EP1894269B1 - Antennenanordnung - Google Patents

Antennenanordnung Download PDF

Info

Publication number
EP1894269B1
EP1894269B1 EP06742315A EP06742315A EP1894269B1 EP 1894269 B1 EP1894269 B1 EP 1894269B1 EP 06742315 A EP06742315 A EP 06742315A EP 06742315 A EP06742315 A EP 06742315A EP 1894269 B1 EP1894269 B1 EP 1894269B1
Authority
EP
European Patent Office
Prior art keywords
antenna
mast
antenna arrangement
arrangement according
truncated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Not-in-force
Application number
EP06742315A
Other languages
English (en)
French (fr)
Other versions
EP1894269A1 (de
Inventor
Ralf Lorch
Rainer Müller
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Airbus Defence and Space GmbH
Original Assignee
EADS Deutschland GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by EADS Deutschland GmbH filed Critical EADS Deutschland GmbH
Publication of EP1894269A1 publication Critical patent/EP1894269A1/de
Application granted granted Critical
Publication of EP1894269B1 publication Critical patent/EP1894269B1/de
Not-in-force legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/52Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure
    • H01Q1/528Means for reducing coupling between antennas; Means for reducing coupling between an antenna and another structure reducing the re-radiation of a support structure
    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H12/00Towers; Masts or poles; Chimney stacks; Water-towers; Methods of erecting such structures
    • E04H12/02Structures made of specified materials
    • E04H12/08Structures made of specified materials of metal
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/12Supports; Mounting means
    • H01Q1/1242Rigid masts specially adapted for supporting an aerial
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q1/00Details of, or arrangements associated with, antennas
    • H01Q1/27Adaptation for use in or on movable bodies
    • H01Q1/34Adaptation for use in or on ships, submarines, buoys or torpedoes
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01QANTENNAS, i.e. RADIO AERIALS
    • H01Q23/00Antennas with active circuits or circuit elements integrated within them or attached to them

Definitions

  • the invention relates to an antenna arrangement according to the preamble of patent claim 1.
  • An antenna arrangement which comprises a mast and arranged on the mast antenna elements, wherein the mast is composed of a plurality of frusto-conical elements.
  • the antenna comprises a mast section, which serves as a UHF antenna and another mast section, which serves as a VHF antenna.
  • Such an antenna arrangement is often used in DF antenna systems, as used on ships of the Navy.
  • a known requirement for such ships is known to be the invisibility of the respective ship for the opposing radar.
  • the DF antennas are always located at the top of a mast of a ship, they first protrude above the horizon and can thus easily be detected.
  • Decisive for the detection of an object by means of radar is the respective monostatic radar backscatter cross section of the respective object.
  • the application results in a threat sector to be optimized which corresponds to the angular range of the possible incident radar radiation of the opposing radar.
  • the object of the invention is to specify a generic antenna arrangement with an optimized, low monostatic Radar Wegstreuquerrough for the threat sector.
  • the antenna arrangement according to the invention comprises a mast and antenna elements arranged on the mast, wherein the mast is constructed from a plurality of frustoconical elements and wherein a surface normal of the antenna elements with the perpendicular to the mast axis z is an angle
  • the mast axis z coincides with the symmetrical axis of each frusto-conical element.
  • the individual frustoconical elements of the mast are alternately connected to one another at the base surfaces and at the ceiling surfaces.
  • the areas of the superposed ground and ceiling surfaces are expediently the same.
  • the area perpendicular to the symmetrical axis of the truncated cone, which results from the largest diameter of the truncated cone is called the base area.
  • the ceiling surface correspondingly designates that surface of the truncated cone which results from the smallest diameter of the truncated cone.
  • the mast thus consists essentially of several double cone stumps.
  • the transitions between the individual double truncated cones are expediently homogeneous, ie no flanges are used.
  • the surface normal on the lateral surfaces of two adjacent, connected to the ceiling surfaces frustoconical mast elements at an angle less than 90 °. This prevents the two lateral surfaces from serving as an ideal reflector.
  • the mast is applied to a base plate.
  • the mast is advantageously applied to the base plate such that a normal to the top the base plate forms an obtuse angle with a normal to the lateral surface of the first frusto-conical element applied to the base plate. This ensures a secure position of the mast.
  • Fig. 1 shows a section of a known antenna arrangement, as it is known for example from [1].
  • the arrangement is characterized by a substantially cylindrical masts 1, on which radially symmetrical antenna elements 2 are arranged.
  • the antenna elements are expediently designed as dipole elements.
  • the holder (not shown) of the antenna elements 2 on the mast via known measures, such as non-conductive connections.
  • Fig. 2a schematically shows an exemplary section of an antenna arrangement according to the invention.
  • the section comprises two truncated cones 3, which are interconnected at their base surfaces.
  • the two truncated cones thus form a kind of double truncated cone.
  • the truncated cones 3 have a concentric through hole (not shown) with a diameter smaller than the smallest diameter of a ceiling surface of a truncated cone. This hole is used for the implementation of measuring cables, etc. (not shown).
  • the compound of the truncated cones 3 by means of executed in the interior of the truncated cones 3 screw (not shown). These screw connections are expediently accessible through the hole for cable routing.
  • a plurality of antenna elements 2 are shown, which are advantageously arranged on a circular line, wherein the circle lies in a plane perpendicular to the mast axis with a diameter greater than the maximum diameter of a frusto-conical element.
  • the antenna elements 2 are arranged uniformly on the circular line, wherein the antenna elements 2 are positioned on the circular line at a fixed angle to each other.
  • the antenna elements 2 are aligned parallel to the radially spaced lateral surface 4 of the frusto-conical element 3. Furthermore, the antenna elements 2 are aligned as dipoles D.
  • the center of gravity S of a dipole D is in the plane of the bases of the two interconnected truncated cones 3. It is also possible that the center of gravity S of a dipole D is located in the plane of the ceiling surfaces.
  • the angle ⁇ is defined as the mathematical angle between the direction a of the incident and backscattered radar radiation and the mast axis z. This results in an elevation angle (not shown) of 90 ° - ⁇ .
  • Fig. 2b shows not only the definition of the angle ⁇ but also the definition of the azimuth angle ⁇ .
  • Fig. 3 shows for a known antenna arrangement according to Fig. 1 an exemplary course of the monostatic radar backscatter as a function of the angle ⁇ and the radar frequency f.
  • Opposite shows Fig. 4 for an inventive antenna arrangement according to Fig. 2a an exemplary course of the monostatic radar backscatter as a function of the angle ⁇ and the radar frequency f. From the comparison of Fig. 3 With Fig. 4 It is clear that the monostatic radar backscatter for the antenna arrangement according to the invention was substantially reduced at the respective radar frequencies in the angular range near the mast vertical.
  • the monostatic radar backscatter of a mast section of a known antenna arrangement at 2.5 GHz, at an angle ⁇ of 87.5 ° about -5dB see. Fig. 3 ).
  • the monostatic radar backscatter at 2.5 GHz at an angle ⁇ of 87.5 ° is about -22.5 dB.
  • Fig. 7 is the course of the monostatic radar backscatter for a mast of an antenna arrangement according to the invention, as in Fig. 5 is shown with an exemplary length L of 1m and an exemplary maximum diameter DM of 125 mm as a function of the angle ⁇ and the radar frequency f.
  • Fig. 6 shows Fig. 6 the course of the monostatic radar backscattering of a cylindrical mast with an exemplary length of 1 m and an exemplary diameter of 125 mm as a function of the angle ⁇ and the radar frequency f. From the comparison of Fig. 6 With Fig. 7 It becomes clear that the monostatic radar backscattering for a mast of the antenna arrangement according to the invention was substantially reduced at the respective radar frequencies.
  • the monostatic radar backscatter of a mast of a known antenna arrangement at 2.5 GHz, at an elevation angle of 87.5 ° about -13dB see. Fig. 3 ).
  • the monostatic radar backscatter at 2.5 GHz at an angle ⁇ of 87.5 ° is about -22.5 dB.
  • the antenna arrangement according to the invention it is thus possible to reduce the monostatic backscatter in the azimuth range 0 ° ⁇ ⁇ ⁇ 360 ° and in the range 60 ° ⁇ ⁇ ⁇ 90 °, the latter corresponding to an elevation range of 0 ° to 30 °.
  • Fig. 8 finally shows a further exemplary inventive antenna arrangement.
  • This antenna arrangement comprises in an upper section A of the mast 1 an arrangement for a UHF antenna and in a lower section B an arrangement for a VHF antenna.
  • the antenna elements 2 are in multiple Layers arranged perpendicular to the mast axis z, whereby it is possible to operate individual sections A, B of the antenna arrangement, each having different frequency ranges.
  • the antenna arrangement it is possible for the antenna arrangement to be subdivided into several sections, each section being assigned to a different frequency area from the UHF and / or VHF area.
  • the length of the surface line s1, s2 of a frusto-conical element 3 is advantageously greater than the wavelength of the radar wavelength incident on the antenna arrangement. Furthermore, the circumference of the frusto-conical element 3 with the largest diameter DM is greater than the wavelength of the radar wavelength incident on the antenna arrangement. It is possible that the length of the generatrix s2 of a frusto-conical element 3 differs from the length of the generatrix s1 of another frusto-conical element 3.
  • the antenna elements are advantageously connected via non-conductive mounts H to the mast 1.
  • the antenna elements 2 have a flat surface.
  • the antenna elements 2 are expediently aligned parallel to the lateral surface 4 of the frustoconical element 3.
  • the mast 1 optimized with respect to the radar backscatter serves as a reflector for the antenna elements 2.
  • the antenna elements 2 are expediently not aligned parallel to the lateral surface 4 of the frusto-conical element 3.
  • the antenna elements 2 may be suitably arranged as five-element interferometer antennas.
  • the antenna elements 2 can continue to be advantageous be made of a printed circuit board material, in particular components such as resistors, capacitors or coils are integrated into the antenna elements 2 (not shown). These components serve as damping elements and influence the antenna properties. As a result, for example, the bandwidth of the antenna can be increased. Furthermore, the radiation coupling between the individual antenna elements 2 can thereby be reduced.
  • other antenna elements 2 can be used in the upper section A than in the lower section B.
  • the surface normal S_E of the antenna elements 2 forms an angle
  • the individual frustoconical elements 3 of the mast 1 are alternately connected to each other at the base surfaces and on the ceiling surfaces and the superposed ground and ceiling surfaces are the same.
  • the mast 1 thus consists essentially of several double truncated cones.
  • the transitions between the individual double truncated cones are expediently made homogeneous, i. no flanges are used.
  • the surface normals L1, L2 on the lateral surfaces 4 of two adjacent frustoconical mast elements 3 an angle ⁇ smaller than 90 °. This prevents that the two adjacent lateral surfaces 4 serve as an ideal reflector.
  • the mast 1 is applied to a base plate P.
  • the mast 1 is advantageously applied to the base plate P in such a way that a normal L3 forms an obtuse angle ⁇ on the upper side of the base plate P with a normal L4 on the lateral surface 4 of the first frustoconical element 3 applied to the base plate P.
  • a secure state of the mast 1 is ensured.
  • the proposed antenna arrangement can be used in transmitting and / or receiving antennas as well as DF antennas.
  • the frequency range in which the antenna arrangement can be operated is in the HF range between 1.0 MHz and 30 MHz, in the VHF range between 20 MHz and 200 MHz, in the UHF range between 200 MHz and 3000 MHz.
  • the antenna arrangement can also be operated at lower or higher frequencies.

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Civil Engineering (AREA)
  • Materials Engineering (AREA)
  • Wood Science & Technology (AREA)
  • Chemical & Material Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Structural Engineering (AREA)
  • Variable-Direction Aerials And Aerial Arrays (AREA)
  • Aerials With Secondary Devices (AREA)
  • Details Of Aerials (AREA)
  • Support Of Aerials (AREA)
  • Waveguide Aerials (AREA)

Description

  • Die Erfindung betrifft eine Antennenanordnung gemäß dem Oberbegriff des Patentanspruchs 1.
  • Aus Druckschrift US6173537 ist eine Antennenanordnung bekannt, welche einen Mast sowie an dem Mast angeordnete Antennenelemente umfasst, wobei der Mast aus mehreren kegelstumpfförmigen Elementen aufgebaut ist.
  • Aus [1] ist eine Anordnung einer Peilantenne bekannt. Die Antenne umfasst dabei einen Mastabschnitt, welcher als UHF-Antenne dient und einen weiteren Mastabschnitt, welcher als VHF-Antenne dient.
  • Eine solche Antennenanordnung kommt oft bei Peilantennensystemen zum Einsatz, wie sie auf Schiffen der Marine verwendet werden. Eine bekannte Anforderung an solche Schiffe ist bekanntermaßen die Unsichtbarkeit des jeweiligen Schiffes für das gegnerische Radar. Da die Peilantennen stets an der Mastspitze eines Schiffs angeordnet sind, ragen diese als erstes über den Horizont und können so leicht detektiert werden. Ausschlaggebend für die Detektion eines Objekts mittels Radar ist der jeweilige monostatische Radarrückstreuquerschnitt des jeweiligen Objekts. Aus der Anwendung ergibt sich ein zu optimierender Bedrohungssektor der dem Winkelbereich der möglichen einfallenden Radarstrahlung des gegnerischen Radars entspricht.
  • Aufgabe der Erfindung ist es, eine gattungsgemäße Antennenanordnung mit einem optimierten, niedrigen monostatischen Radarrückstreuquerschnitt für den Bedrohungssektor anzugeben.
  • Diese Aufgabe erfüllt die Antennenanordnung gemäß den Merkmalen des Anspruchs 1. Vorteilhafte Ausführungen der Erfindung sind Gegenstand von Unteransprüchen.
  • Die erfindungsgemäße Antennenanordnung umfasst einen Mast sowie an dem Mast angeordnete Antennenelemente, wobei der Mast aus mehreren kegelstumpfförmigen Elementen aufgebaut ist und wobei eine Flächennormale der Antennenelemente mit der Senkrechten auf die Mastachse z einen Winkel |α| zwischen 5° und 35° bildet.
  • Die Mastachse z fällt mit der symmetrischen Achse jedes kegelstumpfförmigen Elements zusammen.
  • Durch diese Maßnahmen ist es möglich, die monostatische Radarrückstreuung (RCS) der Antennenanordnung im Bedrohungssektor um mehr als 10dB zu verringern. Dadurch wird die Entfernung, aus der ein gegnerisches Radar das Schiff detektieren kann wesentlich verringert. Monostatisch bedeutet hierbei, dass der Einfallsrichtung und die Ausfallsrichtung der Radarstrahlung gleich ist, oder mit anderen Worten die Radarsendeantenne und die Radarempfangsantenne des gegnerischen Radars haben die gleiche Position. Dies ist bei den meisten Radaranlagen der Fall (z. B. einem Schiffsradar)
  • Vorteilhaft sind die einzelnen kegelstumpfförmigen Elemente des Masts abwechselnd an den Grundflächen und an den Deckenflächen miteinander verbunden. Die Flächeninhalte der aufeinander liegenden Grund- und Deckenflächen sind zweckmäßig jeweils gleich. Als Grundfläche wird im Weiteren die Fläche senkrecht zur symmetrischen Achse des Kegelstumpfes bezeichnet, welche sich aus dem größten Durchmesser des Kegelstumpfes ergibt. Die Deckenfläche bezeichnet entsprechend diejenige Fläche des Kegelstumpfes, welche sich aus dem kleinsten Durchmesser des Kegelstumpfes ergibt.
    Der Mast besteht somit im Wesentlichen aus mehreren Doppelkegelstümpfen. Die Übergänge zwischen den einzelnen Doppelkegelstümpfen sind zweckmäßig homogen ausgeführt, d.h. es werden keine Flansche verwendet. Insbesondere weisen in einer bevorzugten Ausführungsform der Erfindung die Flächennormalen auf den Mantelflächen zweier benachbarter, an den Deckenflächen miteinander verbundener kegelstumpfförmiger Mastelemente einen Winkel kleiner als 90° auf. Dadurch wird verhindert, dass die beiden Mantelflächen als idealer Rückstrahler dienen.
  • Zweckmäßig ist der Mast auf einer Grundplatte aufgebracht. Hierbei ist der Mast vorteilhaft derart auf die Grundplatte aufgebracht, dass eine Normale auf die Oberseite der Grundplatte mit einer Normalen auf die Mantelfläche des ersten auf die Grundplatte aufgebrachten kegelstumpfförmigen Elements einen stumpfen Winkel bildet. Dadurch wird ein sicherer Stand des Masts gewährleistet.
  • Die Erfindung sowie weitere vorteilhafte Ausführungen werden im Weiteren anhand von Figuren näher erläutert. Es zeigen:
  • Fig. 1
    schematisch einen Mastabschnitt einer Antennenanordnung gemäß dem Stand der Technik,
    Fig. 2
    schematisch einen Mastabschnitt einer beispielhaften erfindungsgemäßen Antennenanordnung,
    Fig. 3
    für einen Mastabschnitt einer Antennenanordnung gemäß Fig. 1 einen beispielhaften Verlauf der monostatischen Radarrückstreuung in Abhängigkeit des Winkels Θ und der Radarfrequenz f,
    Fig. 4
    für einen Mastabschnitt einer erfindungsgemäßen Antennenanordnung gemäß Fig. 2 einen beispielhaften Verlauf der monostatischen Radarrückstreuung in Abhängigkeit des Winkels Θ und der Radarfrequenz f,
    Fig. 5
    eine beispielhafte Darstellung eines bezüglich der monostatischen Radarrückstreuung optimierten Masts,
    Fig. 6
    den Verlauf der monostatischen Radarrückstreuung für einen zylindrischen Mast der beispielhaften Länge von 1 m und einem beispielhaften Durchmesser von 125 mm in Abhängigkeit des Winkels Θ und der Radarfrequenz f.
    Fig. 7
    den Verlauf der monostatischen Radarrückstreuung für einen Mast einer erfindungsgemäßen Antennenanordnung der beispielhaften Länge von 1 m und einem beispielhaften maximalen Durchmesser von 125 mm in Abhängigkeit des Winkels Θ und der Radarfrequenz f.
    Fig. 8
    eine beispielhafte erfindungsgemäße Antennenanordnung mit einem Mastabschnitt für eine UHF-Antenne und einen weiteren Abschnitt für eine VHF-Antenne.
  • Fig. 1 zeigt einen Ausschnitt einer bekannten Antennenanordnung, wie sie z.B. aus [1] bekannt ist. Die Anordnung zeichnet sich durch einen im Wesentlichen zylindrischen Masten 1 aus, an welchen radialsymmetrisch Antennenelemente 2 angeordnet sind. Die Antennenelemente sind zweckmäßig als Dipolelemente ausgebildet. Die Halterung (nicht dargestellt) der Antennenelemente 2 an dem Mast erfolgt über bekannte Maßnahmen, z.B. nichtleitende Verbindungen.
  • Fig. 2a zeigt schematisch einen beispielhaften Abschnitt einer erfindungsgemäßen Antennenanordnung. Der Abschnitt umfasst zwei Kegelstümpfe 3, welche an ihren Grundflächen miteinander verbunden sind. Die beiden Kegelstümpfe bilden somit eine Art Doppelkegelstumpf.
    Zweckmäßig weisen die Kegelstümpfe 3 ein konzentrisches durchgängiges Loch (nicht dargestellt) auf mit einem Durchmesser kleiner als der kleinste Durchmesser einer Deckenfläche eines Kegelstumpfes. Dieses Loch dient der Durchführung von Messkabeln etc. (nicht dargestellt).
    Die Verbindung der Kegelstümpfe 3 erfolgt mittels im Innern der Kegelstümpfe 3 ausgeführter Schraubverbindungen (nicht dargestellt). Diese Schraubverbindungen sind zweckmäßig durch das Loch zur Kabelführung erreichbar.
  • In Fig. 2a sind mehrere Antennenelemente 2 dargestellt, welche vorteilhaft auf einer Kreislinie angeordnet sind, wobei der Kreis in einer Ebene senkrecht zur Mastachse liegt mit einem Durchmesser größer als der maximale Durchmesser eines kegelstumpfförmigen Elements. Zweckmäßig sind die Antennenelemente 2 auf der Kreislinie gleichmäßig angeordnet, wobei die Antennenelemente 2 auf der Kreislinie in einem festen Winkel zueinander positioniert sind.
  • In einer vorteilhaften Ausführung der Erfindung sind die Antennenelemente 2 parallel zu der radial beabstandeten Mantelfläche 4 des kegelstumpfförmigen Elements 3 ausgerichtet. Des Weiteren sind die Antennenelemente 2 als Dipole D ausgerichtet. Zweckmäßig befindet sich der Schwerpunkt S eines Dipols D in der Ebene der Grundflächen der beiden miteinander verbundenen Kegelstümpfe 3. Es ist aber auch möglich, dass sich der Schwerpunkt S eines Dipols D in der Ebene der Deckenflächen befindet.
  • In Fig. 2a ist zusätzlich der Winkel Θ als der mathematische Winkel zwischen der Richtung a der einfallenden und rückgestreuten Radarstrahlung und der Mastachse z definiert. Daraus ergibt sich ein Elevationswinkel (nicht dargestellt) von 90°-Θ. Fig. 2b zeigt neben der Definition des Winkels Θ auch die Definition des Azimutwinkels Φ.
  • In den Fig.3 und Fig. 4 sowie Fig. 6 und Fig. 7 ist angenommen, dass Radarstrahlung entlang der Richtung a (Fig. 2a) zur Mastachse z auf den jeweiligen Körper einfällt. Der Winkel Θ gibt somit den Einfalls- und Rückstreuwinkel der einfallenden Radarstrahlung bezogen auf die Mastachse z an. Der Azimutwinkel Φ beträgt in allen Diagrammen der Einfachheit halber 0°.
  • Fig. 3 zeigt für eine bekannte Antennenanordnung gemäß Fig. 1 einen beispielhaften Verlauf der monostatischen Radarrückstreuung in Abhängigkeit des Winkels Θ und der Radarfrequenz f.
    Dem gegenüber zeigt Fig. 4 für eine erfindungsgemäße Antennenanordnung gemäß Fig. 2a einen beispielhaften Verlauf der monostatischen Radarrückstreuung in Abhängigkeit des Winkels Θ und der Radarfrequenz f. Aus dem Vergleich der Fig. 3 mit Fig. 4 wird deutlich, dass die monostatischen Radarrückstreuung für die erfindungsgemäße Antennenanordnung bei den jeweiligen Radarfrequenzen im Winkelbereich nahe der Mastsenkrechten wesentlich verringert wurde. So beträgt beispielsweise die monostatischen Radarrückstreuung eines Mastabschnitts einer bekannten Antennenanordnung bei 2,5 GHz, bei einem Winkel Θ von 87,5° ca. -5dB (vgl. Fig. 3). Bei einem Mast einer erfindungsgemäßen Antennenanordnung beträgt die monostatischen Radarrückstreuung bei 2,5 GHz bei einem Winkel Θ von 87,5° ca. -22,5dB.
  • In Fig. 7 ist der Verlauf der monostatischen Radarrückstreuung für einen Mast einer erfindungsgemäßen Antennenanordnung, wie er in Fig. 5 dargestellt ist, mit einer beispielhaften Länge L von 1m und einem beispielhaften maximalen Durchmesser DM von 125 mm in Abhängigkeit des Winkels Θ und der Radarfrequenz f dargestellt. Dem gegenüber zeigt Fig. 6 den Verlauf der monostatischen Radarrückstreuung eines zylindrischen Masts mit einer beispielhaften Länge von 1 m und einem beispielhaften Durchmesser von 125 mm in Abhängigkeit des Winkels Θ und der Radarfrequenz f. Aus dem Vergleich der Fig. 6 mit Fig. 7 wird deutlich, dass die monostatischen Radarrückstreuung für einen Mast der erfindungsgemäßen Antennenanordnung bei den jeweiligen Radarfrequenzen wesentlich verringert wurde. So beträgt beispielsweise die monostatischen Radarrückstreuung eines Masts einer bekannten Antennenanordnung bei 2,5 GHz, bei einem Elevationswinkel von 87,5° ca. -13dB (vgl. Fig. 3). Bei einem Mast einer erfindungsgemäßen Antennenanordnung beträgt die monostatischen Radarrückstreuung bei 2,5 GHz bei einem Winkel Θ von 87,5° ca. -22,5dB.
  • Mit der erfindungsgemäßen Antennenanordnung ist es somit möglich, die monostatische Rückstreuung im Azimutbereich 0° ≤ Φ ≤ 360° und im Bereich 60° ≤ Θ ≤ 90°, wobei letzterer einem Elevationsbereich von 0° bis 30° entspricht, zu reduzieren.
  • Fig. 8 zeigt schließlich eine weitere beispielhafte erfindungsgemäße Antennenanordnung. Diese Antennenanordnung umfasst in einem oberen Abschnitt A des Masts 1 eine Anordnung für eine UHF-Antenne und in einem unteren Abschnitt B eine Anordnung für eine VHF-Antenne. In diesem Fall sind die Antennenelemente 2 in mehreren Ebenen senkrecht zur Mastachse z angeordnet, wodurch es möglich ist, einzelne Abschnitte A, B der Antennenanordnung mit jeweils unterschiedlichen Frequenzbereichen zu betreiben. Selbstverständlich ist es möglich, dass die Antennenanordnung in mehrere Abschnitte unterteilt ist, wobei jeder Abschnitt einem anderen Frequenzbereich aus dem UHF- und/oder VHF-Bereich zugeordnet ist.
  • Zur Reduzierung der Radarrückstreuung ist die Länge der Mantellinie s1, s2 eines kegelstumpfförmigen Elements 3 vorteilhaft größer als die Wellenlänge der auf die Antennenanordnung einfallenden Radarwellenlänge. Des Weiteren ist der Umfang des kegelstumpfförmigen Elements 3 mit dem größten Durchmesser DM größer als die Wellenlänge der auf die Antennenanordnung einfallenden Radarwellenlänge. Es ist möglich, dass sich die Länge der Mantellinie s2 eines kegelstumpfförmigen Elements 3 von der Länge der Mantellinie s1 eines anderen kegelstumpfförmigen Elementes 3 unterscheidet.
  • Die Antennenelemente sind vorteilhaft über nichtleitende Halterungen H mit dem Mast 1 verbunden. Zweckmäßig weisen die Antennenelemente 2 eine ebene Fläche auf.
  • Im oberen Abschnitt A für die UHF-Antenne sind die Antennenelemente 2 zweckmäßig parallel zur Mantelfläche 4 des kegelstumpfförmigen Elements 3 ausgerichtet. In diesem Fall dient der bezüglich der Radarrückstreuung optimierte Mast 1 als Reflektor für die Antennenelemente 2.
  • Im unteren Abschnitt B für die VHF-Antenne sind die Antennenelemente 2 zweckmäßig nicht parallel zur Mantelfläche 4 des kegelstumpfförmigen Elements 3 ausgerichtet.
  • Die Antennenelemente 2 können zweckmäßig als fünfelementige Interferometerantennen angeordnet sein. Die Antennenelemente 2 können weiterhin vorteilhaft aus einem Leiterplattenmaterial gefertigt sein, wobei in die Antennenelemente 2 insbesondere Bauelemente wie z.B. Widerstände, Kondensatoren oder Spulen integriert sind (nicht dargestellt). Diese Bauelemente dienen als Dämpfungselemente und beeinflussen die Antenneneigenschaften. Dadurch kann z.B. die Bandbreite der Antenne erhöht werden. Weiterhin kann dadurch die Strahlungskopplung zwischen den einzelnen Antennenelemente 2 reduziert werden. Selbstverständlich können im oberen Abschnitt A andere Antennenelemente 2 verwendet werden als im unteren Abschnitt B.
  • Erfindungsgemäß bildet die Flächennormale S_E der Antennenelemente 2 mit der Senkrechten S_A auf die Mastachse z einen Winkel |α| zwischen 5° und 35°.
  • Vorteilhaft sind die einzelnen kegelstumpfförmigen Elemente 3 des Masts 1 abwechselnd an den Grundflächen und an den Deckenflächen miteinander verbunden und die aufeinander liegenden Grund- und Deckenflächen sind jeweils gleich. Der Mast 1 besteht somit im Wesentlichen aus mehreren Doppelkegelstümpfen. Die Übergänge zwischen den einzelnen Doppelkegelstümpfen sind zweckmäßig homogen ausgeführt, d.h. es werden keine Flansche verwendet. Insbesondere weisen in einer bevorzugten Ausführungsform der Erfindung die Flächennormalen L1, L2 auf den Mantelflächen 4 zweier benachbarter kegelstumpfförmiger Mastelemente 3 einen Winkel β kleiner als 90° auf. Dadurch wird verhindert, dass die beiden benachbarten Mantelflächen 4 als idealer Rückstrahler dienen.
  • Zweckmäßig ist der Mast 1 auf einer Grundplatte P aufgebracht. Hierbei ist der Mast 1 vorteilhaft derart auf die Grundplatte P aufgebracht, dass eine Normale L3 auf die Oberseite der Grundplatte P mit einer Normalen L4 auf die Mantelfläche 4 des ersten auf die Grundplatte P aufgebrachten kegelstumpfförmigen Elements 3 einen stumpfen Winkel γ bildet. Dadurch wird ein sicherer Stand des Masts 1 gewährleistet.
  • Die vorgeschlagene Antennenanordnung kann bei Sende- und/oder Empfangsantennen sowie bei Peilantennen zum Einsatz kommen. Der Frequenzbereich in welchem die Antennenanordnung betrieben werden kann liegt je nach Anwendung im HF-Bereich zwischen 1,0 MHz und 30 MHz, im VHF-Bereich zwischen 20 MHz und 200 MHz, im UHF-Bereich zwischen 200 MHz und 3000 MHz. Selbstverständlich ist es möglich, dass bei entsprechender Dimensionierung der einzelnen Komponenten der Antenne, z.B. der Abmessungen der einzelnen Kegelstümpfe die Antennenanordnung auch bei geringeren oder höheren Frequenzen betrieben werden kann.
  • Literatur
    • [1] www.mrcm.net/media/pdf/products/antennas/mra1282.pdf

Claims (14)

  1. Antennenanordnung umfassend einen Mast (1) sowie an dem Mast (1) angeordnete Antennenelemente (2), wobei der Mast (1) aus mehreren kegelstumpfförmigen Elementen (3) aufgebaut ist,
    dadurch gekennzeichnet, dass
    die einzelnen kegelstumpfförmigen Elemente (3) des Masts (1) abwechselnd an den Grundflächen und an den Deckenflächen miteinander verbunden sind und aufeinander liegende Grund- und Deckenflächen jeweils gleich sind und eine Flächennormale S_E der Antennenelemente (2) mit der Senkrechten S_A auf die Mastachse z einen Winkel |α| zwischen 5° und 35° bilden.
  2. Antennenanordnung nach Anspruch 1, wobei der Winkel β zwischen den Flächennormalen (L1, L2) auf den Mantelflächen (4) zweier benachbarter kegelstumpfförmiger Elemente (3) kleiner als 90° ist.
  3. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei der Mast (1) auf einer Grundplatte (P) aufgebracht ist derart, dass eine Normale (L3) auf die Oberseite der Grundplatte (P) mit einer Normalen (L4) auf die Mantelfläche (4) des ersten auf die Grundplatte (P) aufgebrachten kegelstumpfförmigen Elements (3) einen stumpfen Winkel γ bildet.
  4. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei zur Reduzierung der Radarrückstrahlfläche der Antennenanordnung die Länge s1, s2 der Mantellinie eines kegelstumpfförmigen Elements (3) größer als die Wellenlänge der auf die Antennenanordnung einfallenden Radarwellenlänge ist.
  5. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei zur Reduzierung der Radarrückstrahlfläche der Antennenanordnung der maximale Umfang eines kegelstumpfförmigen Elements (3) größer als die Wellenlänge der auf die Antennenanordnung einfallenden Radarwellenlänge ist.
  6. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei sich die Länge s1 der Mantellinie eines kegelstumpfförmigen Elements (3) von der Länge s2 der Mantellinie eines anderen kegelstumpfförmigen Elementes (3) unterscheidet.
  7. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei mehrere Antennenelemente (2) auf einer Kreislinie angeordnet sind, wobei der Kreis in einer Ebene senkrecht zur Mastachse z liegt mit einem Durchmesser größer als der maximale Durchmesser eines kegelstumpfförmigen Elements, derart, dass die Antennenelemente (2) auf der Kreislinie gleichmäßig angeordnet sind, wobei die Antennenanstrahlelemente (2) auf der Kreislinie in einem festen Winkel zueinander positioniert sind.
  8. Antennenanordnung nach Anspruch 7, wobei die Antennenelemente (2) parallel zu der radial beabstandeten Mantelfläche (4) des kegelstumpfförmigen Elements (3) ausgerichtet sind,
  9. Antennenanordnung nach Anspruch 7 oder 8, wobei die Antennenelemente (2) in mehreren Ebenen senkrecht zur Mastachse z angeordnet sind.
  10. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei die Antennenelemente (2) als Dipole ausgebildet sind.
  11. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei die Antennenelemente (2) mit dem Mast (1) über nichtleitende Halterungen (H) verbunden sind.
  12. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei die Antennenelemente (2) eine ebene Fläche aufweisen.
  13. Antennenanordnung nach einem der vorangehenden Ansprüche, wobei die Antennenelemente (2) aus Leiterplattenmaterial gefertigt sind.
  14. Antennenanordnung nach Anspruch 13, wobei in die Antennenelemente (2) Bauelemente, insbesondere Widerstände, Kondensatoren oder Spulen integriert sind.
EP06742315A 2005-06-23 2006-05-09 Antennenanordnung Not-in-force EP1894269B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE102005029090A DE102005029090A1 (de) 2005-06-23 2005-06-23 Antennenanordnung
PCT/DE2006/000793 WO2006136127A1 (de) 2005-06-23 2006-05-09 Antennenanordnung

Publications (2)

Publication Number Publication Date
EP1894269A1 EP1894269A1 (de) 2008-03-05
EP1894269B1 true EP1894269B1 (de) 2008-10-15

Family

ID=36658895

Family Applications (1)

Application Number Title Priority Date Filing Date
EP06742315A Not-in-force EP1894269B1 (de) 2005-06-23 2006-05-09 Antennenanordnung

Country Status (7)

Country Link
EP (1) EP1894269B1 (de)
KR (1) KR100983406B1 (de)
AT (1) ATE411632T1 (de)
DE (2) DE102005029090A1 (de)
ES (1) ES2317534T3 (de)
WO (1) WO2006136127A1 (de)
ZA (1) ZA200710627B (de)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AU2014376819B2 (en) * 2014-01-09 2018-04-19 Fincantieri S.P.A. Bistatic radar
CN105137452B (zh) * 2015-08-26 2017-06-23 上海船舶研究设计院 一种深潜水支持母船的天线综合布置结构

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3034209A (en) * 1956-07-31 1962-05-15 Bianca Edoardo Giuseppe Method of making tapered tubular sections
SE503948C2 (sv) * 1993-12-15 1996-10-07 Mafi Ab Mast
US5977918A (en) * 1997-09-25 1999-11-02 The United States Of America As Represented By The Secretary Of The Navy Extendible planar phased array mast
AUPQ189499A0 (en) * 1999-07-28 1999-08-19 Tenix Defence Systems Pty Ltd Improvements in or relating to vehicles
FR2815477B1 (fr) * 2000-10-16 2006-06-16 Bouygues Telecom Sa Supports pour la fixation sur un mat d'une ou plusieurs antennes relais de systemes de radio-telecommunication cellulaire et dispositi pour le reglage de l'orientation d'une telle antenne
US20020140623A1 (en) * 2001-03-30 2002-10-03 Harrison John W. Apparatus and method for increasing monopole capacity using internal strengthening
EP1353404A3 (de) 2002-04-10 2004-06-30 Lockheed Martin Corporation Radarsystem mit rotierendem Antennensystem
JP4041444B2 (ja) 2003-09-17 2008-01-30 京セラ株式会社 アンテナ一体型高周波素子収納用パッケージおよびアンテナ装置

Also Published As

Publication number Publication date
ATE411632T1 (de) 2008-10-15
DE102005029090A1 (de) 2006-12-28
KR20080031861A (ko) 2008-04-11
EP1894269A1 (de) 2008-03-05
KR100983406B1 (ko) 2010-09-20
ES2317534T3 (es) 2009-04-16
DE502006001851D1 (de) 2008-11-27
WO2006136127A1 (de) 2006-12-28
ZA200710627B (en) 2008-08-27

Similar Documents

Publication Publication Date Title
EP2176681B1 (de) Radarsensor für kraftfahrzeuge
DE602004000584T2 (de) Integriertes Antennensystem mit zirkular polarisierter Patchantenne und vertikal polarisierter Flächenantenne
EP2735055B1 (de) Reflektorantenne für ein radar mit synthetischer apertur
EP2654125B1 (de) Ringschlitzantenne
DE102012023938A1 (de) Dualpolarisierte, omnidirektionale Antenne
EP2449406B1 (de) Radarsensor für kraftfahrzeuge
EP2346115B1 (de) Antenne
DE102017217117B3 (de) GNSS-Antenne
EP3701280B1 (de) Radarsensor mit mehreren hauptstrahlrichtungen
DE10345314A1 (de) Vorrichtung sowie Verfahren zum Abstrahlen und/oder zum Empfangen von elektromagnetischer Strahlung
EP1619751B1 (de) Breitbandige Antenne mit geringer Bauhöhe
DE202022107107U1 (de) Integrierte Basisstationsantenne
EP1894269B1 (de) Antennenanordnung
DE102013010309A1 (de) Antennenabdeckung und Verfahren zu deren Herstellung
WO2007048258A1 (de) Antennenanordnung mit einer breitband-monopol-antenne
DE102009005103B4 (de) Elektronisch steuerbare Antenne in Kugelform
EP3022800B1 (de) Anordnung und ein verfahren zum einbau einer peilantenne in ein radom, vorzugsweise zum nachträglichen einbau in ein radom
DE4135828A1 (de) Antennenanordnung
DE102012108600B3 (de) Antennenanordnung mit flachbauendem Antennenelement
DE102011084592A1 (de) Kombination eines Radar- und Antennenkopfes
EP2485329A1 (de) Gruppenantenne
EP0849825B1 (de) Antennenanordnung, insbesondere für Kraftfahrzeuge
DE10218169B4 (de) Antennenelemente für einen Flugkörper
DE102018116631A1 (de) Spiralantennensystem
DE10103965C2 (de) Peilantenne

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20061222

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

DAX Request for extension of the european patent (deleted)
GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

GRAS Grant fee paid

Free format text: ORIGINAL CODE: EPIDOSNIGR3

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IS IT LI LT LU LV MC NL PL PT RO SE SI SK TR

REG Reference to a national code

Ref country code: CH

Ref legal event code: EP

Ref country code: GB

Ref legal event code: FG4D

Free format text: NOT ENGLISH

REG Reference to a national code

Ref country code: IE

Ref legal event code: FG4D

Free format text: LANGUAGE OF EP DOCUMENT: GERMAN

REF Corresponds to:

Ref document number: 502006001851

Country of ref document: DE

Date of ref document: 20081127

Kind code of ref document: P

REG Reference to a national code

Ref country code: SE

Ref legal event code: TRGR

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2317534

Country of ref document: ES

Kind code of ref document: T3

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: BG

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090115

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: PT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090316

Ref country code: SI

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: PL

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: LV

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: IS

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090215

REG Reference to a national code

Ref country code: IE

Ref legal event code: FD4D

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: IE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: RO

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

Ref country code: EE

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CZ

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

26N No opposition filed

Effective date: 20090716

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SK

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

BERE Be: lapsed

Owner name: EADS DEUTSCHLAND G.M.B.H.

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: MC

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: AT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090116

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20100531

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LU

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: HU

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20090416

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: TR

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: CY

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT

Effective date: 20081015

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001851

Country of ref document: DE

Owner name: AIRBUS DEFENCE AND SPACE GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001851

Country of ref document: DE

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001851

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: EADS DEUTSCHLAND GMBH, 85521 OTTOBRUNN, DE

Effective date: 20140916

REG Reference to a national code

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 10

REG Reference to a national code

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001851

Country of ref document: DE

Owner name: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, DE

Free format text: FORMER OWNER: AIRBUS DEFENCE AND SPACE GMBH, 85521 OTTOBRUNN, DE

Ref country code: FR

Ref legal event code: PLFP

Year of fee payment: 11

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001851

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: AIRBUS DEFENCE AND SPACE GMBH, 85521 OTTOBRUNN, DE

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20160519

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20160512

Year of fee payment: 11

Ref country code: DE

Payment date: 20160520

Year of fee payment: 11

Ref country code: FI

Payment date: 20160511

Year of fee payment: 11

Ref country code: GB

Payment date: 20160520

Year of fee payment: 11

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20160519

Year of fee payment: 11

Ref country code: IT

Payment date: 20160524

Year of fee payment: 11

Ref country code: FR

Payment date: 20160520

Year of fee payment: 11

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 502006001851

Country of ref document: DE

Representative=s name: LIFETECH IP SPIES & BEHRNDT PATENTANWAELTE PAR, DE

Ref country code: DE

Ref legal event code: R081

Ref document number: 502006001851

Country of ref document: DE

Owner name: HENSOLDT SENSORS GMBH, DE

Free format text: FORMER OWNER: AIRBUS DS ELECTRONICS AND BORDER SECURITY GMBH, 82024 TAUFKIRCHEN, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R119

Ref document number: 502006001851

Country of ref document: DE

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

REG Reference to a national code

Ref country code: NL

Ref legal event code: MM

Effective date: 20170601

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20170509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20180131

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170601

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20171201

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170509

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170531

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20180704

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20170510