EP0669674B1 - Vorrichtung zur Tarnung von Antennen - Google Patents

Vorrichtung zur Tarnung von Antennen Download PDF

Info

Publication number
EP0669674B1
EP0669674B1 EP94119638A EP94119638A EP0669674B1 EP 0669674 B1 EP0669674 B1 EP 0669674B1 EP 94119638 A EP94119638 A EP 94119638A EP 94119638 A EP94119638 A EP 94119638A EP 0669674 B1 EP0669674 B1 EP 0669674B1
Authority
EP
European Patent Office
Prior art keywords
layer
antenna
polarisator
microwaves
layers
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94119638A
Other languages
English (en)
French (fr)
Other versions
EP0669674A1 (de
Inventor
Joachim Dr. Kaiser
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
Daimler Benz Aerospace AG
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daimler Benz Aerospace AG filed Critical Daimler Benz Aerospace AG
Publication of EP0669674A1 publication Critical patent/EP0669674A1/de
Application granted granted Critical
Publication of EP0669674B1 publication Critical patent/EP0669674B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q17/00Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems
    • H01Q17/007Devices for absorbing waves radiated from an antenna; Combinations of such devices with active antenna elements or systems with means for controlling the absorption
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/0006Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices
    • H01Q15/0013Devices acting selectively as reflecting surface, as diffracting or as refracting device, e.g. frequency filtering or angular spatial filtering devices said selective devices working as frequency-selective reflecting surfaces, e.g. FSS, dichroic plates, surfaces being partly transmissive and reflective
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/148Reflecting surfaces; Equivalent structures with means for varying the reflecting properties
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q15/00Devices for reflection, refraction, diffraction or polarisation of waves radiated from an antenna, e.g. quasi-optical devices
    • H01Q15/14Reflecting surfaces; Equivalent structures
    • H01Q15/22Reflecting surfaces; Equivalent structures functioning also as polarisation filter

Definitions

  • the present invention relates to a device for Antennae camouflaged against microwaves.
  • Camouflage When camouflaging against radar of military equipment Antennas pose a particular problem.
  • the conventional one Camouflage is using very narrow band frequency-selective layers only the useful signal frequency of the radio system belonging to the antenna reach the detector let, however, deflect all other frequencies and / or to absorb.
  • the main reflector a parabolic antenna made from a broadband radar absorber be built, the outer surface of which on the Radio frequency-tuned frequency-selective reflective tape owns.
  • the radome in frequency-selective manner, i.e. only for them Usable frequency transparent and for other frequencies be reflective.
  • the present invention has for its object a Device for camouflaging antennas against the location by To create microwaves that have a significantly better camouflage enables, especially against impinging microwaves, whose frequencies differ only slightly from the frequencies distinguish the useful waves of the antenna.
  • the Device from an electromagnetic non-reciprocal Component exists in the direction of incidence of the microwaves seen in front of the antenna.
  • the non-reciprocal Component in the form of a distance in front of the Antenna arranged radome and contains one magneto-optical layer surrounded by a ring magnet and on both sides of one Polarizer layer is covered, which is a high Transparency for a given linear polarization direction have and a high absorption for the perpendicular Have directions of polarization, the two Polarization layers rotated by 45 ° to each other are arranged.
  • the magneto-optical layer is advantageously a so-called Faraday lathe operator who enforces them electromagnetic, linearly polarized waves by 45 ° twisted and which consists of a ferrite and / or garnet.
  • the polarizer layers advantageously consist of thin strips arranged parallel to one another Absorber.
  • Each polarizer layer can be on the Faraday rotator facing surface with a quarter wavelength layer from a uniaxial anisotropic material for transformation circularly polarized waves into linearly polarized waves be provided.
  • the magneto-optical layer directly on the incident microwave surface of the antenna is applied and when the two by 45 ° to each other twisted polarizer layers on the one hand Radomapertur and on the other on the subreflector or Exciter or detector are arranged.
  • Electromagnetic by the use according to the invention The advantage of non-reciprocal layers is achieved that Radio signals in the range of the useful frequency to a certain one Time either only get from the outside to the antenna or can be radiated outwards from the antenna. Radio signals of different frequencies can be used in a known manner be distracted and / or absorbed, here too again frequency selective layers and broadband Radar absorbers can also be supportive.
  • a detection by an opposing radar system which points to operates at almost the same frequency as the one to be camouflaged Antenna, is therefore quite well with conventional camouflage possible, but not when using the invention Contraption.
  • Another advantage is that the Selectivity of a frequency selective layer for supplementary external frequency camouflage lower requirements subject to; it can affect the range of effectiveness of the non-reciprocal layer are weakened; at sufficient effective range of non-reciprocal Shift may not need to be supplemented by conventional camouflage measures.
  • non-reciprocal appearances are here preferably understood magneto-optical effects on the reciprocity law formulated by Helmholtz for electromagnetic waves are based and which presuppose that there is an additional magnetic field (Bergmann / Schaefer “Textbook of Experimental Physics", volume III Optik (Walter de Gruyter-Verlag, Berlin). Other non-reciprocal Effects may also be useful.
  • Fig. 1 denotes an antenna which has a Line 2 with a radio system, not shown connected is.
  • 3 the level is in the radomaperture referred to, with an inventive according to this level Device for camouflaging the antenna 1 against the location is arranged by opposing microwaves.
  • the Device consists of an electromagnetic non-reciprocal Component that is a non-reciprocal layer 4 has, which is arranged in level 3 of the Radomapertur is.
  • the non-reciprocal layer 4 is of one Ring magnet 5 surrounding the necessary magnetic field in the aperture creates. It can be both electrical and Permanent magnets are used. Offer electromagnets the benefit of switching between Transparent states of the component.
  • suitable Shaping can be a homogeneous field in the non-reciprocal field Layer 4 of the component can be achieved.
  • a variation of the magnetic field over the Aperture may increase the effective Bandwidth can be exploited or prevented at opposite the aperture has a smaller cross-sectional area of the antenna Effectiveness reduction of the camouflage, since on the edge of Aperture penetrating waves of the locating radar not on the Hit the antenna and therefore not be reflected.
  • the non-reciprocal layer 4 As material for the non-reciprocal layer 4, which under the influence of the magnetic field caused by the Ring magnet 5 is generated, the polarization plane twisted electromagnetic linearly polarized waves, a so-called Faraday lathe comes from ferrites and / or Grenades in question, as they are used in HF technology Directional lines are used. Layer 4 is designed for a 45 ° rotation for frequencies in here area of interest.
  • this non-reciprocal layer There is 4 on both sides of this non-reciprocal layer a polarizer layer 6, 7 applied, each one high transparency for a given direction of polarization and a high absorption for the perpendicular Have direction of polarization.
  • the two Polarizer layers 6, 7 are at 45 ° to each other twisted arranged.
  • With 8 is also a holder for the ring magnet, the non-reciprocal layer and the called two polarizer layers.
  • an electromagnet determines the direction of the applied magnetic field (inside or outside directed) the transparency state of the radome, i.e. the Send or receive transparency.
  • the polarizer layers 6, 7 can advantageously be made of thin strips of an absorber arranged in parallel be built up, with the field shares parallel to the Stripes are absorbed, but perpendicular to them be transmitted.
  • the antenna is also to transmit, the Direction of transparency are reversed, for which the cause of the the non-reciprocal effects (at magneto-optical effect the applied magnetic field) reversed Need to become.
  • the electromagnetic wave of the locating radar not the radome penetrate.
  • suitable anti-reflective coatings the radome as they are known from optics, penetrates the Wave into the radome and is absorbed there.
  • the camouflaged antenna can transmit their signals with only a small amount Send out damping.
  • Anti-reflective coatings on the radome are except for that Absorption of incident waves in the state of Transmission transparency also useful for increasing the Radome transparency for the transmitted ones Useful signals, as well as the reflection reduction in the state of Reception transparency.
  • the antenna to be camouflaged is one Mirror antenna, e.g. a parabolic antenna 11, as in Fig. 2 is shown, so instead of the radome or in Combination with it part of the antenna itself is non-reciprocal be carried out.
  • the non-reciprocal Layer 14 i.e. the Faraday lathe, in the form the antenna surface 19 applied to this.
  • the two polarizer layers 16, 17 rotated relative to one another by 45 ° can in this case on the one hand on the Radomapertur whose Level in Fig. 2 is designated 13, and on the other the subreflector or exciter and / or detector 20 to be ordered.
  • At 18 there is one again Bracket for the Radomapertur, with 15 a the non-reciprocal Layer surrounding ring magnet and with 12 one Connection to a radio system called.
  • the useful signal remains with the device according to the invention the antenna to be camouflaged practically undisturbed when it is linearly polarized, the orientation of the Polarization layers 6, 7; 16, 17 and antenna 1 or 11 matched to the desired direction of polarization must become.
  • the antenna 1 to be camouflaged circularly polarized waves receive or send, this can be done in that additionally on the two, facing away from the Faraday lathe 4 Outside of the polarizer layers 6, 7 one each so-called quarter-wave layer 9, 10 from uniaxial anisotropic material is applied.
  • the additional layers 9, 10 transform circularly polarized waves into linear polarized waves and vice versa.

Description

Die vorliegende Erfindung betrifft eine Vorrichtung zur Tarnung von Antennen gegen die Ortung durch Mikrowellen.
Bei der Tarnung gegen Radar militärischer Geräte stellen Antennen ein besonderes Problem dar. Die herkömmliche Tarnung besteht darin, unter Ausnutzung sehr schmalbandiger frequenzselektiver Schichten nur die Nutzsignalfrequenz des zur Antenne gehörenden Funksystems zum Detektor gelangen zu lassen, alle anderen Frequenzen jedoch abzulenken und/oder zu absorbieren. Beispielsweise kann der Hauptreflektor einer Parabolantenne aus einem breitbandigen Radarabsorber aufgebaut werden, dessen Außenfläche eine auf die Funkfrequenz abgestimmte frequenzselektive Reflexionsfolie besitzt. Alternativ kann auch das Radom in frequenzselektiver Weise aufgebaut werden, d.h. nur für die Nutzfrequenz transparent und für andere Frequenzen reflektierend sein.
Der vorliegenden Erfindung liegt die Aufgabe zugrunde, eine Vorrichtung zur Tarnung von Antennen gegen die Ortung durch Mikrowellen zu schaffen, die eine erheblich bessere Tarnung ermöglicht, insbesondere gegen auftreffende Mikrowellen, deren Frequenzen sich nur geringfügig von den Frequenzen der Nutzwellen der Antenne unterscheiden.
Zur Lösung dieser Aufgabe wird vorgeschlagen, daß die Vorrichtung aus einem elektromagnetisch nicht-reziproken Bauelement besteht, das in Einfallsrichtung der Mikrowellen gesehen vor der Antenne angeordnet wird.
Bei einem bevorzugten Ausführungsbeispiel weist das nicht-reziproke Bauelement die Form eines im Abstand vor der Antenne angeordneten Radoms auf und enthält eine magnetooptische Schicht, die von einem Ringmagneten umgeben ist und die auf beiden Seiten von je einer Polarisatorschicht bedeckt ist, welche eine hohe Transparenz für eine gegebene lineare Polarisationsrichtung aufweisen und eine hohe Absorption für die dazu senkrechten Polarisationsrichtungen aufweisen, wobei die beiden Polarisationsschichten um 45° zueinander verdreht angeordnet sind.
Vorteilhafterweise ist die magnetooptische Schicht ein sogenannter Faraday-Dreher, der die sie durchsetzenden elektromagnetischen, linear polarisierten Wellen um 45° verdreht und der aus einem Ferrit und/oder Granat besteht.
Die Polarisatorschichten bestehen vorteilhafterweise aus parallel zueinander angeordneten dünnen Streifen eines Absorbers.
Jede Polarisatorschicht kann auf der dem Faraday-Dreher abgewandten Oberfläche mit einer Viertelwellenlängenschicht aus einem einachsig anisotropen Material zur Transformation zirkular polarisierter Wellen in linear polarisierte Wellen versehen sein.
Im Falle von Parabolantennen ist es besonders vorteilhaft, wenn die magnetooptische Schicht direkt auf der den einfallenden Mikrowellen zugewandten Oberfläche der Antenne aufgebracht ist und wenn die beiden um 45° zueinander verdrehten Polarisatorschichten zum einen auf einer Radomapertur und zum anderen auf dem Subreflektor bzw. Erreger oder Detektor angeordnet sind.
Durch die erfindungsgemäße Verwendung elektromagnetisch nicht-reziproker Schichten wird der Vorteil erzielt, daß Funksignale im Bereich der Nutzfrequenz zu einer bestimmten Zeit nur entweder von außen bis zur Antenne vordringen oder von der Antenne nach außen abgestrahlt werden können. Funksignale abweichender Frequenz können in bekannter Weise abgelenkt und/oder absorbiert werden, wobei auch hier wieder frequenzselektive Schichten und breitbandige Radarabsorber zusätzlich unterstützend sein können.
Gegenüber der konventionellen Tarnung mittels frequenzselektiver Schichten wird auch die Rückstreuung im Bereich der Nutzfrequenz unterbunden. Dies ist besonders vorteilhaft, da sich die Arbeitsfrequenzen der Radarsysteme um typische Frequenzstellen im Mikrowellenspektrum gruppieren.
Ein Ortung durch ein gegnerisches Radarsystem, welches auf der nahezu gleichen Frequenz arbeitet, wie die zu tarnende Antenne, ist somit bei konventioneller Tarnung durchaus möglich, nicht jedoch bei Anwendung der erfindungsgemäßen Vorrichtung.
Ein weiterer Vorteil ist darin zu sehen, daß die Trennschärfe einer frequenzselektiven Schicht zur ergänzenden Fremdfrequenz-Tarnung geringeren Anforderungen unterliegt; sie kann auf die Bandbreite der Wirksamkeit der nicht-reziproken Schicht abgeschwächt werden; bei ausreichender wirksamer Bandbreite der nicht-reziproken Schicht erübrigt sich gegebenenfalls die Ergänzung durch konventionelle Tarnmaßnahmen.
Unter nicht-reziproken Erscheinungen werden hier vorzugsweise magnetooptische Effekte verstanden, die auf dem von Helmholtz formulierten Reziprozitätsgesetz für elektromagnetische Wellen beruhen und die voraussetzen, daß ein zusätzliches Magnetfeld vorhanden ist (Bergmann/Schaefer "Lehrbuch der Experimentalphysik", Band III Optik (Walter de Gruyter-Verlag, Berlin). Andere nicht-reziproke Effekte könnten eventuell auch nützlich sein.
Eine bekannte Anwendung des nicht-reziproken Effektes im Zusammenhang mit Spiegel für Ringlaser ist beispielsweise in der deutschen Patentanmeldung P 32 33 035 beschrieben.
Im folgenden wird die Erfindung anhand der Zeichnung näher erläutert, in der vorteilhafte Ausführungsbeispiele dargestellt sind. Es zeigen:
Fig. 1
einen Schnitt durch ein erstes Ausführungsbeispiel und
Fig. 2
einen Schnitt durch ein zweites Ausführungsbeispiel.
In Fig. 1 ist mit 1 eine Antenne bezeichnet, die über eine Leitung 2 mit einem nicht dargestellten Funksystem verbunden ist. Mit 3 ist die Ebene in der Radomapertur bezeichnet, wobei in dieser Ebene eine erfindungsgemäße Vorrichtung zur Tarnung der Antenne 1 gegen die Ortung durch gegnerische Mikrowellen angeordnet ist. Die Vorrichtung besteht aus einem elektromagnetisch nicht-reziproken Bauelement, das eine nicht-reziproke Schicht 4 aufweist, die in der Ebene 3 der Radomapertur angeordnet ist. Die nicht-reziproke Schicht 4 ist von einem Ringmagneten 5 umgeben, der das notwendige Magnetfeld in der Apertur erzeugt. Es können sowohl Elektro- als auch Permanentmagnete verwendet werden. Elektromagnete bieten den Vorteil eines Umschaltens zwischen den Transparenzzuständen des Bauelementes. Durch geeignete Formgebung kann ein homoges Feld im Bereich der nicht-reziproken Schicht 4 des Bauelementes erzielt werden. Andererseits kann eine Variation des Magnetfeldes über der Apertur gegebenenfalls zu einer Erhöhung der wirksamen Bandbreite ausgenutzt werden oder verhindert bei gegenüber der Apertur kleineren Querschnittsfläche der Antenne eine Wirksamkeitsreduzierung der Tarnung, da am Rande der Apertur eindringende Wellen des Ortungsradars nicht auf die Antenne treffen und somit nicht reflektiert werden.
Als Material für die nicht-reziproke Schicht 4, welches unter dem Einfluß des Magnetfeldes, das durch den Ringmagneten 5 erzeugt wird, die Polarisationsebene elektromagnetischer linear polarisierter Wellen verdreht, kommt ein sogenannter Faraday-Dreher aus Ferriten und/oder Granaten in Frage, wie sie in der HF-Technik auch für Richtungsleitungen verwendet werden. Die Schicht 4 ist ausgelegt für eine Drehung um 45° für Frequenzen im hier interessierenden Bereich.
Auf beiden Seiten dieser nicht-reziproken Schicht 4 ist eine Polarisatorschicht 6, 7 aufgebracht, die jeweils eine hohe Transparenz für eine vorgegebene Polarisationsrichtung und eine hohe Absorption für die dazu senkrechte Polarisationsrichtung aufweisen. Die beiden Polarisatorschichten 6, 7 sind um 45° gegeneinander verdreht angeordnet. Mit 8 ist ferner eine Halterung für den Ringmagneten, die nicht-reziproke Schicht und die beiden Polarisatorschichten bezeichnet.
Im Falle eines Elektromagneten bestimmt die Richtung des angelegten Magnetfeldes (nach innen oder nach außen gerichtet) den Transparenzzustand des Radoms, d.h. die Sende- oder Empfangstransparenz.
Die Polarisatorschichten 6, 7 können vorteilhafterweise aus parallel angeordneten dünnen Streifen eines Absorbers aufgebaut werden, wobei die Feldanteile parallel zu den Streifen absorbiert werden, solche senkrecht dazu hingegen transmittiert werden.
Wie aus der Beschreibung dieses Ausführungsbeispiels deutlich geworden ist, führt die Verwendung nicht-reziproker Effekte zum Zwecke der Tarnung der Antenne dazu, daß die Rückstreuung der zur Ortung eingesetzten gegnerischen elektromagnetischen Wellen weitgehend vermieden wird. Bei ungetarnten Antennen kann der Rückstreuquerschnitt sehr große Werte annehmen und so die an anderen Stellen angewandten Tarnmaßnahmen zunichte machen. Wenn jedoch die Transmission des Radoms in der Empfangsrichtung sehr hohe Werte und in der Senderichtung sehr niedrige Werte annimmt, so kann die einfallende Welle des Ortungsradars zwar zur Antenne vordringen, nicht jedoch wieder austreten, um so dem Ortungsradar ein Echo zu liefern. Andererseits kann die so getarnte Antenne einfallende Signale mit nur geringer Dämpfung empfangen.
Soll die Antenne auch senden, so muß die Transparenzrichtung umgekehrt werden, wofür die Ursache der die nicht-reziproken Effekte hervorrufenden Maßnahmen (beim magnetooptischen Effekt das angelegte Magnetfeld) umgekehrt werden müssen. In diesem Zustand kann die elektromagnetische Welle des Ortungsradars das Radom nicht durchdringen. Bei geeigneten Entspiegelungsschichten auf dem Radom, wie sie aus der Optik bekannt sind, dringt die Welle in das Radom ein und wird dort absorbiert. Die getarnte Antenne kann dagegen ihre Signale mit nur geringer Dämpfung aussenden.
Soll eine Bordradar-Antenne auf diese Weise getarnt werden, so muß in den relativ kurzen Sendephasen das Radom auf "Sendetransparenz" und in der übrigen Zeit auf "Empfangstransparenz" geschaltet werden.
Entspiegelungsschichten auf dem Radom sind außer für die Absorption einfallender Wellen im Zustand der Sendetransparenz auch nützlich für die Erhöhung der Radomtransparenz für die jeweils durchgelassenen Nutzsignale, sowie die Reflexionsminderung im Zustand der Empfangstransparenz.
Handelt es sich bei der zu tarnenden Antenne um eine Spiegelantenne, z.B. eine Parabolantenne 11, wie sie in Fig. 2 dargestellt ist, so kann anstelle des Radoms oder in Kombination mit ihm ein Teil der Antenne selbst nicht-reziprok ausgeführt werden. Zu diesem Zweck wird die nicht-reziproke Schicht 14, d.h. der Faraday-Dreher, in der Form der Antennenoberfläche 19 auf diese aufgebracht. Die beiden um 45° zueinander verdrehten Polarisatorschichten 16, 17 können in diesem Fall zum einen auf der Radomapertur, deren Ebene in Fig. 2 mit 13 bezeichnet ist, und zum anderen auf dem Subreflektor bzw. Erreger und/oder Detektor 20 angeordnet werden. Mit 18 ist auch hier wieder eine Halterung für die Radomapertur, mit 15 ein die nicht-reziproke Schicht umgebender Ringmagnet und mit 12 eine Verbindung zu einem Funksystem bezeichnet.
Mit der erfindungsgemäßen Vorrichtung bleibt das Nutzsignal der zu tarnenden Antenne praktisch ungestört, wenn es linear polarisiert ist, wobei die Orientierung der Polarisationsschichten 6, 7; 16, 17 und der Antenne 1 bzw. 11 auf die gewünschte Polarisationsrichtung abgestimmt werden muß.
Soll bei dem in Fig. 1 dargestellten Ausführungsbeispiel die zu tarnende Antenne 1 zirkular polarisierte Wellen empfangen oder senden, so kann dies dadurch erfolgen, daß zusätzlich auf den beiden, dem Faraday-Dreher 4 abgewandten Außenseiten der Polarisatorschichten 6, 7 je eine sogenannte Viertelwellenlängenschicht 9, 10 aus einachsig anisotropem Material aufgebracht wird. Die Zusatzschichten 9, 10 transformieren zirkular polarisierte Wellen in linear polarisierte Wellen und umgekehrt.

Claims (6)

  1. Vorrichtung zur Tarnung von Antennen gegen die Ortung durch Mikrowellen, insbesondere durch Mikrowellen, deren Frequenzen sich nur geringfügig von den Frequenzen der Nutzwellen der zu tarnenden Antennen unterscheiden, dadurch gekennzeichnet, daß sie aus einem elektromagnetisch nicht reziproken Bauelement besteht, das in Einfallsrichtung der Mikrowellen gesehen, vor der Antenne angeordnet ist und das zwei um 45° zueinander verdrehte Polarisatorschichten aufweist.
  2. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß das nicht-reziproke Bauelement die Form eines im Abstand vor der Antenne angeordneten Radoms aufweist und eine magnetooptische Schicht (4) enthalt, die von einem Ringmagneten (5) umgeben ist und die auf beiden Seiten von je einer Polarisatorschicht (6, 7) bedeckt ist, welche eine hohe Transparenz für eine gegebene lineare Polarisationsrichtung aufweist und eine hohe Absorption für die dazu senkrechte Polarisationsrichtung aufweist und daß die beiden Polarisatorschichten (6, 7) um 45° zueinander verdreht angeordnet sind.
  3. Vorrichtung nach Ansprüchen 1 und 2, dadurch gekennzeichnet, daß die magnetooptische Schicht ein sogenannter Faraday-Dreher ist, der die sie durchsetzenden elektromagnetischen, linear polarisierten Wellen um 45° verdreht und daß er aus einem Ferrit und/oder Granat besteht.
  4. Vorrichtung nach einem der Ansprüche 1 bis 3, dadurch gekennzeichnet, daß die Polarisatorschichten (6, 7) aus parallel zueinander angeordneten dünnen Streifen eines Absorbers bestehen.
  5. Vorrichtung nach Ansprüchen 1 bis 4, dadurch gekennzeichnet, daß jede Polarisatorschicht (6, 7) auf der dem Faraday-Dreher (4) abgewandten Oberfläche mit einer Viertelwellenlängenschicht (9,10) aus einem einachsig anisotropen Material zur Transformation zirkular polarisierter Wellen in linear polarisierte Wellen versehen ist.
  6. Vorrichtung nach Anspruch 1, dadurch gekennzeichnet, daß im Falle von Parabolantennen die magnetooptische Schicht (14) direkt auf der den einfallenden Mikrowellen zugewandten Oberfläche (19) der Antenne (11) aufgebracht ist und daß die beiden um 45° zueinander verdrehten Polarisatorschichten (16, 17) zum einen auf der Radomapertur und zum anderen auf dem Subreflektor bzw. Erreger oder Detektor (20) angeordnet sind.
EP94119638A 1994-02-24 1994-12-13 Vorrichtung zur Tarnung von Antennen Expired - Lifetime EP0669674B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4405996 1994-02-24
DE4405996A DE4405996C2 (de) 1994-02-24 1994-02-24 Vorrichtung zur Tarnung von Antennen

Publications (2)

Publication Number Publication Date
EP0669674A1 EP0669674A1 (de) 1995-08-30
EP0669674B1 true EP0669674B1 (de) 1999-02-24

Family

ID=6511109

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94119638A Expired - Lifetime EP0669674B1 (de) 1994-02-24 1994-12-13 Vorrichtung zur Tarnung von Antennen

Country Status (2)

Country Link
EP (1) EP0669674B1 (de)
DE (2) DE4405996C2 (de)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR3003700B1 (fr) * 2013-03-19 2016-07-22 Thales Sa Dispositif de reduction de signature radar d'antenne et systeme antennaire associe

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3309704A (en) * 1965-09-07 1967-03-14 North American Aviation Inc Tunable absorber
GB1416343A (en) * 1972-02-16 1975-12-03 Secr Defence Radomes
DE3222035A1 (de) * 1981-06-13 1983-03-24 Teldix Gmbh, 6900 Heidelberg Laser - drehgeschwindigkeitsmesser
US5034750A (en) * 1983-10-31 1991-07-23 Raytheon Company Pulse radar and components therefor
GB8905904D0 (en) * 1989-03-15 1989-04-26 Cambridge Computer Improvements in antenna polarizers
DE3920110A1 (de) * 1989-06-20 1991-02-07 Dornier Luftfahrt Elektromagnetisches fenster/radarabsorber
SE505054C2 (sv) * 1992-04-30 1997-06-16 Celsiustech Electronics Ab Skärmanordning samt radom innefattande skärmanordningen
US5278562A (en) * 1992-08-07 1994-01-11 Hughes Missile Systems Company Method and apparatus using photoresistive materials as switchable EMI barriers and shielding

Also Published As

Publication number Publication date
DE4405996C2 (de) 1996-01-11
DE59407846D1 (de) 1999-04-01
EP0669674A1 (de) 1995-08-30
DE4405996A1 (de) 1995-08-31

Similar Documents

Publication Publication Date Title
DE102016101583B4 (de) Radom
EP0896749B1 (de) Mikrowellen-antennenanordnung für ein kraftfahrzeug-radarsystem
DE4412770A1 (de) Mikrowellen-Linsenantennenanordnung für Kraftfahrzeug-Abstandswarnradar
DE2727883A1 (de) Mikrowellen-antennensystem
DE2300526A1 (de) Antenne
DE19600609B4 (de) Polarisator zur Umwandlung von einer linear polarisierten Welle in eine zirkular polarisierte Welle oder in eine linear polarisierte Welle mit gedrehter Polarisation und umgekehrt
EP0146857B1 (de) Flugkörper zur Störung bodengebundener Funkanlagen
EP0669674B1 (de) Vorrichtung zur Tarnung von Antennen
DE3644891A1 (de) Empfaenger fuer mikrowellen und millimeterwellen
DE2335792A1 (de) Funknavigations-, insbesondere landesystem
DE2810483C2 (de) Antenne mit einem Schlitze aufweisenden Speisehohlleiter und einer mit diesem einen Winkel einschließenden Strahlerzeile
EP1109245A2 (de) Antenne zur Abstrahlung und zum Empfang elektromagnetischer Wellen
DE3920563C2 (de)
EP1894269B1 (de) Antennenanordnung
EP0422431B1 (de) Winkeldiversityanordnung
DE3544092A1 (de) Mehrbereichsantenne fuer den ghz-bereich
DE3209697C2 (de) Dämpferplatte
DE2752680A1 (de) Richtantenne fuer sehr kurze elektromagnetische wellen
DE1196255B (de) Radar-Reflektor fuer zirkular, elliptisch oder in beliebiger Ebene linear polarisierte elektromagnetische Wellen
DE19755607A1 (de) Mikrowellen-Antennenanordnung für ein Kraftfahrzeug-Radarsystem
WO2008098570A1 (de) Anordnung zur beeinflussung der strahlungscharakteristik einer reflektorantenne, insbesondere einer zentralfokussierten reflektorantenne
DE4411720B4 (de) Wanderwellenantenne mit parametrischer Verstärkung
DE10218169B4 (de) Antennenelemente für einen Flugkörper
DE3604432C2 (de) Modenkoppler für Monopulsanwendungen
DE2451709C1 (de) Anordnung zur Stoerung einer Monopuls-Zielverfolgungs-Radareinrichtung durch Wiederausstrahlung in Kreuzpolarisation

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE FR GB IT

17P Request for examination filed

Effective date: 19950922

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

17Q First examination report despatched

Effective date: 19980706

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE FR GB IT

REF Corresponds to:

Ref document number: 59407846

Country of ref document: DE

Date of ref document: 19990401

ET Fr: translation filed
ITF It: translation for a ep patent filed

Owner name: STUDIO JAUMANN P. & C. S.N.C.

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19990521

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

26N No opposition filed
REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20110104

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20101221

Year of fee payment: 17

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20101222

Year of fee payment: 17

Ref country code: IT

Payment date: 20101229

Year of fee payment: 17

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20111213

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20120831

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 59407846

Country of ref document: DE

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111213

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120703

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20111213

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20120102