EP0680399B1 - Isolateur de vibrations pour dispositifs vibrants tenus en main - Google Patents

Isolateur de vibrations pour dispositifs vibrants tenus en main Download PDF

Info

Publication number
EP0680399B1
EP0680399B1 EP94905414A EP94905414A EP0680399B1 EP 0680399 B1 EP0680399 B1 EP 0680399B1 EP 94905414 A EP94905414 A EP 94905414A EP 94905414 A EP94905414 A EP 94905414A EP 0680399 B1 EP0680399 B1 EP 0680399B1
Authority
EP
European Patent Office
Prior art keywords
buckling
hand
isolator
tool body
handle
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94905414A
Other languages
German (de)
English (en)
Other versions
EP0680399A1 (fr
EP0680399A4 (fr
Inventor
James T. Gwinn
Robert H. Marjoram
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Lord Corp
Original Assignee
Lord Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Lord Corp filed Critical Lord Corp
Publication of EP0680399A1 publication Critical patent/EP0680399A1/fr
Publication of EP0680399A4 publication Critical patent/EP0680399A4/fr
Application granted granted Critical
Publication of EP0680399B1 publication Critical patent/EP0680399B1/fr
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/04Handles; Handle mountings
    • B25D17/043Handles resiliently mounted relative to the hammer housing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/04Handles; Handle mountings
    • B25D17/046Sleeve-like handles surrounding the tool bit
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D17/00Details of, or accessories for, portable power-driven percussive tools
    • B25D17/24Damping the reaction force
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2222/00Materials of the tool or the workpiece
    • B25D2222/54Plastics
    • B25D2222/57Elastomers, e.g. rubber
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B25HAND TOOLS; PORTABLE POWER-DRIVEN TOOLS; MANIPULATORS
    • B25DPERCUSSIVE TOOLS
    • B25D2250/00General details of portable percussive tools; Components used in portable percussive tools
    • B25D2250/371Use of springs
    • B25D2250/381Leaf springs

Definitions

  • This invention relates to the area of vibration isolators. Specifically, the invention relates to the area of elastomer-containing vibration isolators for isolation of a user from mechanical vibrations of hand-held vibrating devices.
  • US Patent 2,500,036 to Horvath uses dual resilient members 80 and 81 to allow limited axial movement and restrain cocking. It also uses a plurality of locking segments 85 to restrain torsional rotation of the handle member 13 relative to the barrel 10.
  • US Patent 4,236,607 to Hawles et al. describes a vibration suppression system wherein the fluid passes through the inner member of the mounting to provide amplified counter inertial forces.
  • EP-A-2046212 describes an anti-vibration device for a power operated hand tool and includes an anti-vibration element between the handle and the tool.
  • the device includes a collapsible element for absorbing vibration.
  • EP-A-6020734 describes a similar device wherein the collapsible section includes outer and inner sleeves, the outer sleeve being flexible to absorb vibration.
  • US-A-3072955 reveals a hand grip for use with tools and the like which comprises an internally splined split elastomeric cylinder.
  • the grip is designed to protect the user's hand from heat or friction.
  • the present invention has been designed to provide an improved vibration isolator for reducing the mechanical vibration level transmitted to the user in order to overcome the features and shortcomings of the available mountings for vibrating hand-held devices and tools and consists in an isolator as defined in Claim 1.
  • the present invention provides an isolator for use in a hand-held vibrating device which exhivits a spring rate characteristic for the mounting which softens by about a factor in the range of 2 to 20 with increased application of force by the operator thus improving the vibration isolation.
  • the isolator may provide a means for allowing axial vibration isolation of a tool body relative to a tool handle with means incorporated for restraining torsional rotational and cocking of the tool body relative to the tool handle essential for control of the vibrating device.
  • the elastomer isolator may include a means for snubbing to prevent unwanted excess motions.
  • the isolator may include means for providing radial vibration isolation to the user by incorporating multiple radial buckling elements.
  • the isolator may provide vibration isolation of the user at a discreet operating frequency by incorporating inertial fluid forces within the elastomeric and fluid isolator.
  • the isolator may include metal buckling elements for providing vibration isolation of the user. It is an additional feature to provide an elastomeric vibration isolator for use on a hand-held vibrating device which reduces the radial mechanical vibration imparted to the user, comprising a body of elastomer for being grasped by said users hand, said body of elastomer disposed about
  • FIG. 1A an embodiment of a buckling isolator 20A and a separate embodiment of a grip isolator 30A are shown installed in the environment of the hand-held vibrating device 10 .
  • the vibrating device 10 that is used to illustrate the present invention is a pneumatic air hammer, but the buckling isolator 20A and grip isolator 30A are equally effective, when properly situated, for any type of hand-held vibrating equipment or device.
  • the pneumatic air hammer or vibrating device 10 in the present invention includes a tool bit 32 ( Fig. 1B ) which is preferably steel and which contacts the work piece (not shown).
  • the vibrating device 10 also includes a handle 34 which is grasped by a first rear hand of the user.
  • the handle attaches to a sleeve 36 that is preferably cylindrically shaped.
  • a sleeve integrated into a handle may be envisioned, as well.
  • One end of the buckling isolator 20A attaches to the handle 34 by way of bolts or other fastening means 37 .
  • the other end of buckling isolator 20A is attached to the tool body 38 by bolts or other fastening means 37 .
  • the buckling isolator 20A attaches between the tool body 38 and the handle 34 and allows the tool body 38 to deflect axially and thus acts as an isolator spring between the tool body 38 and handle 34 .
  • the axial motion is limited by a snubber 48 .
  • the snubber consists of a collar 47 which is part of or attached to the tool body 38 and a series of shoulders 49A and 49B which alternatively contact the ends of the collar 47 at the excursion limits.
  • the snubber 48 constrains the movement in the axial direction to 1 cm (0.4 inch (in.)) maximum compression deflection and 0.25 cm (0.1 inch (in.)) tensile deflection.
  • the tool body 38 is restrained from cocking relative to the sleeve 36 and, thus also, the handle 34 by way of sliding surfaces 40A and 40B which are axially spaced and which lightly contact the outer periphery 42 of the tool body 38 .
  • the sliding surfaces 40A and 40B and/or outer peripheries 42 are coated with Teflon® or other suitable means for reducing friction. This allows the tool body 38 to slide telescopically within the sleeve 36 and compress axially the elastomeric buckling section 44A of the buckling isolator 20A , thus reducing the spring rate in the axial direction within a working thrust load range to be described later.
  • splines or keys 50 which are added on the tool body 38 are received within grooves 52 formed in the sleeve 36 .
  • the splines or keys 50 and grooves 52 comprise the means for restraining torsional movement 56 , while allowing unrestricted axial motion.
  • Other means of restraining torsional movement such as flats and non-round shapes are also acceptable.
  • the sliding surfaces 40A and 40B together with the outer periphery 42 of the tool body 38 act as the means for restraining cocking motion while allowing relatively unrestricted axial motion.
  • the cocking and torsional modes are restrained, but axial displacement of the tool body 38 relative to the handle 34 can occur by compressing the buckling isolator 20A .
  • the buckling isolator 20A achieves a much lower axial spring rate than prior art devices.
  • that force will compress the buckling isolator 20A and cause the elastomeric section 44A to undergo buckling.
  • the elastomeric section 44A will experience a high static stiffness initially, yet as more force is applied and the elastomeric section 44A starts to buckle, the force needed to maintain the section in buckling falls off dramatically.
  • the initial static spring rate of the buckling isolator is 664 N ⁇ cm -1 375 lbf/in at 22.5 N (5 lbf load) and at the operating load of 180 N (40 lbf) the spring rate is 26.6 N ⁇ cm -1 (15 lbf/in).
  • the buckling isolator 20A provides axial vibration isolation superior to the prior art compression-type isolators and fluid damped mounts for vibrating hand-held devices. However, in some instances, radial vibration can impart severe vibration to the user, in spite of the isolator 20A as a result of the key 50 hammering in keyway 52 .
  • a first embodiment of a grip isolator 30A is shown.
  • the grip isolator 30A functions both as a grip for the user to grasp the vibrating device 10 and also as a radial and axial isolator to isolate the user from radial and axial mechanical vibration emanating therefrom.
  • the grip isolator 30A can be installed on the vibrating device 10 at an point which is convenient, such as tool body 38 ( Fig. 1A ).
  • the grip isolator 30B could encircle the tool 32 ( Fig. 1B ). In some instances, this latter embodiment will be preferred as many operators desire to grip the hammer 10 as far forward as possible for improved balance.
  • the grip isolator 30A includes a body of elastomer 46B , a multiple number of buckling sections 44B extending radially inward from the body of elastomer 46B toward a central axis A .
  • these buckling sections 44B have a length L (in.), a width W (in.), a thickness t (in.), and are molded of elastomer with a shear modulus G (psi).
  • the parameters L , W , t , and G can be chosen to provide the optimum buckling for the vibrating device 10 ( Fig. 1A ).
  • the buckling sections are formed by substantially parallel slots 45 extending into said body of elastomer 46B .
  • the sections must have a length to thickness ratio L/t ⁇ 2 .
  • Prior art grips have included foam rubber construction which has excellent vibration isolation characteristics; however, these grips quickly deteriorate due to abrasion, are of poor overall strength, and are subject to being contaminated with oil.
  • Prior art natural rubber grips were more rugged than foam grips, but failed to properly isolate the user's hand.
  • the present invention grip isolator 30A or 30B is slid over the member to be isolated 32 or 38 , such that in its static form, the buckling sections 44B are buckled and the user is optimally isolated from the vibration ( See Fig. 2G ).
  • the present invention provides a rugged grip that is capable of isolating the user from vibration.
  • a second embodiment of grip isolator 30B is illustrated in Fig. 2D and 2E .
  • This embodiment is comprised of a body of elastomer 46C , but the buckling sections 44C are formed by a series of substantially parallel cores or bores 58 extending into the body of elastomer 46C .
  • the large bore 60 as installed, has an interference fit with the member to be isolated, such as a tool bit 32 ( Fig. 1B ) or tool body 38 ( Fig. 1A ).
  • An intermediate wall 59 ( Fig. 2E ) of elastomer provides radial stability to bores 58 while permitting axial softness of the isolator 30B .
  • the buckling sections 44C have low combined axial stiffness to provide isolation from axial vibrations. This configuration is preferred for usage in the Fig. 1B environment where the axial vibration will be pronounced.
  • the soft elastomer which is used preferably has a hardness in the range of 30 to 100 durometer. Ideally, soft natural rubber with a shear modulus of approximately 75 psi should be used for the grip isolator 30A and 30B .
  • Fig. 2H illustrates the buckling sections 44C having a length L , a width W , a thickness t , and which are molded of elastomer with a shear modulus G .
  • the parameters L , W , t are chosen to make the buckling section 44C buckle properly for the application.
  • Other shapes of bored out or cored out sections can be envisioned which will allow buckling, such as rectangular, triangular, and sections which direct the buckling direction.
  • FIG. 3A and 3B A view of a first embodiment of buckling isolator 20A is illustrated in Fig. 3A and 3B .
  • the isolator 20A is comprised of a first end member 62 , a second end member 64 , and a body of elastomer 46A integrally bonded to the members 62 and 64 .
  • the body of elastomer 46A includes a buckling section 44A which buckles outwardly under the application of load as shown in Fig. 3C .
  • Figs. 3D and 3E illustrate another type of buckling isolator 20B for use in a hand-held vibrating device 10 .
  • This buckling isolator 20B has a slight taper from either end member 62 and 64 on the outside surface of the body of elastomer 46D such that the center most portion is thinnest. This is to promote inward directional buckling of the W-shaped buckling section 44D .
  • this second embodiment offers a more compact envelope.
  • a fluid-and-elastomer version of the buckling isolator 20C is shown.
  • the buckling isolator 20C includes a first variable volume fluid chamber 68 , a second variable volume fluid chamber 70 and a fluid passageway 72 which allows for fluid communication between the chambers 68 and 70 .
  • Fluid 74 substantially fills, and is contained within, the chambers 68 and 70 and the fluid passageway 72 .
  • the theory of operation of the fluid and elastomer isolator is simple. As the air pulses enter the device 10 through an air passage or air supply tube 80A and excite the tool body 38 , the tool body 38 oscillates correspondingly.
  • the dynamic oscillation of the tool body 38 relative to the handle 34 will cause the buckling section 44E to flex dynamically. This will pump fluid 74 from one chamber 68 to the other 70 . Because of the differential in area between the fluid passageway 72 and the fluid chambers 68 and 70 , and the transmissibility at resonance of the fluid 74 , the fluid 74 can be accelerated to very large velocities as it flows through the passageway 72 and can generate significant phased counter inertial forces. As a result, with proper tuning, these inertial forces can be tuned to provide a dynamic stiffness notch at a predominant operating frequency. This will substantially reduce the vibration transmitted to the user.
  • a first flexible element 76 which defines a portion of the first variable volume fluid chamber 68 is a fabric reinforced diaphragm.
  • the diaphragm accommodates temperature expansion and allows static displacement of fluid from one chamber to another.
  • a second flexible element 78 which defines a portion of the second variable volume fluid chamber 70 includes the buckling section 44E .
  • the air passage 80A is a flexible bellows such as a steel spring bellows and passes through the second variable volume fluid chamber 70 .
  • Fig. 4B a second embodiment of a fluid and elastomer version of the buckling isolator 20C is shown.
  • the only difference between the embodiment shown in Fig. 4A and this one is in the construction of the air passage 80B .
  • the air passage 80B slides telescopically within a tube 82 attached to the tool body.
  • a pair of seals 84 prevents fluid 74 from escaping from the chamber 68 and air from entering the chamber 68 .
  • a performance curve of the buckling isolators 20A , 20B , and 20C are shown.
  • the performance curve plots axial load in pounds force (lbf.) on the vertical axis versus deflection in inches (in.) on the horizontal axis and is split into five different sections labeled 1 to 5.
  • Section 1 of the curve illustrates the initial-low-strain spring rate, prior to the occurrence of any buckling.
  • Section 2 illustrates the onset of buckling where the spring rate begins to fall off.
  • Section 3 illustrates the optimum operating point where the tangent spring rate is the lowest.
  • Section 4 is where the buckling section is so buckled that it begins to behave as a compression element and substantially stiffens.
  • Section 5 is where the buckling section is bottomed out and begins to snub.
  • a performance curve of a fluid and elastomer version of the buckling isolator 20C is shown.
  • the curve section labeled 1 is the low frequency dynamic stiffness which is essentially the contribution due to the elastomer stiffness.
  • Section 2 is the notch section. The notch is tuned to coincide with the fundamental frequency of input vibration by varying the functional characteristics of the fluid portion, e.g., the length of the inertia track, density of the fluid, etc.
  • Section 3 is the peak dynamic stiffness and coincides closely with the fluid natural frequency.
  • Section 4 is the high frequency stiffness after the fluid dynamically locks up and no longer flows through the fluid passageway.
  • FIG. 6A is described another embodiment of isolator 20F .
  • This isolator 20F is useful for reducing the vibration transmitted to a user from a hand-held device and the like.
  • like numerals denote like elements as compared to the previous embodiments.
  • the device is comprised of a handle 34F , a sleeve 36F attached to said handle 34F , and a tool body 38F similar to the previous embodiments.
  • the main difference is that the reduction in spring rate within an operating range of frequency is accomplished by incorporating a first and second elastomer 84 and 85 and a suspended, tuned mass 86 .
  • the first elastomer element 84 is a pure shear element, i.e., under axial loading along axis Y-Y, the first elastomer section 84 is placed in pure shear.
  • the second elastomer section 85 is preferably also a pure shear section, but either could be a compression loaded section as well.
  • the first elastomer section 84 is integrally and chemically bonded to the first end member 62F and the second end member 64F .
  • the first end member includes a sleeve portion 87 and an attached plate portion 89 which is secured to the handle 34F .
  • the second end member 64F is comprised of a sleeve portion 87' and an attached plate portion 89' which, in turn, attaches to the tool body 38F .
  • the first elastomer section 84 provides a flexible connection between, and acts to isolate, the handle 34F from the tool body 38F by allowing relative axial motion therebetween. Snubber 48 limits the axial motion in a similar manner as the previous embodiments.
  • the mass 86 is also integrally attached to and chemically bonded to the first end member 62F .
  • Mass 86 and second elastomer element 85 are tuned such that the mass 86 resonates at a frequency just above the frequency of interest, i.e., the motor frequency or air hammer frequency.
  • the operating range for example, will be between about 28 and 31 Hz.
  • the input vibration for a air hammer is about 30 Hz. This provides a reduction in the transmission of mechanical vibration to the user within the frequency range.
  • Fasteners 37F and 37F' secure the first end member 62F and second end members 64F to the handle 34F and tool body 38F respectively.
  • Fig. 6B is another embodiment of isolator 20G .
  • This embodiment is similar to the embodiment in Fig. 6A except the first elastomer element 84G is a buckling section.
  • Buckling sections are described in the art in US Pat. Nos. 3,948,501, 3,798,916, 3,280,970, and Re 27,318.
  • the element 84G buckles radially inward (as shown in dotted lines) upon application of axial load.
  • the mass 86 and second elastomer element 85 function as a tuned absorber as in the previous embodiment.
  • the buckling section is preferably integrally and chemically bonded between the cup-shaped first end member 62F' and plate-like second end member 64F' .
  • the tuned absorber is comprised of mass 86 and elastomer element 85 , which can further reduce the vibration imparted to the user.
  • Fig. 6C is an illustration of the intended or analytical performance of the tuned absorber embodiment of isolator 20F of Fig. 6A .
  • the solid line 88 indicates the analytical performance of the system without a tuned absorber and including a shear type first elastomer element 84 ( Fig. 6A ).
  • the resonance at about 9 Hz is the system resonance.
  • the curve indicated at 90 is for a system including a very small mass for the tuned mass 86 ( Fig. 6A ).
  • the curve 92 illustrates a mass 86 ( Fig. 6A ) used it the experiment of about 1 (lb) pound in weight. Theoretically, for this example, a range of improved isolation can be seen between about 28-31 Hz where the peak accelerations are reduced.
  • Fig. 6D is an illustration of the actual experimental performance of the tuned absorber embodiment of isolator 20F of Fig. 6A .
  • the solid line 94 indicates the performance in peak acceleration in inches per second squared (in/s 2 ) as a function of frequency (Hz). As expected, the peak accelerations are substantially reduced within the operating range of about 28-31 Hz.
  • Fig. 7A is an illustration of another embodiment of buckling isolator 20H .
  • the isolator 20H buckles radially outward under application of load such that the spring rate is reduced within a deflection range in a similar manner as the aforementioned elastomer embodiments.
  • the isolator 20H is comprised of a series of buckling elements 95H extending between end portions 96H and 97H . End portions 96H and 97H attach to tool handle 34H and tool body 38H , respectively.
  • the buckling elements 95H have a curvature formed thereon for biasing the buckling in one direction.
  • the buckling elements 95H are preferably metal and are formed from a stamped and bent sheet and are preferably made of spring-type steel or are made into spring-type steel through an appropriate heat treatment operation. As shown in Fig. 7A' , upon application of axial load, the buckling element 95H will buckle radially outward as shown in dotted lines. Upon buckling, the spring rate of the isolator drops off dramatically.
  • Fig. 7B is an illustration of another embodiment of buckling isolator 20J .
  • This embodiment is functionally similar to the Fig. 7A embodiment except that the buckling elements 95J are not part of a stamped plate.
  • the elements 95J are individual and preferably metal members of wire shape with a curvature formed thereon. The preferable cross section is rounded.
  • the wire-type buckling elements 95J are fitted in recesses in end portions 96J and 97J .
  • the buckling members 95J are made from spring steel or the like. Upon buckling, the axial spring rate is substantially reduced.
  • Fig. 7C is an yet another illustration of an embodiment of buckling isolator 20K .
  • the buckling elements 95K are strip members with coiled or wrapped ends for accepting pins 99K .
  • the members 95K preferably have a curvature along their length to initiate or bias buckling in the proper direction.
  • the members 95 are connected to clevises 98K or the like such that a pin joint is formed by pins 99K interacting with coiled ends at the interface with end portions 96K and 97K .
  • Fig. 7C' illustrates the buckling element 95K in its buckled form. Upon buckling, the axial spring rate is substantially reduced.
  • the present invention relates to a vibration isolator for use on a hand-held vibrating device for reducing the mechanical vibration imparted to the user.
  • One embodiment of isolator attaches between the tool body and the handle reduce the mechanical vibration within a range of frequency or deflection range.
  • Embodiments are drawn to buckling elastomer type and buckling metal type isolators, tuned fluid isolators, and tuned mass isolators for reducing the spring rate within a range.
  • the buckling means attaches between a handle for being grasped by said user and a tool body and the initial spring rate is reduced within an operating range upon application of load.
  • a tuned fluid is used to generate counter inertial fluid forces for reducing the transmitted forces within a frequency range, while in the tuned absorber embodiment, the tuned mass and second spring are tuned to provide the vibration reduction within a frequency range.
  • the grip isolator embodiment comprises multiple buckling means extending radially inward toward a central axis of said hand-held vibrating device for exhibiting an installed radial spring rate in a buckled condition which is lower than a spring rate in a non-installed condition. All of these isolators are intended to reduce the mechanical vibration imparted to the user and reduce or eliminate the incidence of "white hand" or other phsiological deterioration.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Vibration Prevention Devices (AREA)

Claims (18)

  1. Isolateur de vibrations (20, etc.) destiné à être utilisé sur un dispositif vibrant à main (10, etc.) afin de réduire les vibrations mécaniques communiquées à l'utilisateur, ledit dispositif vibrant comprenant une poignée (34, etc.) destinée à être saisie par l'utilisateur et un corps d'outil (38, etc.), ledit isolateur de vibrations comprenant :
    un premier élément d'extrémité (62, etc.) monté sur la poignée,
    un second élément d'extrémité (64, etc.) monté sur le corps d'outil,
    un élément compressible fixé entre ladite poignée et ledit corps d'outil et s'étendant dans une direction longitudinale entre ces deux éléments, et relié auxdits éléments d'extrémité, ledit élément ayant un taux d'élasticité initial et comprenant une partie déformable (44, 95, etc.) qui se déforme dans une direction transversale à ladite direction longitudinale, autour d'une périphérie radiale de ladite partie déformable, sous l'application d'une charge ayant pour résultat une réduction dudit taux d'élasticité de 2 à 30 fois, et d'une force correspondante pour déplacer ladite poignée par rapport audit corps d'outil dans une plage de fonctionnement, comparativement audit taux d'élasticité initial et à une force de déplacement initiale, réduisant ainsi lesdites vibrations mécaniques communiquées audit utilisateur dans ladite plage de fonctionnement.
  2. Isolateur de vibrations (20, etc.) selon la revendication 1, dans lequel ladite partie (44, 95, etc.) comprend en outre un élément déformable métallique (95H, etc.).
  3. Isolateur de vibrations (20, etc.) selon la revendication 1, dans lequel ladite partie déformable (44, 95, etc.) est en élastomère, ledit dispositif à main comprenant des moyens pour empêcher un mouvement de basculement de côté et des moyens pour empêcher un mouvement de torsion, tout en permettant une translation et une compression desdits moyens déformables suivant une direction axiale.
  4. Isolateur de vibrations (20, etc.) selon la revendication 1, comprenant un amortisseur (48, etc.) comprenant un prolongement (47, etc.) et un épaulement (48A, etc.), dans lequel un déplacement de ladite poignée (34, etc.) par rapport audit corps d'outil (38, etc.) dans la direction axiale est entravé par ledit prolongement venant en contact avec ledit épaulement.
  5. Isolateur de vibrations en élastomère (30, etc.) destiné à être utilisé sur un dispositif vibrant à main (10, etc.) afin de réduire les vibrations mécaniques radiales et axiales communiquées à l'utilisateur, comprenant :
    (a) un corps en élastomère (46B, etc.) destiné à être saisi d'une main par un utilisateur potentiel, ledit corps en élastomère étant disposé autour d'un axe central dudit dispositif vibrant à main (10, etc.) ; et
    (b) de multiples parties déformables (44B, etc.) s'étendant radialement vers l'intérieur en direction dudit axe central, chacune desdites parties déformables présentant une dimension en longueur (L) s'étendant vers ledit axe central et une dimension en épaisseur (t) s'étendant dans une direction transversale à ladite dimension en longueur, un rapport de ladite dimension en longueur (L) sur ladite dimension en épaisseur (t) étant supérieur ou égal à deux, lesdites parties déformables se déformant sous l'application d'une charge et présentant
    i) un taux d'élasticité radiale monté à l'état déformé, et
    ii) une résistance à un déplacement dudit dispositif vibrant à main par rapport à ladite main de l'utilisateur,
    qui sont inférieurs respectivement à un taux d'élasticité initial à l'état non déformé, non monté, et à une résistance initiale correspondante à un déplacement dudit dispositif vibrant à main par rapport à ladite main de l'utilisateur, la quantité de vibrations radiales et axiales transmises à ladite main étant ainsi fortement réduite.
  6. Isolateur de vibrations en élastomère (30, etc.) selon la revendication 5, dans lequel lesdites multiples parties déformables (44B, etc.) présentent chacune une faible rigidité axiale afin que la rigidité axiale combinée soit suffisamment faible pour isoler ladite main de préhension vis-à-vis des vibrations axiales dudit dispositif.
  7. Isolateur de vibrations en élastomère (30, etc.) selon la revendication 5, dans lequel lesdites multiples parties déformables (44B, etc.) s'étendant radialement vers l'intérieur en direction dudit axe central sont constituées par une série de fentes sensiblement parallèles s'étendant axialement radialement vers l'extérieur à partir dudit axe central dans ledit corps en élastomère (46B, etc.).
  8. Isolateur de vibrations en élastomère (30, etc.) selon la revendication 5, dans lequel lesdites multiples parties déformables (44B, etc.) s'étendant radialement vers l'intérieur en direction dudit axe central sont constituées par une série d'alésages sensiblement parallèles (58, etc.) s'étendant axialement radialement vers l'extérieur à partir dudit axe central dans ledit corps en élastomère (46B, etc.).
  9. Isolateur de vibrations en élastomère (30, etc.) selon la revendication 5, dans lequel lesdites parties déformables (44B, etc.), et ledit corps en élastomère (46B, etc.) sont réalisés en un élastomère souple ayant une dureté située dans la plage s'étendant entre 30 et 100 duromètres.
  10. Isolateur de vibrations en élastomère (30, etc.) selon la revendication 5, qui entoure et isole ladite main dudit utilisateur vis-à-vis desdites vibrations mécaniques radiales et axiales d'un élément sélectionné dans le groupe constitué par un outil (32, etc.) et un corps d'outil (38, etc.).
  11. Dispositif vibrant à main (10, etc.) qui réduit les vibrations mécaniques communiquées à un utilisateur, comprenant :
    (a) une poignée (34, etc.) destinée à être saisie par ledit utilisateur ;
    (b) un corps d'outil (38, etc.) ;
    (c) un foret (32, etc.) fixé audit corps d'outil ;
    (d) des moyens déformables (20, etc.) fixés entre ladite poignée et ledit corps d'outil, lesdits moyens déformables comprenant
    un premier élément d'extrémité (62, etc.) monté sur la poignée,
    un second élément d'extrémité (64, etc.) monté sur le corps d'outil,
    un élément compressible fixé entre ladite poignée et ledit corps d'outil et s'étendant dans une direction longitudinale entre ces deux éléments, et relié auxdits éléments d'extrémité, ledit élément compressible comprenant une partie déformable qui se déforme dans une direction transversale à ladite direction longitudinale, autour d'une périphérie radiale de ladite partie déformable, ledit élément compressible ayant un taux d'élasticité initial qui décroít sous l'application d'une charge, pour ainsi réduire ledit taux d'élasticité de 2 à 30 fois dans une plage de poussée axiale de travail, et d'une grandeur de poussée requise pour déplacer ladite poignée par rapport audit corps d'outil, pour ainsi améliorer l'isolation vis-à-vis des vibrations axiales ;
    (e) un isolateur de poignée (30, etc.) comprenant en outre un corps en élastomère (48B, etc.) destiné à être saisi d'une main par l'utilisateur, ledit corps en élastomère étant disposé autour d'un axe central et entourant un élément choisi dans le groupe constitué par ledit foret et ledit corps d'outil, de multiples parties déformables s'étendant radialement vers l'intérieur en direction dudit axe central, chacune desdites parties déformables présentant une dimension en longueur (L) s'étendant vers ledit axe central et une dimension en épaisseur (t) s'étendant dans une direction transversale à ladite dimension en longueur, un rapport de ladite dimension en longueur (L) sur ladite dimension en épaisseur (t) étant supérieur ou égal à deux, lesdites parties déformables réduisant ledit taux d'élasticité et une grandeur de poussée requise pour déplacer ledit élément sélectionné par rapport à ladite main de l'utilisateur, pour ainsi améliorer l'isolation de celle-ci vis-à-vis des vibrations radiales.
  12. Dispositif vibrant à main (10, etc.) selon la revendication 11, comprenant en outre une masse accordée (86, etc.) suspendue à un élément formant ressort (85, etc.).
  13. Dispositif vibrant à main (10, etc.) selon la revendication 11, comprenant en outre des moyens formant surfaces de glissement (40A, etc.) espacés axialement, destinés à venir en contact avec une périphérie extérieure dudit corps d'outil (38, etc.) pour entraver un mouvement relatif de basculement de côté entre ledit corps d'outil (38, etc.) et ladite poignée (34, etc.), et des moyens formant clavettes (50, etc.) reçus dans des rainures (52, etc.) prévues dans ledit corps d'outil afin d'empêcher un mouvement de torsion de ladite poignée.
  14. Dispositif vibrant à main (10, etc.) selon la revendication 11, comprenant en outre un prolongement (47, etc.) et un épaulement (49A, etc.), dans lequel un mouvement axial relatif dudit corps d'outil (38, etc.) et de ladite poignée (34, etc.) est entravé par la venue en contact dudit prolongement avec ledit épaulement.
  15. Dispositif vibrant à main (10, etc.) selon la revendication 11, dans lequel ledit isolateur de poignée (30, etc.) comprend des moyens déformables pour réduire ledit taux d'élasticité, constitués par des trous (58, etc.) s'étendant dans ledit corps en élastomère (46C, etc.).
  16. Isolateur de vibrations (20, etc.) selon la revendication 1, comprenant en outre :
    (a) des première (68, etc.) et seconde (70, etc.) chambres à volume variable ;
    (c) des premier (76, etc.) et second (78, etc.) éléments flexibles définissant respectivement au moins une partie desdites première et seconde chambres à volume variable, l'un desdits éléments flexibles comprenant ladite partie déformable (44E, etc.) ;
    (d) un passage pour fluide (72, etc.) entre lesdites chambres à volume variable ;
    (e) un fluide (74, etc.) contenu dans lesdites chambres à volume variable qu'il remplit sensiblement et dans ledit passage, un mouvement vibratoire relatif entre ladite poignée (34, etc.) et ledit corps d'outil (33, etc.) provoquant un écoulement dudit fluide vers lesdites chambres à volume variable et à partir de celles-ci à travers ledit passage pour fluide, pour ainsi créer des forces d'inertie antagonistes qui réduisent les forces de vibration transmises à l'utilisateur.
  17. Isolateur de vibrations (20, etc.) selon la revendication 16, dans lequel un tuyau d'amenée d'air (80A, etc.) est entouré par au moins l'une desdites chambres à volume variable (76, etc.).
  18. Isolateur de vibrations (20, etc.) selon la revendication 1, comprenant en outre des moyens amortisseurs accordés comprenant un second ressort (85, etc.) et une masse associée (86, etc.) afin d'assurer un effet d'inertie accordé coïncidant sensiblement avec ladite fréquence de fonctionnement dudit dispositif vibrant (10, etc.).
EP94905414A 1993-01-27 1993-12-16 Isolateur de vibrations pour dispositifs vibrants tenus en main Expired - Lifetime EP0680399B1 (fr)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
US969393A 1993-01-27 1993-01-27
US9693 1993-01-27
PCT/US1993/012271 WO1994016864A1 (fr) 1993-01-27 1993-12-16 Isolateur de vibrations pour dispositifs vibrants tenus en main

Publications (3)

Publication Number Publication Date
EP0680399A1 EP0680399A1 (fr) 1995-11-08
EP0680399A4 EP0680399A4 (fr) 1996-01-10
EP0680399B1 true EP0680399B1 (fr) 2000-11-15

Family

ID=21739162

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94905414A Expired - Lifetime EP0680399B1 (fr) 1993-01-27 1993-12-16 Isolateur de vibrations pour dispositifs vibrants tenus en main

Country Status (3)

Country Link
EP (1) EP0680399B1 (fr)
DE (1) DE69329686T2 (fr)
WO (1) WO1994016864A1 (fr)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676890B2 (en) 2005-10-25 2010-03-16 Black And Decker, Inc. Vibration dampening handle for a powered apparatus

Families Citing this family (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
BR9607809A (pt) * 1996-01-11 1999-11-30 Chicago Pneumatic Tool Co Suportes isoladores de vibração para uma ferramenta pneumática
US5813477A (en) * 1996-05-23 1998-09-29 Chicago Pneumatic Tool Company Vibration-reduced impact tool and vibration isolator therefor
US5769174A (en) * 1996-12-18 1998-06-23 Ingersoll-Rand Company Parallel displacement single axis vibration isolator
KR100260309B1 (ko) * 1997-06-11 2000-07-01 최해성 유압헤머
US6026910A (en) * 1998-01-13 2000-02-22 Chicago Pneumatic Tool Company Power tool and vibration isolator therefor
US6148734A (en) * 1998-05-19 2000-11-21 Lord Corporation Elastomeric bearing with softening spring rate
JP2002039267A (ja) * 2000-07-31 2002-02-06 Kioritz Corp 防振部材及び防振装置
ATE454248T1 (de) * 2005-11-16 2010-01-15 Metabowerke Gmbh Motorisch angetriebener bohrhammer
DE102006034078A1 (de) 2006-06-02 2007-12-06 Robert Bosch Gmbh Schleifhandwerkzeugmaschine sowie Vibrationsentkopplungsvorrichtung einer Schleifhandwerkzeugmaschine
DE102007000270A1 (de) 2007-05-11 2008-11-20 Hilti Aktiengesellschaft Vibrierende Handwerkzeugmaschine mit Antivibrationselement
GB2458459A (en) * 2008-03-17 2009-09-23 Trevor Timmins Vibration damping handle
DE102009014970A1 (de) * 2009-03-18 2010-09-23 C. & E. Fein Gmbh Oszillationswerkzeug mit Vibrationsdämpfung
JP2014069293A (ja) * 2012-09-28 2014-04-21 Hitachi Koki Co Ltd 打撃工具

Family Cites Families (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US954706A (en) * 1909-07-08 1910-04-12 Grant W Smith Rock-drill.
US2058583A (en) * 1935-12-23 1936-10-27 Independent Pneumatic Tool Co Cushioned handle for tools
US3072955A (en) * 1959-05-18 1963-01-15 Lois D Mitchell Hand grips
US3916478A (en) * 1974-05-15 1975-11-04 Caterpillar Tractor Co Vibration isolating grip for pneumatic hand tools
US4044625A (en) * 1976-07-01 1977-08-30 Chicago Pneumatic Tool Company Vibration isolating hand grip for shank of a percussive chisel
US4703838A (en) * 1980-05-27 1987-11-03 Caterpillar Tractor Co. Recoil damper for a reciprocating member
JPS5834271B2 (ja) * 1980-07-18 1983-07-26 日立工機株式会社 振動工具のハンドル防振装置
DE3122979A1 (de) * 1981-06-10 1983-01-05 Hilti AG, 9494 Schaan Bohr- oder meisselhammer
US4867366A (en) * 1984-10-26 1989-09-19 Kleinholz Edward O Pneumatic fastener-driving tool and method
SE452426B (sv) * 1985-06-19 1987-11-30 Eskil Sundstrom Vibrationsdempande handtag
SE460266B (sv) * 1986-05-12 1989-09-25 Eskil Sundstroem Vibrationsskydd vid ett motordrivet vibrationsalstrande handredskap
US5193246A (en) * 1991-07-23 1993-03-16 Huang Ing Chung Air cushion grip with a cubic supporting structure and shock-absorbing function

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7676890B2 (en) 2005-10-25 2010-03-16 Black And Decker, Inc. Vibration dampening handle for a powered apparatus
US8141209B2 (en) 2005-10-25 2012-03-27 Black And Decker, Inc. Vibration dampening handle for a powered apparatus

Also Published As

Publication number Publication date
WO1994016864A1 (fr) 1994-08-04
EP0680399A1 (fr) 1995-11-08
DE69329686T2 (de) 2001-06-07
EP0680399A4 (fr) 1996-01-10
DE69329686D1 (de) 2000-12-21

Similar Documents

Publication Publication Date Title
US5839517A (en) Vibration isolator for hand-held vibrating devices
EP0680399B1 (fr) Isolateur de vibrations pour dispositifs vibrants tenus en main
US4800965A (en) Damping element, and its installation in a motor-driven hand tool
US7610967B2 (en) Hand-held power tool with a decoupling device
US5769174A (en) Parallel displacement single axis vibration isolator
JP5426084B2 (ja) 振動絶縁手段を有する手持ち式工具装置
KR100698604B1 (ko) 완충장치
JP4054309B2 (ja) 摩擦減衰ストラット
US20010037889A1 (en) Percussion electrical hand-held tool
JPH09511315A (ja) 液圧型慣性振動防止装置
US5160121A (en) Shock absorbing compressional mounting apparatus
JPH04224333A (ja) ブッシュタイプの制振装置及びブッシュタイプの液体充填制振装置
US4706946A (en) Motion control strut
WO1999001334A1 (fr) Dispositif amortisseur a frottement pour systeme de suspension de bicyclette
JPS61188090A (ja) 振動を伴なう手持ち式工具
CA1226880A (fr) Jambe de force anti-rebondissement a charge amortissante seche
US5289742A (en) Vibration damping device for hammers
EP0144392A1 (fr) Plaque vibrante.
EP0178652B1 (fr) Unité pour l'amortissement de vibrations du type à fluide
JPH02116501A (ja) チエーンソー等の振動緩衝装置
EP1283092A1 (fr) Amortisseur intégré pour marteau et méthode
SU1391874A1 (ru) Машина ударного действи
JPH10318314A (ja) 車体緩衝装置
JP4284090B2 (ja) 防振装置
KR100428210B1 (ko) 액압식 엔진 지지 장치

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950720

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): CH DE FR GB IT LI SE

A4 Supplementary search report drawn up and despatched

Effective date: 19951120

AK Designated contracting states

Kind code of ref document: A4

Designated state(s): CH DE FR GB IT LI SE

RAP1 Party data changed (applicant data changed or rights of an application transferred)

Owner name: LORD CORPORATION

17Q First examination report despatched

Effective date: 19980713

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19980713

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): CH DE FR GB IT LI SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001115

Ref country code: CH

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20001115

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 69329686

Country of ref document: DE

Date of ref document: 20001221

ITF It: translation for a ep patent filed
ET Fr: translation filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20021127

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20021129

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20021211

Year of fee payment: 10

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20021230

Year of fee payment: 10

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20031217

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040701

EUG Se: european patent has lapsed
GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20031216

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040831

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20051216