * | 1979-09-25 | 1981-02-17 | International Business Machines Corporation | Centrifugal clamp on a high speed print drum |
JPH028074A (ja) * | 1988-06-27 | 1990-01-11 | Sharp Corp | カラー記録装置の記録紙クランプ機構 |
US5324023A (en) * | 1993-05-24 | 1994-06-28 | Eastman Kodak Company | Apparatus for securing flexible sheet material to a rotatable drum surface |
Non-Patent Citations (2)
Title |
---|
PATENT ABSTRACTS OF JAPAN vol. 14, no. 140 (M - 0950) 16 March 1990 (1990-03-16) * |
PATENT ABSTRACTS OF JAPAN vol. 5, no. 65 (M - 066) 30 April 1981 (1981-04-30) * |
Cited By (7)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
EP0881074A2 (de) * | 1997-05-30 | 1998-12-02 | Scitex Corporation Ltd. | Dynamische Klemmen für flexible Platten |
EP0881074A3 (de) * | 1997-05-30 | 1999-08-25 | Scitex Corporation Ltd. | Dynamische Klemmen für flexible Platten |
US6435091B2 (en) | 1997-05-30 | 2002-08-20 | Creoscitex Corporation Ltd. | Apparatus for clamping plates to external drum devices, based on movable clamps |
EP1264690A1 (de) * | 1997-05-30 | 2002-12-11 | Creo IL.Ltd. | Verfahren zum Befestigen einer Platte auf einer Rotationstrommel |
EP1084842A2 (de) * | 1999-09-07 | 2001-03-21 | CreoScitex Corporation Ltd. | Bewegliche Klemmen zum Befestigen von Platten auf die äusseren Flächen von Trommeln |
EP1084842A3 (de) * | 1999-09-07 | 2001-08-22 | CreoScitex Corporation Ltd. | Bewegliche Klemmen zum Befestigen von Platten auf die äusseren Flächen von Trommeln |
EP1085744A3 (de) * | 1999-09-14 | 2002-06-12 | Agfa Corporation | Aussentrommelbebilderungssystem |
Also Published As
Publication number | Publication date |
---|---|
JPH0867374A (ja) | 1996-03-12 |
DE69519451D1 (de) | 2000-12-28 |
EP0681917B1 (de) | 2000-11-22 |
US5516096A (en) | 1996-05-14 |
CA2148566A1 (en) | 1995-11-11 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
US5516096A (en) | Method and apparatus for securing a flexible sheet to a rotatable supporting surface | |
US7124686B2 (en) | Apparatus for clamping and holding a printing plate on an exposure drum | |
US5014135A (en) | Facsimile apparatus having a thermal image recording head retractable from a recording position | |
EP0441790B1 (de) | Dynamisch stabile blattklemmvorrichtung für hochgeschwindigkeitsblatt-handhabungstrommeln | |
US5904351A (en) | Method and apparatus for desensitizing print media on a print drum to the effects of debris contamination and air turbulence | |
US5772203A (en) | Method and apparatus for desensitizing print media on a print drum to the effects of debris contamination and air turbulence | |
JP2701552B2 (ja) | 記録装置 | |
US5324023A (en) | Apparatus for securing flexible sheet material to a rotatable drum surface | |
JPS6251449A (ja) | 枚葉紙輪転印刷機のためのばね弾性的なグリッパ | |
US5667164A (en) | Device and method for feeding a sheet | |
EP0706281B1 (de) | Rolleneinheit mit reduziertem Axialspiel zum Blatt- oder Folientransport für ein Bilderzeugungsgerät | |
US6772691B2 (en) | System and method for registering media in an imaging system | |
EP0908405B1 (de) | Papierzuführkassette mit einstellbarer Andrücksvorrichtung | |
US6056288A (en) | Self adjusting controlled acceleration sheet stacking offsetting system | |
US6883801B2 (en) | Sheet member holding apparatus | |
JP2616704B2 (ja) | 定着装置 | |
JPH0444509Y2 (de) | ||
US10067451B1 (en) | Image forming apparatus | |
EP0270127A2 (de) | Verfahren und Vorrichtung zur Versatzkorrektur in einem Rollfilmtransportgerät | |
JPH07125852A (ja) | 画像形成装置用給紙カセット | |
JPS6172559A (ja) | プリンタ | |
US5122811A (en) | Method and apparatus for printing with a reduced print-cycle time | |
JPH0717650A (ja) | 画像形成装置 | |
JPH10181912A (ja) | 給紙装置 | |
JPS6145958B2 (de) |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
PUAI | Public reference made under article 153(3) epc to a published international application that has entered the european phase |
Free format text: ORIGINAL CODE: 0009012 |
|
AK | Designated contracting states |
Kind code of ref document: A1 Designated state(s): DE FR GB |
|
17P | Request for examination filed |
Effective date: 19960510 |
|
17Q | First examination report despatched |
Effective date: 19970226 |
|
RAP1 | Party data changed (applicant data changed or rights of an application transferred) |
Owner name: STERLING DRY IMAGING SYSTEMS, INC. |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAG | Despatch of communication of intention to grant |
Free format text: ORIGINAL CODE: EPIDOS AGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAH | Despatch of communication of intention to grant a patent |
Free format text: ORIGINAL CODE: EPIDOS IGRA |
|
GRAA | (expected) grant |
Free format text: ORIGINAL CODE: 0009210 |
|
AK | Designated contracting states |
Kind code of ref document: B1 Designated state(s): DE FR GB |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: FR Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20001122 |
|
REF | Corresponds to: |
Ref document number: 69519451 Country of ref document: DE Date of ref document: 20001228 |
|
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: DE Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT Effective date: 20010223 |
|
EN | Fr: translation not filed | ||
PG25 | Lapsed in a contracting state [announced via postgrant information from national office to epo] |
Ref country code: GB Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES Effective date: 20010510 |
|
PLBE | No opposition filed within time limit |
Free format text: ORIGINAL CODE: 0009261 |
|
STAA | Information on the status of an ep patent application or granted ep patent |
Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT |
|
26N | No opposition filed | ||
GBPC | Gb: european patent ceased through non-payment of renewal fee |
Effective date: 20010510 |