EP0678512A1 - Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen - Google Patents

Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen Download PDF

Info

Publication number
EP0678512A1
EP0678512A1 EP95105702A EP95105702A EP0678512A1 EP 0678512 A1 EP0678512 A1 EP 0678512A1 EP 95105702 A EP95105702 A EP 95105702A EP 95105702 A EP95105702 A EP 95105702A EP 0678512 A1 EP0678512 A1 EP 0678512A1
Authority
EP
European Patent Office
Prior art keywords
catalyst
hydrogenation
ruthenium
reaction
aromatic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP95105702A
Other languages
English (en)
French (fr)
Other versions
EP0678512B1 (de
Inventor
Thomas Dr. Wettling
Ludwig Dr. Schuster
Jochem Dr. Henkelmann
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
BASF SE
Original Assignee
BASF SE
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by BASF SE filed Critical BASF SE
Publication of EP0678512A1 publication Critical patent/EP0678512A1/de
Application granted granted Critical
Publication of EP0678512B1 publication Critical patent/EP0678512B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G59/00Polycondensates containing more than one epoxy group per molecule; Macromolecules obtained by polymerising compounds containing more than one epoxy group per molecule using curing agents or catalysts which react with the epoxy groups
    • C08G59/14Polycondensates modified by chemical after-treatment
    • C08G59/1405Polycondensates modified by chemical after-treatment with inorganic compounds
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D301/00Preparation of oxiranes
    • CCHEMISTRY; METALLURGY
    • C07ORGANIC CHEMISTRY
    • C07DHETEROCYCLIC COMPOUNDS
    • C07D303/00Compounds containing three-membered rings having one oxygen atom as the only ring hetero atom
    • C07D303/02Compounds containing oxirane rings
    • C07D303/12Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms
    • C07D303/18Compounds containing oxirane rings with hydrocarbon radicals, substituted by singly or doubly bound oxygen atoms by etherified hydroxyl radicals
    • C07D303/20Ethers with hydroxy compounds containing no oxirane rings
    • C07D303/24Ethers with hydroxy compounds containing no oxirane rings with polyhydroxy compounds

Definitions

  • the present invention relates to an improved process for the selective hydrogenation of aromatic groups of organic molecules which carry at least one aromatic group and one epoxy group with hydrogen in the presence of a ruthenium-containing catalyst.
  • US-A 3 336 241 teaches the hydrogenation of aromatic epoxy compounds with rhodium and ruthenium catalysts. The activity of the catalysts decreases so much after a hydrogenation that in an industrial process the catalyst has to be changed after each hydrogenation.
  • US-A 3 966 636 teaches a process for the regeneration of rhodium and ruthenium catalysts which have been deactivated in the hydrogenation of 2,2-di- [p-glycidoxyphenyl] propane.
  • the object was to provide a selective hydrogenation process in which the catalysts used can be used repeatedly for hydrogenations without working up.
  • DE-A 36 29 632 and DE-A 39 19 228 teach the selective hydrogenation of di- [glycidoxiphenyl] methane or of 2,2-di- [p-glycidoxiphenyl] propane over ruthenium oxide hydrate. According to this teaching, it is advisable to regenerate the catalysts after each hydrogenation. Difficulties arise in the removal of the finely divided catalyst, which can mainly be solved by using filtration aids. To work up the catalysts, however, they have to be separated from the filtration aids.
  • the process defined at the outset was found, which is characterized in that the hydrogenation is carried out in the presence of 0.2 to 10% by weight of water, based on the reaction mixture.
  • Preferred starting compounds are di- [p-glycidoxiphenyl] methane and 2,2-di- [p-glycidoxiphenyl] propane and oligomers of these compounds.
  • Homogeneous and heterogeneous ruthenium catalysts can be considered as catalysts for the process according to the invention.
  • Metallic ruthenium on a carbon or aluminum oxide support should be mentioned as well as ruthenium vapor-deposited on metal surfaces.
  • Such catalysts are commercially available or by methods known per se. However, preference is given to ruthenium oxide hydrate, which can be used both homogeneously and bound to heterogeneous carriers.
  • This ruthenium compound which corresponds to the formula Ru2O3 ⁇ xH2O, where x can assume values greater than 1, is obtained as a water-wet precipitate by reacting an aqueous solution of ruthenium-III-chloride hydrate RuCl3 x 3H2O with sodium hydroxide solution and then washing with water to remove the chloride ions.
  • the amount of the catalyst is generally 0.01 to 1% by weight of ruthenium, based on the starting compound to be hydrogenated.
  • solvents are ethers, for example tetrahydrofuran, dioxane, tert-butyl methyl ether, glycol dimethyl ether and methoxypropanol.
  • the amount the solvent is generally 5 to 80 wt .-%, based on the reaction mixture.
  • the hydrogenation is carried out under pressure, which is generally from 100 to 320 bar.
  • the reaction temperature is usually 30 to 80 ° C, preferably 40 to 70 ° C.
  • the reaction can be carried out batchwise and continuously.
  • the starting compounds, the catalyst, water and optionally solvent can be mixed and reacted with hydrogen in a reactor.
  • the reaction is generally complete after 2 to 10 hours.
  • the reaction mixture can then be let down to atmospheric pressure, separated from the catalyst, for example by filtration, and freed of all volatile constituents by distillation.
  • the separated catalyst can, if desired after being supplemented by fresh catalyst, be returned to the hydrogenation process.
  • the process according to the invention has the advantage that the catalyst is still so active after hydrogenation that it can be used for further hydrogenations. It has proven to be expedient, after each hydrogenation, to recycle a small part, e.g. a quarter to be replaced by a new catalyst, which considerably reduces the technical effort required for catalyst regeneration.
  • the present invention allows a simple catalyst separation from the product when using ruthenium oxide hydrate.
  • the process products are used as lightfast paints, casting resins and laminates.
  • the epoxy equivalent weight was determined in accordance with ASTM D 1652-88 and gives the average molecular weight of the process product divided by the average number of epoxy groups per molecule. The value is therefore a measure of the selectivity of the hydrogenation reaction.
  • reaction discharge was dark in color after filtration and could only be decolorized by adding activated carbon.
  • the process according to the invention allows the production of purer products with a shorter reaction time. Furthermore, the complete separation of the catalyst from the product is technically less complex than in the comparative experiment.
  • reaction mixture was made up to 2000 g with the bisglycidyl ether, water, THF and catalyst, but only 0.25 g was added instead of 1 g of ruthenium (weight ratio of polyglycidyl ether to THF 10: 9, water content 2.6% by weight).
  • 2020 g of reaction effluent were removed in each case and replaced as described. After filtration, all the reaction products were colorless, practically free of aromatics and had epoxy equivalent weights from 180 to 185.
  • the catalyst was deactivated after hydrogenation.
  • a bisglycidyl ether as characterized in Example 1 was used with tetrahydrofuran in a weight ratio of 1: 0.96 in the presence of 0.1% by weight of ruthenium, based on the reaction mixture, in the form of the ruthenium oxide hydrate suspension described in Example 1 was, and of 0.5 wt .-% water, based on the reaction mixture, continuously hydrogenated at 50 to 70 ° C and a hydrogen pressure of 250 bar with an average residence time of 10 h.
  • the reaction discharge was separated from the catalyst and the volatile components were distilled off.
  • the remaining product was colorless (aromatic content 6.7 to 9.4%, epoxy equivalent value 179 to 187).
  • the separated catalyst was 0.03% by weight, based on the reaction mixture, fresh ruthenium (in the form of ruthenium oxide hydrate suspension) enriched and returned to the reaction with the starting compounds.

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Inorganic Chemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Health & Medical Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Epoxy Compounds (AREA)
  • Organic Low-Molecular-Weight Compounds And Preparation Thereof (AREA)
  • Low-Molecular Organic Synthesis Reactions Using Catalysts (AREA)

Abstract

Verfahren zur selektiven Hydrierung von aromatischen Gruppen organischer Moleküle, die mindestens eine aromatische Gruppe und eine Epoxygruppe tragen, mit Wasserstoff in Gegenwart eines rutheniumhaltigen Katalysators, indem man die Hydrierung in Gegenwart von 0,2 bis 10 Gew.-% Wasser, bezogen auf den Reaktionsansatz, vornimmt.

Description

  • Die vorliegende Erfindung betrifft ein verbessertes Verfahren zur selektiven Hydrierung von aromatischen Gruppen organischer Moleküle, die mindestens eine aromatische Gruppe und eine Epoxygruppe tragen, mit Wasserstoff in Gegenwart eines rutheniumhaltigen Katalysators.
  • Die US-A 3 336 241 lehrt die Hydrierung von aromatischen Epoxyverbindungen mit Rhodium- und Rutheniumkatalysatoren. Die Aktivität der Katalysatoren nimmt nach einer Hydrierung so stark ab, daß in einem technischen Verfahren der Katalysator nach jeder Hydrierung gewechselt werden muß. Die US-A 3 966 636 lehrt ein Verfahren zur Regenerierung von Rhodium- und Rutheniumkatalysatoren, die bei der Hydrierung von 2,2-Di-[p-glycidoxi-phenyl]-propan desaktiviert worden sind.
  • Es stellte sich die Aufgabe, ein selektives Hydrierverfahren bereitzustellen, in welchem die eingesetzten Katalysatoren ohne Aufarbeitung mehrfach für Hydrierungen eingesetzt werden können.
  • Die DE-A 36 29 632 und die DE-A 39 19 228 lehren die selektive Hydrierung von Di-[glycidoxi-phenyl]-methan bzw. von 2,2-Di-[p-glycidoxi-phenyl]-propan an Rutheniumoxidhydrat. Auch nach dieser Lehre empfiehlt es sich, die Katalysatoren nach jeder Hydrierung zu regenerieren. Dabei treten Schwierigkeiten bei der Abtrennung des feinverteilten Katalysators auf, die überwiegend durch Verwendung von Filtrationshilfsmitteln gelöst werden können. Zur Aufarbeitung der Katalysatoren müssen diese jedoch von den Filtrationshilfsmitteln getrennt werden.
  • Es bestand daher weiterhin die Aufgabe, ein Verfahren bereitzustellen, daß eine leichte Abtrennbarkeit des Katalysators Rutheniumoxidhydrat vom Hydrieraustrag erlaubt.
  • Demgemäß wurde das eingangs definierte Verfahren gefunden, das dadurch gekennzeichnet ist, daß man die Hydrierung in Gegenwart von 0,2 bis 10 Gew.-% Wasser, bezogen auf den Reaktionsansatz, vornimmt.
  • Als Ausgangsverbindungen kommen alle solche organische Moleküle in Betracht, die mindestens eine aromatische Gruppe und eine Epoxygruppe tragen. Dabei kann es sich um monomere, oligomere oder polymere Verbindungen handeln. Als Ausgangsverbindungen für das erfindungsgemäße Verfahren sind folgende Substanzklassen und Stoffe zu nennen:
    • Reaktionsprodukte aus Bisphenol A bzw. Bisphenol F und Epichlorhydrin
      Bisphenol A bzw. Bisphenol F und Epichlorhydrin können mit Basen in bekannter Weise (z.B. Ullmann's Encyclopedia of Industrial Chemistry, 5th Edition, VCH (1987) Vol. A9, S. 547) zu Glycidylethern der allgemeinen Formel I umgesetzt werden
      Figure imgb0001
      wobei R¹ für
      Figure imgb0002
      R² für Wasserstoff oder eine Methylgruppe und m für Null bis 40 steht.
    • Phenol- und Kresolepoxynovolake
      Novolake der allgemeinen Formel II sind durch säurekatalysierte Reaktion von Phenol bzw. Kresol und Epoxidierung der Reaktionsprodukte erhältlich (s. z.B. Bis[4-(2,3-epoxypropoxy)phenyl]methan):
      Figure imgb0003
      wobei R² für Wasserstoff oder eine Methylgruppe und n für 0 bis 40 steht.
    • Glycidylether von Reaktionsprodukten aus Phenol und einem Aldehyd
      Durch säurekatalysierte Umsetzung von Phenol und Aldehyden und anschließende Epoxidierung mit Epichlorhydrin sind Glycidylether zugänglich, z.B. ist 1,1,2,2-Tetrakis-[4-(2,3-epoxypropoxy)phenyl]ethan aus Phenol und Glyoxal zugänglich.
    • Aromatische Glycidylamine
      Beispielhaft sind die Triglycidylverbindung von p-Aminophenol, 1-(2,3-epoxypropoxy)-4-[N,N-bis(2,3-epoxypropyl)-amino]benzol, und die Tetraglycidylverbindung von Methylendiamin Bis{4-[N,N-bis(2,3-epoxypropyl)amino[phenyl}methan zu nennen.
  • Im einzelnen sind weiterhin zu nennen:
    1,1,2,2-Tetrakis[4-(2,3-epoxypropoxy)phenyl]ethan, Tris[4-(2,3-epoxypropoxy)phenyl]methan-isomere, 2,5-Bis[(2,3-epoxypropoxy)phenyl]octahydro-4,7-methano-5H-inden.
  • Bevorzugte Ausgangsverbindungen sind Di-[p-glycidoxi-phenyl]-methan und 2,2-Di-[p-glycidoxi-phenyl]-propan und Oligomere dieser Verbindungen.
  • Als Katalysatoren kommen für das erfindungsgemäße Verfahren homogene und heterogene Rutheniumkatalysatoren in Betracht. Metalli-sches Ruthenium auf einem Kohle- oder Aluminiumoxidträger ist ebenso zu nennen wie auf Metalloberflächen aufgedampftes Ruthenium. Solche Katalysatoren sind im Handel oder durch an sich bekannte Methoden erhältlich. Bevorzugt wird jedoch Rutheniumoxidhydrat, das sowohl homogen wie auch an heterogene Träger gebunden eingesetzt werden kann. Man erhält diese Rutheniumverbindung, die der Formel Ru₂O₃ · xH₂O entspricht, wobei x Werte über 1 annehmen kann, als wasserfeuchten Niederschlag durch Umsetzung einer wäßrigen Lösung von Ruthenium-III-chloridhydrat RuCl₃ x 3H₂O mit Natronlauge und anschließendes Waschen mit Wasser zur Entfernung der Chloridionen. Die Menge des Katalysators liegt in der Regel bei 0,01 bis 1 Gew.-% Ruthenium, bezogen auf die zu hydrierende Ausgangsverbindung.
  • Da die erfindungsgemäßen Hydrierungen in vielen Fällen mit viskosen Produkten durchgeführt werden, kann es vorteilhaft sein, die Reaktion in einem Lösungsmittel auszuführen. Als Lösungsmittel sind Ether bevorzugt, z.B. Tetrahydrofuran, Dioxan, tert.-Butyl-methylether, Glykoldimethylether und Methoxypropanol. Die Menge des Lösungsmittels beträgt im allgemeinen 5 bis 80 Gew.-%, bezogen auf den Reaktionsansatz.
  • Weiterhin werden dem Reaktionsansatz 0,2 bis 10 Gew.-% Wasser, bezogen auf den Reaktionsansatz, zugesetzt. Während bei geringeren Mengen kein Effekt erkennbar ist, kommt es bei deutlich größeren Mengen in verstärktem Maße zur unerwünschten hydrolytischen Öffnung des Epoxidrings.
  • Die Hydrierung wird unter Druck ausgeführt, der in der Regel bei 100 bis 320 bar liegt. Die Reaktionstemperatur beträgt in der Regel 30 bis 80°C, bevorzugt 40 bis 70°C.
  • Die Reaktion kann diskontinuierlich und kontinuierlich ausgeführt werden. Dazu können die Ausgangsverbindungen, der Katalysator, Wasser und gegebenenfalls Lösungsmittel vermischt und in einem Reaktor mit Wasserstoff umgesetzt werden. Die Reaktion ist im allgemeinen nach 2 bis 10 Stunden beendet. Der Reaktionsansatz kann dann auf Normaldruck entspannt, von Katalysator beispielsweise durch Filtration abgetrennt und durch Destillation von allen flüchtigen Bestandteilen befreit werden. Der abgetrennte Katalysator kann, gewünschtenfalls nach Ergänzung durch frischen Katalysator, in das Hydrierverfahren zurückgeführt werden.
  • Das erfindungsgemäße Verfahren hat den Vorteil, daß der Katalysator nach einer Hydrierung noch so aktiv ist, daß er für weitere Hydrierungen eingesetzt werden kann. Es hat sich als zweckmäßig erwiesen, nach jeder Hydrierung vor der Rückführung des gebrauchten Katalysators einen kleinen Teil, z.B. ein Viertel, durch neuen Katalysator zu ersetzen, wodurch sich der für eine Katalysatorregenerierung erforderliche technische Aufwand beträchtlich vermindert.
  • Weiterhin erlaubt die vorliegende Erfindung bei Verwendung von Rutheniumoxidhydrat eine einfache Katalysatorabtrennung vom Produkt.
  • Die Verfahrensprodukte finden als lichtbeständige Anstrichmittel, Gießharze und Laminate Verwendung.
  • Beispiele Beispiel 1 bis 4
  • In einem Autoklaven wurden 1000 g eines Bisglycidylethers eines Phenol-Formaldehyd-Kondensates (Bis[4-(2,3-epoxypropoxy)phenyl]-methan mit einem Epoxidäquivalentgewicht von 168), 40 g einer Rutheniumoxidhydratsuspension in Tetrahydrofuran THF mit einem Gehalt von 1 g Ruthenium (erhalten durch Umsetzung von RuCl₃ x 3H₂O mit Natronlauge bei pH 8 und Waschen des so erhaltenen Niederschlags mit Wasser und THF), Wasser und 960 g THF bei 50°C und einem Druck von 250 bar mit Wasserstoff hydriert. Die Wassermenge des Ansatzes sowie die Reaktionsdauer ist der folgenden Tabelle 1 zu entnehmen. Die Hydrierausträge wurden filtriert und waren farblos. Es wurden nach dem Abdestillieren flüchtiger Bestandteile 1010 bis 1030 g Produkt isoliert. Tabelle 1
    Beispiel Wassergehalt [Gew.-%] Reaktionszeit [h] Aromatengehalt Produkt Epoxidäquivalentgewicht
    1 1,0 6,0 4 % 188
    2 2,5 4,0 Spur 191
    3 5,3 3,0 0 197
    4 7,5 2,5 0 213
  • Das Epoxidäquivalentgewicht wurde nach ASTM D 1652-88 bestimmt und gibt das mittlere Molekulargewicht des Verfahrensproduktes dividiert durch die mittlere Zahl an Epoxygruppen pro Molekül an. Der Wert ist somit ein Maß für die Selektivität der Hydrierreaktion.
  • Beispiel 5 (Vergleich) Durchführung wie Beispiele 1 bis 4, jedoch ohne Wasserzugabe
  • Nach einer Reaktionsdauer von 8 h wurden 1010 g Produkt mit 3 % Aromatengehalt und einem Epoxidäquivalentgewicht von 177 isoliert.
  • Der Reaktionsaustrag war nach Filtration dunkel gefärbt und konnte nur durch Zugabe von Aktivkohle entfärbt werden.
  • Das erfindungsgemäße Verfahren erlaubt bei kürzerer Reaktionszeit die Herstellung reinerer Produkte. Weiterhin ist die vollständige Abtrennung des Katalysators vom Produkt technisch weniger aufwendig als im Vergleichsversuch.
  • Beispiel 6
  • In einem Autoklaven wurden 1000 g des in Beispiel 1 beschriebenen Polyglycidylether, 40 g Rutheniumoxidhydrat-THF-Suspension mit einem Rutheniumgehalt von 1 g, 40 g Wasser und 920 g THF bei 250 bar 4 h bei 50°C bis 70°C mit Wasserstoff hydriert. Nach Entspannen auf Normaldruck ließ man den Katalysator 12 h absitzen. Von der überstehenden Lösung wurden 1400 g über ein Steigrohr entnommen. Der Reaktionsansatz wurde mit dem Bisglycidylether, Wasser, THF und Katalysator auf 2000 g aufgefüllt, wobei jedoch statt 1 g Ruthenium nur 0,25 g zugesetzt wurden (Gewichtsverhältnis von Polyglycidylether zu THF 10:9, Wassergehalt 2,6 Gew.-%). Bei drei nachfolgenden Hydrierungen wurden jeweils 2020 g Reaktionsaustrag entnommen und wie beschrieben ersetzt. Alle Reaktionsausträge waren nach Filtration farblos, praktisch aromatenfrei und besaßen Epoxidäguivalentgewichte von 180 bis 185.
  • Durch Zugabe von nur geringen Mengen frischen Katalysators nach jeder Hydrierung können mehrere Hydrierungen bei konstanter Produktqualität durchlaufen werden.
  • Beispiel 7 (Vergleich, ohne Wasser)
  • 1000 g des in Beispiel 1 charakterisierten Bisglycidylethers, 40 g der Rutheniumoxidhydrat-THF-Suspension mit einem Gehalt von 1 g Ruthenium und 900 g THF wurden 4 h bei 50°C bis 70°C und 250 bar mit Wasserstoff hydriert. Man ließ den Katalysator 12 h absitzen und entnahm wie in Beispiel 6 beschrieben über ein Steigrohr 1400 g der überstehenden Lösung, zentrifugierte mitgerissenen Katalysator ab - dabei gelang keine vollständige Abtrennung - und führte den so isolierten Katalysator mit den oben angegebenen Mengen an Polyglycidylether und THF in den Reaktor zurück. Eine erneute Hydrierung kam nach nur geringer Wasserstoffaufnahme zum Stillstand.
  • Der Katalysator war nach einer Hydrierung desaktiviert.
  • Beispiel 8 (Kontinuierliche Fahrweise)
  • Ein Bisglycidylether, wie er in Beispiel 1 charakterisiert worden ist, wurde mit Tetrahydrofuran im Gewichtsverhältnis von 1:0,96 in Gegenwart von 0,1 Gew.-% Ruthenium, bezogen auf den Reaktionsansatz, das in Form der in Beispiel 1 beschriebenen Rutheniumoxidhydratsuspension eingesetzt wurde, sowie von 0,5 Gew.-% Wasser, bezogen auf den Reaktionsansatz, bei 50 bis 70°C und einem Wasserstoffdruck von 250 bar bei einer mittleren Verweilzeit von 10 h kontinuierlich hydriert. Der Reaktionsaustrag wurde vom Katalysator abgetrennt und die flüchtigen Komponenten wurden abdestilliert. Das verbleibende Produkt war farblos (Aromatengehalt 6,7 bis 9,4 %, Epoxidäquivalentwert 179 bis 187). Der abgetrennte Katalysator wurde mit 0,03 Gew.-%, bezogen auf den Reaktionsansatz, frischem Ruthenium (in Form von Rutheniumoxidhydratsuspension) angereichert und mit den Ausgangsverbindungen in die Reaktion zurückgeführt.

Claims (4)

  1. Verfahren zur selektiven Hydrierung von aromatischen Gruppen organischer Moleküle, die mindestens eine aromatische Gruppe und eine Epoxygruppe tragen, mit Wasserstoff in Gegenwart eines rutheniumhaltigen Katalysators, dadurch gekennzeichnet, daß man die Hydrierung in Gegenwart von 0,2 bis 10 Gew.-% Wasser, bezogen auf den Reaktionsansatz, vornimmt.
  2. Verfahren nach Anspruch 1, dadurch gekennzeichnet, daß man als Katalysator Rutheniumoxidhydrat verwendet.
  3. Verfahren nach Anspruch 1 oder 2, dadurch gekennzeichnet, daß man Di-[p-glycidoxiphenyl]-methan oder 2,2-Di-[p-glycidoxi-phenyl]-propan hydriert.
  4. Verfahren nach den Ansprüchen 1 bis 3, dadurch gekennzeichnet, daß man die Hydrierung bei 40 bis 70°C vornimmt.
EP95105702A 1994-04-22 1995-04-15 Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen Expired - Lifetime EP0678512B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4414089 1994-04-22
DE4414089A DE4414089A1 (de) 1994-04-22 1994-04-22 Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen

Publications (2)

Publication Number Publication Date
EP0678512A1 true EP0678512A1 (de) 1995-10-25
EP0678512B1 EP0678512B1 (de) 2000-02-16

Family

ID=6516168

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95105702A Expired - Lifetime EP0678512B1 (de) 1994-04-22 1995-04-15 Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen

Country Status (4)

Country Link
US (1) US5614646A (de)
EP (1) EP0678512B1 (de)
JP (1) JPH0848676A (de)
DE (2) DE4414089A1 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921141A1 (de) * 1997-11-27 1999-06-09 Mitsubishi Chemical Corporation Verfahren zur Herstellung einer Epoxidgruppe aufweisenden Verbindung
EP1270633A1 (de) * 2001-06-25 2003-01-02 Mitsubishi Chemical Corporation Alizyklische Epoxyverbindungen und Verfahren zu deren Herstellung, alizyklische Epoxyharzzusammensetzung, und Verkapselung für Leuchtdiode

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE10128204A1 (de) * 2001-06-11 2002-12-12 Basf Ag Verfahren zur Herstellung von cycloaliphatischen Verbindungen I, die Seitenketten mit Epoxidgruppen aufweisen
JP2003171439A (ja) * 2001-12-06 2003-06-20 Mitsubishi Chemicals Corp 脂環式エポキシ化合物および発光ダイオード用封止材
JP2007534463A (ja) * 2003-12-22 2007-11-29 ビーエーエスエフ アクチェンゲゼルシャフト ルテニウム−不均一系触媒、炭素環式芳香族基を水素化する方法及びビスフェノールa及びfの核水素化されたビスグリシジルエーテル
DE10361157A1 (de) * 2003-12-22 2005-07-21 Basf Ag Ruthenium-Heterogenkatalysator und Verfahren zur Herstellung eines Bisglycidylethers der Formel I
EP3116864B1 (de) * 2014-03-12 2019-06-19 Dow Global Technologies LLC Epoxidharzzusammensetzungen
US10150102B2 (en) 2014-03-12 2018-12-11 Dow Global Technologies Llc Catalyst regeneration process
WO2017060922A1 (en) 2015-10-07 2017-04-13 Council Of Scientific & Industrial Research An eco-friendly process for hydrogenation or/and hydrodeoxygenation of organic compound using hydrous ruthenium oxide catalyst

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336241A (en) * 1963-11-12 1967-08-15 Shell Oil Co Process for preparing epoxy compounds and resulting products
EP0258789A2 (de) * 1986-08-30 1988-03-09 BASF Aktiengesellschaft Verfahren zur Herstellung von 2,2-Di- [p-glycidoxi-cyclohexyl]- propan
EP0402743A1 (de) * 1989-06-13 1990-12-19 BASF Aktiengesellschaft Verfahren zur Herstellung von Di-(p-glycidoxicyclohexyl)-methan
EP0545154A1 (de) * 1991-11-29 1993-06-09 BASF Aktiengesellschaft Verfahren zur Herstellung von cycloalifatischen Diglycidyloligoethern durch katalytische Hydrierung der entsprechenden aromatischen Ether

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB402743A (en) * 1931-06-05 1933-11-24 Krupp Fried Grusonwerk Ag Improvements in or relating to the working of spongy iron into bloms
DE957756C (de) * 1953-07-15 1957-01-17 Rohm &. Haas Company, Philadelphia, Pa. (V. St. A.) Verfahren zur Verbesserung der Weichmachereigenschaften von ep oxydierten Estern ungesättigter Pflanzenöl-Fettsäuren
US2809177A (en) * 1956-02-27 1957-10-08 Shell Dev Polyhydroxy-substituted polyethers, their preparation and resinous products prepared therefrom
US3966636A (en) * 1974-12-19 1976-06-29 Shell Oil Company Sequential hydrogenation-oxidation-hydrogenation of rhodium and ruthenium catalysts
DE4414090A1 (de) * 1994-04-22 1995-10-26 Basf Ag Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen
US5391773A (en) * 1994-06-17 1995-02-21 Eastman Chemical Company Process for the selective hydrogenation of epoxyalkenes to epoxyalkanes
US5406007A (en) * 1994-07-15 1995-04-11 Eastman Chemical Company Process for the production of unsaturated alcohols

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3336241A (en) * 1963-11-12 1967-08-15 Shell Oil Co Process for preparing epoxy compounds and resulting products
EP0258789A2 (de) * 1986-08-30 1988-03-09 BASF Aktiengesellschaft Verfahren zur Herstellung von 2,2-Di- [p-glycidoxi-cyclohexyl]- propan
EP0402743A1 (de) * 1989-06-13 1990-12-19 BASF Aktiengesellschaft Verfahren zur Herstellung von Di-(p-glycidoxicyclohexyl)-methan
EP0545154A1 (de) * 1991-11-29 1993-06-09 BASF Aktiengesellschaft Verfahren zur Herstellung von cycloalifatischen Diglycidyloligoethern durch katalytische Hydrierung der entsprechenden aromatischen Ether

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
F. FACHE ET AL.: "A catalytic stereo- and chemo-selective method for the reduction of aromatics", TETRAHEDRON LETTERS, vol. 36, no. 6, 6 February 1995 (1995-02-06), OXFORD GB, pages 885 - 888, XP004028696, DOI: doi:10.1016/0040-4039(94)02386-P *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0921141A1 (de) * 1997-11-27 1999-06-09 Mitsubishi Chemical Corporation Verfahren zur Herstellung einer Epoxidgruppe aufweisenden Verbindung
US6130344A (en) * 1997-11-27 2000-10-10 Mitsubishi Chemical Corporation Process for producing compound having epoxy group
EP1270633A1 (de) * 2001-06-25 2003-01-02 Mitsubishi Chemical Corporation Alizyklische Epoxyverbindungen und Verfahren zu deren Herstellung, alizyklische Epoxyharzzusammensetzung, und Verkapselung für Leuchtdiode
US6756453B2 (en) 2001-06-25 2004-06-29 Mitsubishi Chemical Corporation Alicylic epoxy compounds and their preparation process, alicylic epoxy resin composition, and encapsulant for light-emitting diode

Also Published As

Publication number Publication date
DE4414089A1 (de) 1995-10-26
EP0678512B1 (de) 2000-02-16
JPH0848676A (ja) 1996-02-20
DE59507804D1 (de) 2000-03-23
US5614646A (en) 1997-03-25

Similar Documents

Publication Publication Date Title
DE1232136B (de) Verfahren zur Herstellung von Epoxyalkylverbindungen von cycloaliphatischen oder mindestens einen Ringsauerstoff enthaltenden gesaettigten heterocyclischen Alkoholen, Carbonsaeuren, Estern und Aminen
DE1443618A1 (de) Verfahren zur Umwandlung von Cyclohexan
EP0678513B1 (de) Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen
EP0678512B1 (de) Verfahren zur selektiven Hydrierung von aromatischen Gruppen in Gegenwart von Epoxygruppen
EP0258789A2 (de) Verfahren zur Herstellung von 2,2-Di- [p-glycidoxi-cyclohexyl]- propan
EP0082401B1 (de) Verfahren zur Herstellung von überwiegend das Z-Isomere enthaltendem Rosenoxid
EP0388868A2 (de) Verfahren zur Herstellung von Butandiol-1,4 und Tetrahydrofuran
DE2551055A1 (de) Verfahren zur herstellung von 1,3- oder 1,4-bis-(aminomethyl)-cyclohexan
US3420828A (en) Process for producing n-methoxy ethyl morpholine substantially free of beta,beta diaminodiethyl ether
EP0031537B1 (de) Verfahren zur Herstellung von Oxiranen
DE3528004C2 (de)
EP0345579A2 (de) Verfahren zur Herstellung von oligomerem 2,2,4-Trimethyl-1,2-dihydrochinolin
EP0104396B1 (de) Verfahren zur Herstellung von Diaminen oder Diamingemischen
DE69913021T2 (de) Verfahren zur Herstellung von 1,2-Epoxy-5,9-Cyclododekadien
EP0215224B1 (de) Verfahren zur Herstellung von epoxidierten Organoalkoxysiliziumverbindungen
DE2835886A1 (de) Verfahren zur herstellung von glycidylestern aromatischer polycarbonsaeuren
EP0545154A1 (de) Verfahren zur Herstellung von cycloalifatischen Diglycidyloligoethern durch katalytische Hydrierung der entsprechenden aromatischen Ether
DE2835848C3 (de) Verfahren zur Reinigung eines rohen Ketons
EP0543226A2 (de) Verfahren zur Herstellung von wasserfreiem un von Verunreinigungen befreitem Formaldehyd
DE1745627B1 (de) Verfahren zur Herstellung von 1,4-Diazabicyclo-2,2,2-octan und Piperazin
DE2509968A1 (de) Verfahren zur herstellung von cyclischen aethern
EP0113858A1 (de) Verfahren zur Herstellung und Isolierung von Polyglycidylverbindungen
EP0008111B1 (de) Verfahren zur Herstellung von Glycidylestern cycloaliphatischer Polycarbonsäuren
DE2256384B2 (de) Verfahren zur Reinigung von Cyclopenten
EP0008116A1 (de) Verfahren zur Herstellung von 7-Oxabicyclo(4.1.0)heptan-3,4-dicarbonsäure-diglycidylester

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19950803

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): BE CH DE FR GB LI NL

17Q First examination report despatched

Effective date: 19981007

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): BE CH DE FR GB LI NL

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59507804

Country of ref document: DE

Date of ref document: 20000323

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20000324

ET Fr: translation filed
PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20090405

Year of fee payment: 15

Ref country code: FR

Payment date: 20090417

Year of fee payment: 15

Ref country code: DE

Payment date: 20090409

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: BE

Payment date: 20090428

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20090416

Year of fee payment: 15

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20090415

Year of fee payment: 15

BERE Be: lapsed

Owner name: *BASF A.G.

Effective date: 20100430

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20101101

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20100415

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20101230

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101101

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20101103

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100415

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100430