EP0666366B1 - Spiral fabric with low air permeability and process for making the same - Google Patents

Spiral fabric with low air permeability and process for making the same Download PDF

Info

Publication number
EP0666366B1
EP0666366B1 EP95101482A EP95101482A EP0666366B1 EP 0666366 B1 EP0666366 B1 EP 0666366B1 EP 95101482 A EP95101482 A EP 95101482A EP 95101482 A EP95101482 A EP 95101482A EP 0666366 B1 EP0666366 B1 EP 0666366B1
Authority
EP
European Patent Office
Prior art keywords
flat
wires
spiral
spirals
link belt
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95101482A
Other languages
German (de)
French (fr)
Other versions
EP0666366A1 (en
Inventor
Johannes Lefferts
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Wurttembergische Filztuchfabrik D Geschmay GmbH
Original Assignee
Siteg Siebtechnik GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Siteg Siebtechnik GmbH filed Critical Siteg Siebtechnik GmbH
Publication of EP0666366A1 publication Critical patent/EP0666366A1/en
Application granted granted Critical
Publication of EP0666366B1 publication Critical patent/EP0666366B1/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • DTEXTILES; PAPER
    • D21PAPER-MAKING; PRODUCTION OF CELLULOSE
    • D21FPAPER-MAKING MACHINES; METHODS OF PRODUCING PAPER THEREON
    • D21F1/00Wet end of machines for making continuous webs of paper
    • D21F1/0027Screen-cloths
    • D21F1/0072Link belts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S162/00Paper making and fiber liberation
    • Y10S162/90Papermaking press felts
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10STECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10S162/00Paper making and fiber liberation
    • Y10S162/902Woven fabric for papermaking drier section
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249922Embodying intertwined or helical component[s]
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y10TECHNICAL SUBJECTS COVERED BY FORMER USPC
    • Y10TTECHNICAL SUBJECTS COVERED BY FORMER US CLASSIFICATION
    • Y10T428/00Stock material or miscellaneous articles
    • Y10T428/249921Web or sheet containing structurally defined element or component
    • Y10T428/249923Including interlaminar mechanical fastener

Definitions

  • the invention relates to a spiral link belt with a plurality of interconnected spirals, the turns of adjacent spirals being zippered together, so that the overlapping winding areas form a channel. Plug wires run in the channels so that the spirals cannot be separated. To reduce the air permeability of the spiral link belt, flat wires are inserted as filler material in the free space of the spirals.
  • the invention further relates to a method for producing such a spiral link belt.
  • spiral link belts are used in particular in the dryer section of high-speed paper machines. To achieve a low air permeability, it is necessary to fill the free interior of the spirals with filler material. If the air permeability is too high, the spiral link belt generates a very strong turbulent air flow, which can result in unsteady running and even breakage of the paper web. Spiral link belts currently in use still have a permeability of at least 2280 m 3 / m 2 / hr / 100 Pa (CFM 140). This is too high for many applications.
  • Spiral link belts in which the free space within the spirals is filled with filling material to reduce the air permeability, are known from EP-A-0 050 374 and EP-A-0 101 575 and GB-A-2216914.
  • the filling material can consist of a ribbon yarn or a flat ribbon, among other things.
  • Spiral link belts are produced in such a way that the spirals are first inserted into one another and then push-in wires are inserted into the channels which form the overlapping turns of adjacent spirals. If a spiral link belt with the lowest possible air permeability is to be produced, cored wires are then inserted into the free interior of the spirals. When using flat wires as cored wires, precautions must be taken to ensure that the flat wires do not twist. If several round wires are inserted as filling material in the interior of each spiral, it must be ensured that the round wires do not overlap. Twisting the flat wires or superimposing the round wires disturbs the monoplanarity of the finished spiral link belt, which can lead to markings in the paper web.
  • This difficulty is usually countered by pre-fixing the spiral link belt before inserting the cored wires and flattening the originally slightly oval cross-sectional shape of the spirals by heat and pressure to such an extent that the flat wires and the multiple round wires can no longer twist or overlap. After inserting the cored wire, the spiral link belt is then finally heat set. The pre-fixation is therefore an additional step that causes considerable costs.
  • the cored wires are also relatively loosely inside the spirals. Although the edges of a spiral link tape are glued, the lateral openings of the spirals are closed so that the cored wires cannot slip out laterally. However, the edges of a spiral link belt are often damaged when running in the paper machine and the cored wires are pulled out.
  • the invention is therefore based on the object of providing a spiral link belt which has low air permeability with little production outlay.
  • this object is achieved in that the flat wires, which are located as filling material in the interior of the spirals, are tilted relative to the plane of the spiral link belt.
  • the tilting of the flat wires means that the longer cross-sectional axis of the flat wires lies at an angle to the longer cross-sectional axis of the spirals, which lies in the plane of the spiral link belt.
  • the tilt angle can e.g. 15 to 25 ° and preferably about 20 °. The prerequisite for this is, of course, that the flat wire itself lies in one plane and is not twisted.
  • the tilt angle is preferably so large that one edge of the flat wire lies above the plane of the highest points of the plug wires, while the other edge lies below the plane of the lowest points of the plug wires.
  • the tilt angle can alternately be positive and negative, so that the flat wires, viewed in the axial direction of the spirals, alternately fall and rise from left to right.
  • the flat wires running inside the spirals are preferably wider than the smallest distance between the two adjacent spirals connected to a respective spiral.
  • the term "diagonal" refers to the imaginary square formed by the two and thus a total of four intersection points of a spiral with the preceding and the following spiral. Due to the larger width of the flat wires, they can no longer twist within the spiral.
  • each spiral There is usually only one flat wire inside each spiral. However, there is also the possibility of inserting two flat wires of particularly low thickness on top of one another in a spiral. However, each of these two particularly thin flat wires is then wider than the smallest distance between the two adjacent spirals connected to the respective spiral, as described above.
  • a spiral link belt In order for a spiral link belt to have the lowest possible air permeability, it is not sufficient that it is essentially sealed by filling material, for example a flat wire, in plan view. There must also be no larger, three-dimensionally intertwined paths for air to pass through the spiral link belt. There is space for such a three-dimensionally intertwined path, in particular, between the tips of two adjacent turns of a spiral, since these two turns lie on one side of a plug wire, while the intermediate turn arc of the adjacent spiral lies on the other side of the plug wire, so that there is an opening , which is delimited laterally by the two winding arches and front and rear by the plug wire or the flat wire.
  • the plug wire and the winding legs are similarly close together, so that there are no significant passage openings here either.
  • a flat sawtooth or step-shaped surface which is largely closed, extends through the flat wires, the winding legs and bends and the plug wires, viewed in the axial direction of the spirals.
  • the spiral link belt according to the invention there are therefore no three-dimensionally intertwined paths of larger cross-section through the spiral link belt, so that it has a very low air permeability.
  • spiral link belt Another advantage of the spiral link belt is that the flat wires are firmly anchored within the spiral link belt and therefore cannot be torn out of the spiral link belt even if the edges of the spiral link belt are damaged in the paper machine.
  • the invention further relates to a method for producing the spiral link belt described above, the spiral link belt being heat set only once, namely after the insertion of the flat wires.
  • the spiral link belt is heated and simultaneously in the longitudinal direction, i.e. in the plane of the spiral link belt perpendicular to the plug wires, stretched and flattened.
  • the individual spirals are stretched and flattened.
  • the flat wire inside a spiral turns towards the level of the sieve belt, i.e. the tilt angle becomes smaller, and the two longitudinal edges of the flat wire are pinched like scissors by the winding legs of the spiral in which it is located and by the winding arcs of the preceding or following spiral, so that the flat wire is firmly anchored in the screen structure and not from the Spiral can slip out.
  • the apparent width of the flat wire increases parallel to the plane of the spiral link belt and presses the flat wire against the two adjacent spirals connected to the respective spiral, thereby filling in the gaps that still exist.
  • Another advantage of the method according to the invention is that the plug wires and the flat wires serving as cored wires can be retracted at the same time.
  • the spiral link belt can be made from spirals, the cross-sectional shape of which is a parallelogram with diagonals of different lengths, the plug wires inevitably sliding into the angles connected by the longer diagonals and the flat wires lying on the shorter diagonals.
  • the corners of the parallelogram are of course rounded.
  • Even wider flat wires can be inserted in spirals of this cross-sectional shape.
  • the spiral link belt is heat-set after the flat wires have been retracted, the spirals then take on the usual flattened cross-sectional shape.
  • the edges of each flat wire are at a greater depth between the winding legs the spiral in question and the winding arcs of the preceding or following spiral are clamped like scissors, which enables a further reduction in air permeability.
  • the spirals can also be triangular, rectangular or square in cross section or have any other cross-sectional shape into which particularly wide flat wires and in particular wider flat wires can be introduced than in the conventional oval spirals.
  • the spirals can be wound from monofilaments with a circular cross-section. In order to achieve a particularly low air permeability, however, it is generally preferable to wind the spirals from monofilaments with a flattened cross section with an aspect ratio of approximately 1: 1.3 to 1: 3.
  • edges of particularly wide flat wires can prevent the winding legs from lying in one plane at these points during heat-setting and thus the spiral link belt becoming monoplan. This difficulty can be remedied by using flat wires with tapered edges.
  • the edges of such flat wires are more flexible because of the smaller material thickness and better fit around the winding legs and arches, from which they are pinched like scissors.
  • the reduction in the material thickness preferably begins in the central region of the cross section of the flat wires, so that they have a flat diamond-shaped cross section.
  • the flat wires can also have other cross-sectional profiles, for example the cross-sectional profile can only taper on one longitudinal edge, while it is just cut off or rounded on the other longitudinal edge.
  • the cross-sectional profile can also be rounded on both longitudinal edges.
  • flat wires are used which contract in their longitudinal direction during heat-setting and expand in their transverse direction.
  • they are preferably inserted into the hollow spaces of the spirals with a speaking excess length.
  • the flat wires therefore protrude slightly from the sides before heat setting. When heat setting, they then shrink in their longitudinal direction so that their final length corresponds to the width of the spiral link belt.
  • the use of such flat wires has the advantage that the flat wires, due to their expansion in the transverse direction, fill the cavities of the spirals even better.
  • Fig. 1 shows a spiral link belt in section in the longitudinal direction.
  • the spiral link belt is composed of a multiplicity of spirals 10 which lie parallel and one next to the other, each spiral 10 being formed by a multiplicity of turns having an elliptical cross section.
  • Each turn is divided into two turn arcs 11 and two winding legs 12 which are curved or flat to a lesser extent.
  • the spirals 10 mesh with one another so that the turns 11 of a spiral 10 engage in a zipper-like manner with the turns 11 'and 11' 'of the two adjacent spirals 10' and 10 ''.
  • This plug wires 14 are inserted, which firmly connect the spirals 11, 11 'and 11' 'so that the spirals can no longer be released from their mutual engagement.
  • the winding legs 12 form the top and the bottom of the spiral link belt.
  • the flat wires 15 are tilted with respect to the plane of the spiral link belt. As a result, more space is available for the flat wires 15 and can be wider Flat wires 15 are inserted into the spirals 10.
  • the flat wire 15 within a spiral 10 runs approximately in the direction of the diagonal of the rectangle, which in FIG. 1 shows the intersection of the two winding arcs 11 of this spiral 10 with the overlapping winding arches 11 'and 11''of the neighboring spirals 10' and 10 '' is formed.
  • FIG. 1 shows the spiral link belt before the heat setting, so that the spirals 11 have approximately their original elliptical or oval shape
  • Fig. 2 shows the spiral link belt after the heat setting.
  • the individual spirals 10 are flattened to such an extent that the winding legs 12 lie almost in one plane, and thus form a largely smooth surface of the spiral link belt.
  • the tilt angle of the flat wires 15 is now smaller, it is still so large that the one in FIG. 1 left, longitudinal edge of the flat wire 15 lies above the plane defined by the highest points of the plug wires 14, while the other, in Fig. 1 right, longitudinal edge of the flat wire 15 is below the plane which is defined by the lowest points of the plug wires 14.
  • the width of the flat wires 15 is selected such that it is larger than the smallest distance between the spirals 10 'and 10' ', which are connected to a spiral 10, even after the heat setting.
  • the flat wires 15 are thereby scissor-like clamped on their longitudinal edges between the turns 11 of a spiral and the interlocking turns 11 'and 11' 'of the preceding or the following spiral 10', 10 ''.
  • Fig. 3 shows the usual oval cross-sectional shape of spirals, as used for the production of spiral link belts, before the heat setting.
  • spirals with a parallelogram cross section according to FIG. 4 are used instead of the conventional oval cross section.
  • the parallelogram has angles of approximately 50 ° and 130 ° and the aspect ratio the sides of the parallelogram are around 1.5 to 2.
  • FIG. 5 shows in longitudinal section a section comprising a plurality of spirals from such a spiral link belt prior to heat setting.
  • the plug wires 14 lie in the angles of the parallelogram connected by the longer diagonal, so that the position of the spirals 10 is stable during heat setting. 5, the position of the flat wires 15 coincides approximately with the shorter diagonal of the parallelogram.
  • the previously mentioned flat wires have a rectangular cross section of, for example, 0.5 x 2.8 mm.
  • the edges of the flat wires 15 are clamped like scissors between the winding arcs and legs 11, 12 during the heat setting.
  • flat wires 15 become with them Longitudinal edges tapering cross-sectional profile used.
  • the longitudinal edges are chamfered so that there is a cutting edge 16 parallel to the surface of the spiral link belt, ie the taper angle is approximately equal to the tilt angle of the flat wires.
  • the air permeability is not affected by this, but the monoplanarity of the spiral link belt is preserved.
  • Fig. 8 shows in section flat wires 15 with a cross-sectional profile that tapers at a particularly acute angle 17, so that the cross-sectional profile is almost diamond-shaped.
  • the values given are the dimensions before the heat setting.
  • the air permeability was of course measured after heat setting.
  • the free distance between the adjacent spirals is calculated from the longer cross-sectional dimension of the spirals minus 4 x diameter of the spiral wire minus 2 x diameter of the plug wire. In all three cases, this distance is significantly smaller than the longer cross-sectional dimension of the filler flat wires. Of course, the relations shift somewhat due to the heat setting. Even after heat setting, the flat wires are still wider than the just defined distance of the neighboring spirals.

Landscapes

  • Ropes Or Cables (AREA)
  • Wire Processing (AREA)
  • Shaping Of Tube Ends By Bending Or Straightening (AREA)
  • Winding Of Webs (AREA)
  • Treatment Of Fiber Materials (AREA)
  • Decoration Of Textiles (AREA)
  • Footwear And Its Accessory, Manufacturing Method And Apparatuses (AREA)
  • Yarns And Mechanical Finishing Of Yarns Or Ropes (AREA)

Abstract

A linked strip comprises many interlocking synthetic spirals (10) where each winding has a flat shank (12) and a sharp bend (11). The bends of one spiral interlock like a zip with the bends (11', 11") of neighbouring spirals to form channels for securing wires (14) so to connect the spirals. Here, flat wires (15) in the spirals for reduction of linked strip air permeability are tilted w.r.t. the strip plane. A process for strip prodn. entails inter-positioning the spiral windings (11) to overlap, insertion of the securing wires (14) in the channels so formed transverse to the strip path, and insertion of the flat wires (15) into the spirals. Here, it is just after this sequence that the linked strip is thermally locked. The flat wire (15) in the spiral (10) interior is wider than the smallest distance between the two adjacent spirals, runs above one and under the other spiral securing wire (14), is clamped between the spiral inner surface and the outer surfaces of the two adjacent spirals and tapers to a point along its lengthwise edge where the edge angle is less than the wire tilt. The spirals can be formed in the cross-sectional shape of a parallelogram with different diagonals where the securing wires (14) are laid in the angles of the longer diagonal and the flat wires (15) in those of the shorter. The flat wires shrink in their longitudinal direction and expand transversely when thermal fixing occurs and so are inserted with an extra length so that after thermal fixing their length coincides with the breadth of the spiral linked ribbon.

Description

Die Erfindung betrifft ein Spiralgliederband mit einer Vielzahl miteinander verbundener Spiralen, wobei die Windungen benachbarter Spiralen reißverschlußartig ineinandergefügt sind, so daß die sich überlappenden Windungsbereiche einen Kanal bilden. In den Kanälen verlaufen Steckdrähte, so daß die Spiralen nicht getrennt werden können. Zur Verringerung der Luftdurchlässigkeit des Spiralgliederbandes sind in den freien Raum der Spiralen Flachdrähte als Füllmaterial eingelegt. Die Erfindung betrifft ferner ein Verfahren zur Herstellung eines solchen Spiralgliederbandes.The invention relates to a spiral link belt with a plurality of interconnected spirals, the turns of adjacent spirals being zippered together, so that the overlapping winding areas form a channel. Plug wires run in the channels so that the spirals cannot be separated. To reduce the air permeability of the spiral link belt, flat wires are inserted as filler material in the free space of the spirals. The invention further relates to a method for producing such a spiral link belt.

Derartige Spiralgliederbänder werden insbesondere in der Trockenpartie schnellaufender Papiermaschinen eingesetzt. Zur Erzielung einer niedrigen Luftdurchlässigkeit ist es dabei notwendig, den freien Innenraum der Spiralen durch Füllmaterial auszufüllen. Ist die Luftdurchlässigkeit zu hoch, so erzeugt das Spiralgliederband eine sehr starke turbulente Luftströmung, die einen unruhigen Lauf und sogar den Bruch der Papierbahn zur Folge haben kann. Derzeit im Einsatz befindliche Spiralgliederbänder haben immer noch eine durchlässigkeit von mindestens 2280 m3/m2/hr/100 Pa (CFM 140). Dies ist für viele Anwendungsfälle zu hoch.Such spiral link belts are used in particular in the dryer section of high-speed paper machines. To achieve a low air permeability, it is necessary to fill the free interior of the spirals with filler material. If the air permeability is too high, the spiral link belt generates a very strong turbulent air flow, which can result in unsteady running and even breakage of the paper web. Spiral link belts currently in use still have a permeability of at least 2280 m 3 / m 2 / hr / 100 Pa (CFM 140). This is too high for many applications.

Spiralgliederbänder, bei denen der freie Raum innerhalb der Spiralen zur Verringerung der Luftdurchlässigkeit durch Füllmaterial ausgefüllt ist, sind aus der EP-A-0 050 374 und der EP-A-0 101 575 sowie der GB-A-2216914 bekannt. Das Füllmaterial kann dabei unter anderem aus einem Bändchengarn bzw. einem flachen Bändchen bestehen.Spiral link belts, in which the free space within the spirals is filled with filling material to reduce the air permeability, are known from EP-A-0 050 374 and EP-A-0 101 575 and GB-A-2216914. The filling material can consist of a ribbon yarn or a flat ribbon, among other things.

Aus US 4,381,612 ist ein Spiralgliederband mit Flachdrähten als Füllmaterial bekannt. Statt eines einzigen Flachdrahtes können dabei auch zwei Füllfäden in den freien Raum jeder Spirale eingelegt werden. Außerdem ist eine Ausführungsform beschrieben, bei der Fülldrähte aus niedrigschmelzendem Material, z.B. Nylon oder Polypropylen, verwendet werden. Beim Thermofixieren schmelzen diese Fülldrähte dann und schließen die offenen Maschen des Spiralgliederbandes.From US 4,381,612 a spiral link belt with flat wires is known as the filling material. Instead of a single flat wire, two filler threads can also be inserted into the free space of each spiral. An embodiment is also described in which cored wires made of low melting material, e.g. Nylon or polypropylene. When heat setting, these cored wires melt and close the open meshes of the spiral link belt.

Spiralgliederbänder werden in der Weise hergestellt, daß zunächst die Spiralen ineinandergefügt werden und dann Steckdrähte in die Kanäle eingeschoben werden, die die sich überlappende Windungen benachbarter Spiralen bilden. Soll ein Spiralgliederband möglichst geringer Luftdurchlässigkeit hergestellt werden, so werden danach Fülldrähte in den freien Innenraum der Spiralen eingelegt. Bei der Verwendung von Flachdrähten als Fülldrähte müssen dabei Vorkehrungen getroffen werden, daß sich die Flachdrähte nicht verdrillen. Werden in den Innenraum jeder Spirale mehrere Runddrähte als Füllmaterial eingelegt, so muß dafür gesorgt werden, daß sich die Runddrähte nicht übereinanderlegen. Durch ein Verdrillen der Flachdrähte bzw. ein Übereinanderlegen der Runddrähte wird die Monoplanität des fertigen Spiralgliederbandes gestört, was zu Markierungen in der Papierbahn führen kann. Üblicherweise wird dieser Schwierigkeit dadurch begegnet, daß das Spiralgliederband vor dem Einlegen der Fülldrähte vorfixiert wird und dabei die ursprünglich leicht ovale Querschnittsform der Spiralen durch Wärme und Druck soweit abgeflacht wird, daß sich die Flachdrähte und die mehrfachen Runddrähte nicht mehr verdrillen bzw. übereinanderlegen können. Nach dem Einlegen der Fülldrähte wird das Spiralgliederband dann endgültig thermofixiert. Die Vorfixierung ist daher ein zusätzlicher Arbeitsschritt, der erhebliche Kosten verursacht.Spiral link belts are produced in such a way that the spirals are first inserted into one another and then push-in wires are inserted into the channels which form the overlapping turns of adjacent spirals. If a spiral link belt with the lowest possible air permeability is to be produced, cored wires are then inserted into the free interior of the spirals. When using flat wires as cored wires, precautions must be taken to ensure that the flat wires do not twist. If several round wires are inserted as filling material in the interior of each spiral, it must be ensured that the round wires do not overlap. Twisting the flat wires or superimposing the round wires disturbs the monoplanarity of the finished spiral link belt, which can lead to markings in the paper web. This difficulty is usually countered by pre-fixing the spiral link belt before inserting the cored wires and flattening the originally slightly oval cross-sectional shape of the spirals by heat and pressure to such an extent that the flat wires and the multiple round wires can no longer twist or overlap. After inserting the cored wire, the spiral link belt is then finally heat set. The pre-fixation is therefore an additional step that causes considerable costs.

Bei den bekannten Spiralgliederbändern liegen die Fülldrähte ferner relativ locker im Inneren der Spiralen. Zwar werden die Kanten eines Spiralgliederbandes verklebt, wobei die seitlichen Öffnungen der Spiralen verschlossen werden, so daß die Fülldrähte nicht seitlich herausrutschen können. Häufig werden jedoch die Kanten eines Spiralgliederbandes beim Lauf in der Papiermaschine beschädigt und werden die Fülldrähte herausgezogen.In the known spiral link belts, the cored wires are also relatively loosely inside the spirals. Although the edges of a spiral link tape are glued, the lateral openings of the spirals are closed so that the cored wires cannot slip out laterally. However, the edges of a spiral link belt are often damaged when running in the paper machine and the cored wires are pulled out.

Der Erfindung liegt daher die Aufgabe zugrunde ein Spiralgliederband zu schaffen, das bei geringem Herstellungsaufwand eine niedrige Luftdurchlässigkeit besitzt.The invention is therefore based on the object of providing a spiral link belt which has low air permeability with little production outlay.

Erfindungsgemäß wird diese Aufgabe dadurch gelöst, daß die Flachdrähte, die sich als Füllmaterial im Inneren der Spiralen befinden, gegenüber der Ebene des Spiralgliederbandes gekippt sind.According to the invention, this object is achieved in that the flat wires, which are located as filling material in the interior of the spirals, are tilted relative to the plane of the spiral link belt.

Die Kippung der Flachdrähte bedeutet, daß die längere Querschnittsachse der Flachdrähte unter einem Winkel zur längeren Querschnittsachse der Spiralen liegt, die in der Ebene des Spiralgliederbandes liegt. Der Kippwinkel kann z.B. 15 bis 25° und vorzugsweise etwa 20° betragen. Voraussetzung hierfür ist natürlich, daß der Flachdraht selbst in einer Ebene liegt und nicht verdrillt ist.The tilting of the flat wires means that the longer cross-sectional axis of the flat wires lies at an angle to the longer cross-sectional axis of the spirals, which lies in the plane of the spiral link belt. The tilt angle can e.g. 15 to 25 ° and preferably about 20 °. The prerequisite for this is, of course, that the flat wire itself lies in one plane and is not twisted.

Der Kippwinkel ist vorzugsweise so groß, daß die eine Kante des Flachdrahtes über der Ebene der höchsten Punkte der Steckdrähte liegt, während die andere Kante unterhalb der Ebene der untersten Punkte der Steckdrähte liegt.The tilt angle is preferably so large that one edge of the flat wire lies above the plane of the highest points of the plug wires, while the other edge lies below the plane of the lowest points of the plug wires.

Normalerweise sind alle Flachdrähte in der gleichen Richtung gekippt. Der Kippwinkel kann aber auch abwechselnd positiv und negativ sein, so daß die Flachdrähte in Achsrichtung der Spiralen betrachtet abwechselnd von links nach rechts abfallen und ansteigen.Usually all flat wires are tilted in the same direction. However, the tilt angle can alternately be positive and negative, so that the flat wires, viewed in the axial direction of the spirals, alternately fall and rise from left to right.

Durch das Kippen der Flachdrähte wird die Diagonale innerhalb des freien Raumes der Spiralen ausgenützt und besteht die Möglichkeit, breitere Flachdrähte zu wählen, wodurch die Luftdurchlässigkeit des Spiralgliederbandes verringert wird. Vorzugsweise sind die innerhalb der Spiralen verlaufenden Flachdrähte breiter als der kleinste Abstand der beiden mit einer jeweiligen Spirale verbundenen benachbarten Spiralen. Die Bezeichnung "Diagonale" bezieht sich dabei auf das gedachte Viereck, das durch die jeweils zwei und damit insgesamt vier Kreuzungspunkte einer Spirale mit der vorausgehenden und der nachfolgenden Spirale gebildet wird. Infolge der größeren Breite der Flachdrähte können diese sich nicht mehr innerhalb der Spirale verdrillen.By tilting the flat wires, the diagonal within the free space of the spirals is used and there is the possibility of choosing wider flat wires, which reduces the air permeability of the spiral link belt. The flat wires running inside the spirals are preferably wider than the smallest distance between the two adjacent spirals connected to a respective spiral. The term "diagonal" refers to the imaginary square formed by the two and thus a total of four intersection points of a spiral with the preceding and the following spiral. Due to the larger width of the flat wires, they can no longer twist within the spiral.

Normalerweise befindet sich im Inneren jeder Spirale nur ein einziger Flachdraht. Es besteht jedoch auch die Möglichkeit, zwei Flachdrähte besonders geringer Stärke aufeinandergelegt in eine Spirale einzuschieben. Jeder dieser beiden besonders dünnen Flachdrähte ist dann jedoch breiter als der kleinste Abstand der beiden mit der jeweiligen Spirale verbundenen benachbarten Spirale, wie vorausgehend beschrieben wurde.There is usually only one flat wire inside each spiral. However, there is also the possibility of inserting two flat wires of particularly low thickness on top of one another in a spiral. However, each of these two particularly thin flat wires is then wider than the smallest distance between the two adjacent spirals connected to the respective spiral, as described above.

Damit ein Spiralgliederband eine möglichst geringe Luftdurchlässigkeit besitzt, genügt es nicht, daß es durch Füllmaterial, z.B. einen Flachdraht, in Draufsicht im wesentlichen dicht gemacht wird. Es dürfen auch keine größeren, dreidimensional verschlungenen Wege für den Durchtritt von Luft durch das Spiralgliederband bestehen. Raum für einen solchen dreidimensional verschlungenen Weg besteht insbesondere zwischen den Spitzen zweier benachbarter Windungsbögen einer Spirale, da diese beiden Windungsbögen auf einer Seite eines Steckdrahtes anliegen, während der dazwischen liegende Windungsbogen der benachbarten Spirale auf der anderen Seite des Steckdrahtes anliegt, so daß eine trittsöffnung besteht, die seitlich durch die beiden Windungsbögen und vorne und hinten durch den Steckdraht bzw. den Flachdraht begrenzt wird. Da dieser Raum bei herkömmlichen Spiralgliederbändern mit Flachdrähten offen bleibt, kann die Luftdurchlässigkeit nicht weit genug verringert werden. Bei dem erfindungsgemäßen Spiralgliederband werden die Längskanten der Flachdrähte dagegen beinahe scherenartig von den aneinanderliegenden Windungsbögen und -schenkel benachbarter Spiralen eingeklemmt. Der Flachdraht stößt gegen die Innenseite seiner Spirale, d.h. der Spirale, in die er eingeschoben wurde, und liegt von außen an der vorausgehenden und der nachfolgenden Spirale an, und zwar jeweils an Stellen, an denen sich seine Spirale ohnehin mit der vorausgehenden und nachfolgenden Spirale berührt. Es bestehen daher zwischen den Windungsschenkeln einer Spirale, dem darin liegenden Flachdraht und den Windungsbögen der voraus- und nachfolgenden Spiralen keine wesentliche Durchtrittsöffnungen. Auf der anderen Seite der hier betrachteten Windungsbögen liegen der Steckdraht und die Windungsschenkel ähnlich eng zusammen, so daß auch hier keine wesentlichen Durchtrittsöffnungen bestehen. Insgesamt zieht sich damit durch die Flachdrähte, die Windungsschenkel und -bögen und die Steckdrähte eine in Achsrichtung der Spiralen betrachtet sägezahn- oder stufenförmig verlaufende Fläche, die weitgehend geschlossen ist. Bei dem erfindungsgemäßen Spiralgliederband bestehen somit keine dreidimensional verschlungenen Wege von größerem Querschnitt durch das Spiralgliederband hindurch, so daß es eine sehr geringe Luftdurchlässigkeit besitzt.In order for a spiral link belt to have the lowest possible air permeability, it is not sufficient that it is essentially sealed by filling material, for example a flat wire, in plan view. There must also be no larger, three-dimensionally intertwined paths for air to pass through the spiral link belt. There is space for such a three-dimensionally intertwined path, in particular, between the tips of two adjacent turns of a spiral, since these two turns lie on one side of a plug wire, while the intermediate turn arc of the adjacent spiral lies on the other side of the plug wire, so that there is an opening , which is delimited laterally by the two winding arches and front and rear by the plug wire or the flat wire. Because this space is conventional Spiral link bands with flat wires remain open, the air permeability can not be reduced enough. In the spiral link belt according to the invention, however, the longitudinal edges of the flat wires are almost scissor-like pinched by the adjacent turns and legs of adjacent spirals. The flat wire abuts against the inside of its spiral, that is to say the spiral into which it was inserted, and lies on the outside of the preceding and the following spiral, in each case at places where its spiral is in any case connected with the preceding and subsequent spiral touched. There are therefore no significant through-openings between the winding legs of a spiral, the flat wire lying therein and the winding arcs of the preceding and following spirals. On the other side of the winding arcs considered here, the plug wire and the winding legs are similarly close together, so that there are no significant passage openings here either. Overall, a flat sawtooth or step-shaped surface, which is largely closed, extends through the flat wires, the winding legs and bends and the plug wires, viewed in the axial direction of the spirals. In the spiral link belt according to the invention there are therefore no three-dimensionally intertwined paths of larger cross-section through the spiral link belt, so that it has a very low air permeability.

Ein weiterer Vorteil des Spiralgliederbandes besteht darin, daß die Flachdrähte fest innerhalb des Spiralgliederbandes verankert sind und deshalb auch bei einer Beschädigung der Kanten des Spiralgliederbandes in der Papiermaschine nicht aus dem Spiralgliederband herausgerissen werden können.Another advantage of the spiral link belt is that the flat wires are firmly anchored within the spiral link belt and therefore cannot be torn out of the spiral link belt even if the edges of the spiral link belt are damaged in the paper machine.

Gegenstand der Erfindung ist ferner ein Verfahren zur Herstellung des vorausgehend beschriebenen Spiralgliederbandes, wobei das Spiralgliederband nur noch ein einziges Mal thermofixiert wird, nämlich nach dem Einbringen der Flachdrähte.The invention further relates to a method for producing the spiral link belt described above, the spiral link belt being heat set only once, namely after the insertion of the flat wires.

Eine Vorfixierung des Spiralgliederbandes vor dem Einbringen der Fülldrähte ist nicht mehr notwendig. Beim Thermofixieren wird das Spiralgliederband erwärmt und gleichzeitig in Längsrichtung, d.h. in der Ebene des Spiralgliederbandes senkrecht zu den Steckdrähten, gestreckt und flachgedrückt. Die einzelnen Spiralen werden dadurch stark gestreckt und abgeflacht. Dabei dreht sich der im Inneren einer Spirale befindende Flachdraht zur Ebene des Siebbandes hin, d.h. der Kippwinkel wird kleiner, und werden die beiden Längskanten des Flachdrahtes von den Windungsschenkeln der Spirale, in der er sich befindet, und von den Windungsbögen der vorausgehenden bzw. nachfolgenden Spirale scherenartig eingeklemmt, so daß der Flachdraht fest im Siebgefüge verankert ist und nicht aus der Spirale herausrutschen kann. Infolge des kleiner werdenden Kippwinkels vergrößert sich die scheinbare Breite des Flachdrahtes parallel zur Ebene des Spiralgliederbandes und drückt der Flachdraht gegen die beiden mit der jeweiligen Spirale verbundenen benachbarten Spiralen, wodurch noch bestehende Zwischenräume ausgefüllt werden.It is no longer necessary to pre-fix the spiral link belt before inserting the cored wire. During heat setting, the spiral link belt is heated and simultaneously in the longitudinal direction, i.e. in the plane of the spiral link belt perpendicular to the plug wires, stretched and flattened. The individual spirals are stretched and flattened. The flat wire inside a spiral turns towards the level of the sieve belt, i.e. the tilt angle becomes smaller, and the two longitudinal edges of the flat wire are pinched like scissors by the winding legs of the spiral in which it is located and by the winding arcs of the preceding or following spiral, so that the flat wire is firmly anchored in the screen structure and not from the Spiral can slip out. As a result of the decreasing angle of tilt, the apparent width of the flat wire increases parallel to the plane of the spiral link belt and presses the flat wire against the two adjacent spirals connected to the respective spiral, thereby filling in the gaps that still exist.

Ein weiterer Vorteil des erfindungsgemäßen Verfahrens besteht darin, daß die Steckdrähte und die als Fülldrähte dienenden Flachdrähte gleichzeitig eingefahren werden können.Another advantage of the method according to the invention is that the plug wires and the flat wires serving as cored wires can be retracted at the same time.

Das Spiralgliederband kann aus Spiralen hergestellt werden, deren Querschnittsform ein Parallelogramm mit unterschiedlich langen Diagonalen ist, wobei die Steckdrähte zwangsläufig in die durch die längere Diagonale verbundenen Winkeln rutschen und die Flachdrähte auf der kürzeren Diagonale liegen. Die Ecken des Parallelogramms sind selbstverständlich abgerundet. In Spiralen dieser Querschnittsform lassen sich noch breitere Flachdrähte einfahren. Beim Thermofixieren des Spiralgliederbandes nach dem Einfahren der Flachdrähte nehmen die Spiralen dann die übliche abgeflachte Querschnittsform an. Die Kanten jedes Flachdrahtes werden dabei in einer größeren Tiefe zwischen den Windungsschenkeln der betreffenden Spirale und den Windungsbögen der vorausgehenden oder nachfolgenden Spirale scherenartig eingeklemmt, was eine weitere Reduzierung der Luftdurchlässigkeit ermöglicht.The spiral link belt can be made from spirals, the cross-sectional shape of which is a parallelogram with diagonals of different lengths, the plug wires inevitably sliding into the angles connected by the longer diagonals and the flat wires lying on the shorter diagonals. The corners of the parallelogram are of course rounded. Even wider flat wires can be inserted in spirals of this cross-sectional shape. When the spiral link belt is heat-set after the flat wires have been retracted, the spirals then take on the usual flattened cross-sectional shape. The edges of each flat wire are at a greater depth between the winding legs the spiral in question and the winding arcs of the preceding or following spiral are clamped like scissors, which enables a further reduction in air permeability.

Die Spiralen können im Querschnitt auch dreieckig, rechteckig oder quadratisch sein oder jede andere Querschnittsform haben, in die sich besonders breite Flachdrähte und insbesondere breitere Flachdrähte als in die üblichen ovalen Spiralen einbringen lassen.The spirals can also be triangular, rectangular or square in cross section or have any other cross-sectional shape into which particularly wide flat wires and in particular wider flat wires can be introduced than in the conventional oval spirals.

Die Spiralen können aus Monofilen mit kreisförmigem Querschnitt gewickelt sein. Zur Erzielung einer besonders niedrigen Luftdurchlässigkeit ist es jedoch im allgemeinen vorzuziehen, die Spiralen aus Monofilen mit abgeflachtem Querschnitt mit einem Seitenverhältnis von etwa 1 : 1,3 bis 1 : 3 zu wickeln.The spirals can be wound from monofilaments with a circular cross-section. In order to achieve a particularly low air permeability, however, it is generally preferable to wind the spirals from monofilaments with a flattened cross section with an aspect ratio of approximately 1: 1.3 to 1: 3.

Die Kanten besonders breiter Flachdrähte können verhindern, daß sich an diesen Stellen die Windungsschenkel während des Thermofixierens in eine Ebene legen und so das Spiralgliederband monoplan wird. Diese Schwierigkeit läßt sich dadurch beheben, daß Flachdrähte mit spitzzulaufenden Kanten verwendet werden. Die Kanten solcher Flachdrähte sind wegen der kleineren Materialstärke flexibler und legen sich besser um die Windungsschenkel und -bögen, von denen sie scherenartig eingeklemmt werden.The edges of particularly wide flat wires can prevent the winding legs from lying in one plane at these points during heat-setting and thus the spiral link belt becoming monoplan. This difficulty can be remedied by using flat wires with tapered edges. The edges of such flat wires are more flexible because of the smaller material thickness and better fit around the winding legs and arches, from which they are pinched like scissors.

Vorzugsweise beginnt die Verringerung der Materialstärke bereits im Mittelbereich des Querschnitts der Flachdrähte, so daß diese einen flachen rautenförmigen Querschnitt erhalten. Die Flachdrähte können auch andere Querschnittsprofile haben, z.B. kann das Querschnittsprofil sich nur an einer Längskante verjüngen, während es an der anderen Längskante gerade abgeschnitten oder abgerundet ist. Das Querschnittsprofil kann auch an beiden Längskanten abgerundet sein.The reduction in the material thickness preferably begins in the central region of the cross section of the flat wires, so that they have a flat diamond-shaped cross section. The flat wires can also have other cross-sectional profiles, for example the cross-sectional profile can only taper on one longitudinal edge, while it is just cut off or rounded on the other longitudinal edge. The cross-sectional profile can also be rounded on both longitudinal edges.

Nach einer bevorzugten Ausführungsform des erfindungsgemäßen Verfahrens werden Flachdrähte eingesetzt, die sich beim Thermofixieren in ihrer Längsrichtung zusammenziehen und in ihrer Querrichtung ausdehnen. Damit sich die Flachdrähte nach dem Thermofixieren über die gesamte Breite des Spiralgliederbandes erstrecken, werden sie vorzugsweise mit sprechender Überlänge in die Hohlräume der Spiralen eingelegt. Vor dem Thermofixieren stehen die Flachdrähte daher an den Seiten etwas hervor. Beim Thermofixieren schrumpfen sie dann in ihrer Längsrichtung so, daß ihre endgültige Länge mit der Breite des Spiralgliederbandes übereinstimmt. Durch die Verwendung solcher Flachdrähte ergibt sich der Vorteil, daß die Flachdrähte durch ihre Ausdehnung in Querrichtung die Hohlräume der Spiralen noch besser ausfüllen.According to a preferred embodiment of the method according to the invention, flat wires are used which contract in their longitudinal direction during heat-setting and expand in their transverse direction. In order for the flat wires to extend over the entire width of the spiral link belt after heat setting, they are preferably inserted into the hollow spaces of the spirals with a speaking excess length. The flat wires therefore protrude slightly from the sides before heat setting. When heat setting, they then shrink in their longitudinal direction so that their final length corresponds to the width of the spiral link belt. The use of such flat wires has the advantage that the flat wires, due to their expansion in the transverse direction, fill the cavities of the spirals even better.

Flachdrähte mit dieser Eigenschaft beim Thermofixieren in ihrer Längsrichtung zu schrumpfen und sich in ihrer Querrichtung auszudehnen sind im Handel erhältlich.Flat wires with this property to shrink in their longitudinal direction during heat setting and to expand in their transverse direction are commercially available.

Neben der extrem niedrigen Luftdurchlässigkeit bestehen die oben erwähnten Vorteile des Herstellungsverfahrens, nämlich Wegfall der Vorfixierung, gleichzeitiges Einfahren der Steck- und Flachdrähte und die feste Verankerung der Flachdrähte im Spiralgliederband.In addition to the extremely low air permeability, there are the advantages of the manufacturing process mentioned above, namely the elimination of the pre-fixing, simultaneous insertion of the plug-in and flat wires and the firm anchoring of the flat wires in the spiral link belt.

Ausführungsbeispiele der Erfindung werden nachfolgend anhand der Zeichnung erläutert. Es zeigt:

Fig. 1
schematisch den Querschnitt eines Spiralgliederbandes in Längsrichtung;
Fig. 2
das Spiralgliederband von Fig. 1 nach dem Thermofixieren;
Fig. 3
schematisch die ovale Querschnittsform einer üblichen Spirale für die Herstellung eines gliederbandes;
Fig. 4
die Parallelogramm-Querschnittsform einer Spirale;
Fig. 5
eine Darstellung ähnlich der von Fig. 1, wobei die Spiralen Parallelogramm-Querschnittsform haben;
Fig. 6
zeigt die Unebenheit der Spiralbandoberfläche bei Verwendung eines Flachdrahtes mit stumpf abgeschnittenen Kanten;
Fig. 7
ein Spiralgliederband im Schnitt bei Verwendung von Flachdraht mit zugespitzten Kanten und
Fig. 8
im Querschnitt einen Flachdraht mit sich zu den Längskanten hin verringernder Materialstärke.
Embodiments of the invention are explained below with reference to the drawing. It shows:
Fig. 1
schematically the cross section of a spiral link belt in the longitudinal direction;
Fig. 2
the spiral link belt of Figure 1 after heat setting.
Fig. 3
schematically the oval cross-sectional shape of a conventional spiral for the production of a link belt;
Fig. 4
the parallelogram cross-sectional shape of a spiral;
Fig. 5
an illustration similar to that of Figure 1, wherein the spirals have a parallelogram cross-sectional shape.
Fig. 6
shows the unevenness of the spiral tape surface when using a flat wire with bluntly cut edges;
Fig. 7
a spiral link belt in the cut when using flat wire with tapered edges and
Fig. 8
in cross section a flat wire with a decreasing material thickness towards the longitudinal edges.

Fig. 1 zeigt ein Spiralgliederband im Schnitt in Längsrichtung. Das Spiralgliederband ist ist aus einer Vielzahl parallel nebeneinanderliegender und ineinandergreifender Spiralen 10 zusammengesetzt, wobei jede Spirale 10 durch eine Vielzahl von Windungen mit elliptischem Querschnitt gebildet wird. Jede Windung ist in zwei Windungsbögen 11 und zwei schwächer gekrümmte oder flache Windungsschenkeln 12 unterteilt. Die Spiralen 10 kämmen miteinander, so daß die Windungsbögen 11 einer Spirale 10 reißverschlußartig mit den Windungsbögen 11' und 11'' der beiden benachbarten Spiralen 10' und 10'' ineinandergreifen. Die ineinandergreifenden Windungsbögen 11, 11' und 11'' überlappen sich soweit, daß sie Kanäle 13 umschließen. In diese sind Steckdrähte 14 eingeschoben, die die Spiralen 11, 11' und 11'' fest miteinander verbinden, so daß die Spiralen nicht mehr aus ihrem gegenseitigen Eingriff lösbar sind. Die Windungsschenkel 12 bilden die Oberseite und die Unterseite des Spiralgliederbandes.Fig. 1 shows a spiral link belt in section in the longitudinal direction. The spiral link belt is composed of a multiplicity of spirals 10 which lie parallel and one next to the other, each spiral 10 being formed by a multiplicity of turns having an elliptical cross section. Each turn is divided into two turn arcs 11 and two winding legs 12 which are curved or flat to a lesser extent. The spirals 10 mesh with one another so that the turns 11 of a spiral 10 engage in a zipper-like manner with the turns 11 'and 11' 'of the two adjacent spirals 10' and 10 ''. The interlocking winding arches 11, 11 'and 11' 'overlap to such an extent that they enclose channels 13. In this plug wires 14 are inserted, which firmly connect the spirals 11, 11 'and 11' 'so that the spirals can no longer be released from their mutual engagement. The winding legs 12 form the top and the bottom of the spiral link belt.

Im freien Innenraum der Spiralen 10 befinden sich als Füllmaterial Flachdrähte 15. Die Flachdrähte 15 sind gegenüber der Ebene des Spiralgliederbandes gekippt. Dadurch steht für die Flachdrähte 15 mehr Raum zur Verfügung und können breitere Flachdrähte 15 in die Spiralen 10 eingeschoben werden. Der Flachdraht 15 innerhalb einer Spirale 10 verläuft etwa in Richtung der Diagonale des Rechtecks, das in Fig. 1 durch die Kreuzungspunkte der beiden Windungsbögen 11 dieser Spirale 10 mit den überlappenden Windungsbögen 11' bzw. 11'' der benachbarten Spiralen 10' bzw. 10'' gebildet wird.In the free interior of the spirals 10 there are flat wires 15 as filling material. The flat wires 15 are tilted with respect to the plane of the spiral link belt. As a result, more space is available for the flat wires 15 and can be wider Flat wires 15 are inserted into the spirals 10. The flat wire 15 within a spiral 10 runs approximately in the direction of the diagonal of the rectangle, which in FIG. 1 shows the intersection of the two winding arcs 11 of this spiral 10 with the overlapping winding arches 11 'and 11''of the neighboring spirals 10' and 10 '' is formed.

Während Fig. 1 das Spiralgliederband vor dem Thermofixieren zeigt, so daß die Spiralen 11 etwa ihre ursprüngliche elliptische oder ovale Form haben, zeigt Fig. 2 das Spiralgliederband nach dem Thermofixieren. Nach dem Thermofixieren sind die einzelnen Spiralen 10 soweit abgeflacht, daß die Windungsschenkel 12 nahezu in einer Ebene liegen, und damit eine weitgehend glatte Oberfläche des Spiralgliederbandes bilden. Zwar ist der Kippwinkel der Flachdrähte 15 nun kleiner, er ist jedoch immer noch so groß, daß die eine, in Fig. 1 linke, Längskante des Flachdrahtes 15 über der Ebene liegt, die durch die höchsten Punkte der Steckdrähte 14 definiert wird, während die andere, in Fig. 1 rechte, Längskante des Flachdrahtes 15 unter der Ebene liegt, die durch die untersten Punkte der Steckdrähte 14 definiert wird. Die Breite der Flachdrähte 15 ist so gewählt, daß sie auch nach der Thermofixierung größer als der kleinste Abstand der Spiralen 10' und 10'' ist, die mit einer Spirale 10 verbunden sind. Die Flachdrähte 15 werden dadurch an ihren Längskanten scherenartig zwischen den Windungsbögen 11 einer Spirale und den damit ineinandergreifenden Windungsbögen 11' und 11'' der vorausgehenden bzw. der nachfolgenden Spirale 10', 10'' eingeklemmt.While Fig. 1 shows the spiral link belt before the heat setting, so that the spirals 11 have approximately their original elliptical or oval shape, Fig. 2 shows the spiral link belt after the heat setting. After heat setting, the individual spirals 10 are flattened to such an extent that the winding legs 12 lie almost in one plane, and thus form a largely smooth surface of the spiral link belt. Although the tilt angle of the flat wires 15 is now smaller, it is still so large that the one in FIG. 1 left, longitudinal edge of the flat wire 15 lies above the plane defined by the highest points of the plug wires 14, while the other, in Fig. 1 right, longitudinal edge of the flat wire 15 is below the plane which is defined by the lowest points of the plug wires 14. The width of the flat wires 15 is selected such that it is larger than the smallest distance between the spirals 10 'and 10' ', which are connected to a spiral 10, even after the heat setting. The flat wires 15 are thereby scissor-like clamped on their longitudinal edges between the turns 11 of a spiral and the interlocking turns 11 'and 11' 'of the preceding or the following spiral 10', 10 ''.

Fig. 3 zeigt die übliche ovale Querschnittsform von Spiralen, wie sie für die Herstellung von Spiralgliederbändern verwendet wird, und zwar vor dem Thermofixieren. Gemäß einer zweiten Ausführungsform der Erfindung werden Spiralen mit parallelogrammförmigem Querschnitt gemäß Fig. 4 statt der üblichen ovalen Querschnittsform verwendet. Das Parallelogramm hat dabei Winkel von etwa 50° und 130° und das Längenverhältnis der Seiten des Parallelogramms liegt bei etwa 1,5 bis 2.Fig. 3 shows the usual oval cross-sectional shape of spirals, as used for the production of spiral link belts, before the heat setting. According to a second embodiment of the invention, spirals with a parallelogram cross section according to FIG. 4 are used instead of the conventional oval cross section. The parallelogram has angles of approximately 50 ° and 130 ° and the aspect ratio the sides of the parallelogram are around 1.5 to 2.

Fig. 5 zeigt im Längsschnitt einen mehrere Spiralen umfassenden Ausschnitt aus einem solchen Spiralgliederband vor dem Thermofixieren. Die Steckdrähte 14 liegen in den durch die längere Diagonale verbundenen Winkeln des Parallelogramms, so daß die Lage der Spiralen 10 beim Thermofixieren stabil ist. Die Position der Flachdrähte 15 fällt in der Darstellung von Fig. 5 etwa mit der kürzeren Diagonale des Parallelogramms zusammen. Durch Verwendung von Spiralen mit der speziellen in Fig. 4 gezeigten ursprünglich parallelogrammähnlichen Form, lassen sich noch breitere Flachdrähte 15 in die Spiralen einschieben als bei der Ausführungsform der Figuren 1 bis 3.5 shows in longitudinal section a section comprising a plurality of spirals from such a spiral link belt prior to heat setting. The plug wires 14 lie in the angles of the parallelogram connected by the longer diagonal, so that the position of the spirals 10 is stable during heat setting. 5, the position of the flat wires 15 coincides approximately with the shorter diagonal of the parallelogram. By using spirals with the special shape that is originally similar to a parallelogram, shown in FIG. 4, even wider flat wires 15 can be inserted into the spirals than in the embodiment of FIGS. 1 to 3.

Das Herstellungsverfahren ist im übrigen unverändert gegenüber der Ausführungsform der Figuren 1 bis 3, und insbesondere können die Steckdrähte 14 und die Flachdrähte 15 in einem Arbeitsgang in die Spiralen eingeschoben werden.The manufacturing process is otherwise unchanged from the embodiment of Figures 1 to 3, and in particular the plug wires 14 and the flat wires 15 can be inserted into the spirals in one operation.

Bei der Verwendung besonders breiter Flachdrähte können sich Schwierigkeiten bezüglich der Monoplanität der Oberfläche des fertigen Spiralgliederbandes ergeben. Die bisher erwähnten Flachdrähte haben einen rechteckförmigen Querschnitt von z.B. 0,5 x 2,8 mm. Wie erwähnt, werden die Ränder der Flachdrähte 15 beim Thermofixieren zwischen den Windungsbögen und -schenkeln 11,12 scherenartig eingeklemmt. Bei besonders breiten und/oder dicken Flachdrähten 15 besteht dabei die Gefahr, daß sich die Flachdrähte 15 durch die Windungsschenkel 12 nicht vollständig nach unten drücken lassen, so daß die Windungsschenkel 12 in ihrer ursprünglichen leicht gekrümmten Form bleiben und dadurch die Oberfläche des Spiralgliederbandes nicht monoplan wird, s. Fig. 6. Um auch bei besonders breiten Flachdrähten 15 monoplane Oberflächen des Spiralgliederbandes zu erzielen, werden bei der in Fig. 7 dargestellten Ausführungsform Flachdrähte 15 mit sich zu den Längskanten hin verjüngendem Querschnittsprofil verwendet. Bei den in Fig. 7 gezeigten Flachdrähten 15 sind die Längskanten so abgeschrägt, daß sich eine zur Oberfläche des Spiralgliederbandes parallele Schnittkante 16 ergibt, d.h. der Verjüngungswinkel ist etwa gleich dem Kippwinkel der Flachdrähte. Die Luftdurchlässigkeit wird dadurch nicht beeinflußt, die Monoplanität des Spiralgliederbandes wird jedoch gewahrt.When using particularly wide flat wires, difficulties can arise with regard to the monoplanarity of the surface of the finished spiral link belt. The previously mentioned flat wires have a rectangular cross section of, for example, 0.5 x 2.8 mm. As mentioned, the edges of the flat wires 15 are clamped like scissors between the winding arcs and legs 11, 12 during the heat setting. In the case of particularly wide and / or thick flat wires 15, there is a risk that the flat wires 15 cannot be pressed completely downward by the winding legs 12, so that the winding legs 12 remain in their original, slightly curved shape and, as a result, the surface of the spiral link band is not monoplan will, s. Fig. 6. In order to achieve 15 monoplane surfaces of the spiral link belt even with particularly wide flat wires, in the embodiment shown in FIG. 7 flat wires 15 become with them Longitudinal edges tapering cross-sectional profile used. In the flat wires 15 shown in Fig. 7, the longitudinal edges are chamfered so that there is a cutting edge 16 parallel to the surface of the spiral link belt, ie the taper angle is approximately equal to the tilt angle of the flat wires. The air permeability is not affected by this, but the monoplanarity of the spiral link belt is preserved.

Fig. 8 zeigt im Schnitt Flachdrähte 15 mit einem Querschnittsprofil, das sich unter einem besonders spitzen Winkel 17 verjüngt, so daß das Querschnittsprofil nahezu rautenförmig ist.Fig. 8 shows in section flat wires 15 with a cross-sectional profile that tapers at a particularly acute angle 17, so that the cross-sectional profile is almost diamond-shaped.

Beispiele:Examples:

Für drei verschiedene Spiralgliederbänder sind nachfolgend die Abmessungen der Spiralen, der Steckdrähte und der Füllmaterial-Flachdrähte sowie die erzielte Luftdurchlässigkeit angegeben. Das Material war jeweils Polyester. Tabelle Beispiel 1 Beispiel 2 Beispiel 3 Form der Spiralen (mm x mm) 5,3 x 3,2 5,5 x 3,3 5,3 x 3,2 Spiraldrähte (⌀ mm) 0,6 0,6 0,7 x 0,43 Steckdrähte (⌀ mm) 0,9 0,9 0,9 kleinster Abstand der Nachbarspiralen (mm) 1,1 1,3 1,78 Füllmaterial Flachdrähte (mm x mm) 2,2 x 0,5 2,3 x 0,5 2,8 x 0,62 Luftdurchlässigkeit (CFM) 130 90 50 For three different spiral link belts, the dimensions of the spirals, the plug wires and the filler flat wires as well as the air permeability achieved are given below. The material was polyester. table example 1 Example 2 Example 3 Shape of the spirals (mm x mm) 5.3 x 3.2 5.5 x 3.3 5.3 x 3.2 Spiral wires (⌀ mm) 0.6 0.6 0.7 x 0.43 Plug wires (⌀ mm) 0.9 0.9 0.9 smallest distance between neighboring spirals (mm) 1.1 1.3 1.78 Filling material flat wires (mm x mm) 2.2 x 0.5 2.3 x 0.5 2.8 x 0.62 Air permeability (CFM) 130 90 50

Die angegbenen Werte sind die Abmessungen vor dem Thermofixieren. Die Luftdurchlässigkeit wurde selbstverständlich nach dem Thermofixieren gemessen. Der freie Abstand zwischen den benachbarten Spiralen ist berechnet aus der längeren Querschnittsabmessung der Spiralen minus 4 x Durchmesser des Spiraldrahtes minus 2 x Durchmesser des Steckdrahtes. In allen drei Fällen ist dieser Abstand deutlich kleiner als die längere Querschnittsabmessung der Füllmaterial-Flachdrähte. Durch das Thermofixieren verschieben sich selbstverständlich die Relationen etwas. Auch nach dem Thermofixieren sind die Flachdrähte jedoch breiter als der eben definierte Abstand der Nachbar-Spiralen.The values given are the dimensions before the heat setting. The air permeability was of course measured after heat setting. The free distance between the adjacent spirals is calculated from the longer cross-sectional dimension of the spirals minus 4 x diameter of the spiral wire minus 2 x diameter of the plug wire. In all three cases, this distance is significantly smaller than the longer cross-sectional dimension of the filler flat wires. Of course, the relations shift somewhat due to the heat setting. Even after heat setting, the flat wires are still wider than the just defined distance of the neighboring spirals.

Claims (10)

  1. Spiral link belt with a plurality of plastic helices (10) connected to one another which consist of flat winding limbs (12) and of winding arcs (11), wherein the winding arcs (11) of a helix (10) interlock in the manner of a slide fastener with the winding arcs of a neighbouring helix (10', 10'') and the overlapping winding arcs (11, 11', 11") form a channel (13), with pintle wires (14) which run through these channels (13) and thereby connect the helices (10, 10', 10''), and with flat wires (15) in the helices (10) to reduce the permeability to air of the spiral link belt, characterized in that the flat wires (15) are tilted relative to the plane of the spiral link belt.
  2. Spiral link belt according to claim 1, characterized in that the flat wire (15) running inside a helix (10) is wider than the smallest distance between the two helices (10', 10'') connected to this helix (10).
  3. Spiral link belt according to claim 1 or 2, characterized in that the flat wire (15) running inside a helix (10) runs below one pintle wire (14) and above the other pintle wire (14) by which this helix (10) is connected.
  4. Spiral link belt according to one of claims 1 to 3, characterized in that the flat wire (15) running inside a helix (10) is clamped between the inside of this helix (10) and the outside of the preceding and/or of the following helix (10', 10'').
  5. Spiral link belt according to one of claims 1 to 4, characterized in that the cross-section of the flat wires (15) tapers at an acute angle to their longitudinal edges.
  6. Spiral link belt according to claim 5, characterized in that the angle (17) at which the cross-section of the flat wires (15) tapers is smaller than the angle of tilt of the flat wires (15).
  7. Method for the production of a spiral link belt according to one of claims 1 to 6, wherein the helices (10) are fitted into one another in such a way that the windings (11) of successive helices (10) overlap and form a channel (13) running transversely to the longitudinal direction of the spiral link belt, a pintle wire (14) is inserted into the channel (13), a flat wire (15) is inserted into the helix (10) and the spiral link belt is thermoset, characterized in that the spiral link belt is thermoset only after the insertion of the flat wire (15).
  8. Method according to claim 7, characterized in that helices (10) are used whose cross-section shape is a parallelogram with diagonals of different lengths, wherein the pintle wires (14) lie in the angles connected by the longer diagonal and the flat wires (15) on the shorter diagonal.
  9. Method according to claim 7 or 8, characterized in that flat wires (15) are used which, upon thermosetting, shrink in their longitudinal direction and expand in their transverse direction.
  10. Method according to claim 9, characterized in that the flat wires (15) are inserted into the helices (10) with such an excess length that, after the shrinkage caused by the thermosetting, their length roughly corresponds to the width of the spiral link belt.
EP95101482A 1994-02-04 1995-02-03 Spiral fabric with low air permeability and process for making the same Expired - Lifetime EP0666366B1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4403501A DE4403501A1 (en) 1994-02-04 1994-02-04 Low air permeability spiral link belt and process for its manufacture
DE4403501 1994-02-04

Publications (2)

Publication Number Publication Date
EP0666366A1 EP0666366A1 (en) 1995-08-09
EP0666366B1 true EP0666366B1 (en) 1997-10-22

Family

ID=6509501

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95101482A Expired - Lifetime EP0666366B1 (en) 1994-02-04 1995-02-03 Spiral fabric with low air permeability and process for making the same

Country Status (7)

Country Link
US (1) US5514456A (en)
EP (1) EP0666366B1 (en)
AT (1) ATE159555T1 (en)
BR (1) BR9500435A (en)
CA (1) CA2141706C (en)
DE (2) DE4403501A1 (en)
FI (1) FI105938B (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6736714B2 (en) * 1997-07-30 2004-05-18 Praxair S.T. Technology, Inc. Polishing silicon wafers
US7718102B2 (en) * 1998-06-02 2010-05-18 Praxair S.T. Technology, Inc. Froth and method of producing froth
US6514301B1 (en) 1998-06-02 2003-02-04 Peripheral Products Inc. Foam semiconductor polishing belts and pads
US6880583B2 (en) * 2002-05-29 2005-04-19 Albany International Corp. Papermaker's and industrial fabric seam
US6918998B2 (en) * 2002-11-13 2005-07-19 Albany International Corp. On-machine-seamable industrial fabric comprised of interconnected rings
US8225821B2 (en) * 2003-12-15 2012-07-24 Albany International Corp. Pintle for spiral fabrics
US7691238B2 (en) 2004-12-15 2010-04-06 Albany International Corp. Spiral fabrics
US7575659B2 (en) * 2004-12-15 2009-08-18 Albany International Corp. Spiral fabrics
US8640862B2 (en) * 2006-04-10 2014-02-04 Albany International Corp. Seam-on laminated belt
US7604026B2 (en) * 2006-12-15 2009-10-20 Albany International Corp. Triangular weft for TAD fabrics
US20080169039A1 (en) * 2007-01-17 2008-07-17 Mack Vines Low permeability fabric
US20080254273A1 (en) * 2007-04-10 2008-10-16 Torben Schlieckau Low permeability fabric
DE102007055759A1 (en) 2007-12-11 2009-06-18 Voith Patent Gmbh Spiral structure i.e. spiral sliding band, for paper-making machine clothing, has filling element whose cross-sectional area is designed such that filling element in end condition reduces cross section of interior of spiral elements
DE102011078724A1 (en) * 2011-07-06 2013-01-10 Würtembergische Spiralsiebfabrik GmbH Thermally unfixed fabric for a spiral wire and method of making a spiral wire
US10689807B2 (en) 2013-03-14 2020-06-23 Albany International Corp. Industrial fabrics comprising infinity shape coils
US10689796B2 (en) * 2013-03-14 2020-06-23 Albany International Corp. Infinity shape coil for spiral seams
SE537959C2 (en) 2013-03-27 2015-12-08 Valmet Aktiebolag Wheelchair and method for rolling up a paper web from the edge of a paper machine
SE537744C2 (en) * 2013-04-26 2015-10-13 Valmet Aktiebolag Wheelchair for rolling a paper web into a roll and method for rolling a paper web to form a roll
JP6325110B2 (en) 2013-09-09 2018-05-16 バルメット、アクチボラグValmet Aktiebolag Winding machine and method for winding a paper web into a roll and starting a new roll

Family Cites Families (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB1018419A (en) * 1963-08-23 1966-01-26 British Wedge Wire Company Ltd Improvements in or relating to wire belts
DE3047989C2 (en) * 1980-12-19 1984-11-15 Reinhard Werner 6057 Dietzenbach Leo Wire helix for the production of a flat link belt
DE3039873C2 (en) 1980-10-22 1986-02-06 Siteg Siebtechnik GmbH, 4422 Ahaus Method for producing a screen belt provided with filling material
US4381612A (en) * 1981-06-03 1983-05-03 Wangner Systems, Inc. Dryer fabric for papermaking machine and method
DE3228033A1 (en) * 1982-07-27 1984-02-02 Siteg Siebtechnik GmbH, 4422 Ahaus LARGE LENGTH SPIRAL FOR PRODUCING A SPIRAL BAND AND METHOD AND DEVICE FOR INPUTING FILLING MATERIAL IN THESE SPIRALS
US4490925A (en) * 1983-06-08 1985-01-01 Wangner Systems Corporation Low permeability spiral fabric and method
US4500590A (en) * 1984-06-25 1985-02-19 Wangner Systems Corporation Dryer fabric having reduced permeability in the area of the pintle joint
GB8805930D0 (en) * 1988-03-12 1988-04-13 Scapa Group Plc Link fabrics
DE4026196A1 (en) * 1990-08-18 1992-02-20 Heimbach Gmbh Thomas Josef SCREEN FOR APPLICATION IN PAPER MAKING
DE4122805C1 (en) * 1991-07-10 1994-10-06 Heimbach Gmbh Thomas Josef Wire link belt

Also Published As

Publication number Publication date
DE59500817D1 (en) 1997-11-27
ATE159555T1 (en) 1997-11-15
CA2141706A1 (en) 1995-08-05
DE4403501A1 (en) 1995-08-10
BR9500435A (en) 1995-10-17
FI105938B (en) 2000-10-31
CA2141706C (en) 1998-11-24
FI950500A0 (en) 1995-02-03
FI950500A (en) 1995-08-05
EP0666366A1 (en) 1995-08-09
US5514456A (en) 1996-05-07

Similar Documents

Publication Publication Date Title
EP0666366B1 (en) Spiral fabric with low air permeability and process for making the same
DE3607613C2 (en) Spiral hem construction
DE3039873C2 (en) Method for producing a screen belt provided with filling material
DE69023530T2 (en) Uniformly woven multi-layer composite fabric with multiple openings.
EP0080713B1 (en) Link belt and method of making the same
EP2730688B1 (en) Heald, preferably for processing strip material and method for producing the same
EP0266786B1 (en) Spiral fabric having double spirals
DE19641145C2 (en) Self-sealing valve for inflatable bodies and method for its manufacture and for insertion in the inflatable body
EP0112432B1 (en) Flat produce, especially a screening belt or a link belt for paper-making machines or the like
DE19534486C1 (en) Link belt, in particular for paper machines
CH654361A5 (en) WIRE LINK.
DE3102616A1 (en) Insulating element
EP2729611B1 (en) Thermally unfixed flat structure for a spiral link fabric, and method for producing a spiral link fabric
EP0054745B1 (en) Flat articulated belt
CH637709A5 (en) Profiled reed dent for a reed and use of the reed dent for the reed of a jet-weaving machine
EP0190732A1 (en) Helical link belt with a decreased air permeability
DE2039155A1 (en) Reinforcement, especially for reinforced and reinforced concrete
EP0196040A2 (en) Spiral fabric having a reduced permeability, and method for making the same
DE3400742C2 (en) Ball socket
EP0219715A1 (en) Helical-joint belt with fill spirals wound around a wire plug
WO1999064654A1 (en) Weaving reed and lamella
EP3636851B1 (en) Plaster profile
DE2947748C2 (en) Welded truss
DE69111166T2 (en) DEVICE FOR PRODUCING LADDER STRAPS, IN PARTICULAR FOR STORES.
DE19544274A1 (en) Weather strips

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

17P Request for examination filed

Effective date: 19950911

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

17Q First examination report despatched

Effective date: 19961223

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): AT BE CH DE ES FR GB IT LI NL SE

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF FAILURE TO SUBMIT A TRANSLATION OF THE DESCRIPTION OR TO PAY THE FEE WITHIN THE PRESCRIBED TIME-LIMIT;WARNING: LAPSES OF ITALIAN PATENTS WITH EFFECTIVE DATE BEFORE 2007 MAY HAVE OCCURRED AT ANY TIME BEFORE 2007. THE CORRECT EFFECTIVE DATE MAY BE DIFFERENT FROM THE ONE RECORDED.

Effective date: 19971022

Ref country code: ES

Free format text: THE PATENT HAS BEEN ANNULLED BY A DECISION OF A NATIONAL AUTHORITY

Effective date: 19971022

REF Corresponds to:

Ref document number: 159555

Country of ref document: AT

Date of ref document: 19971115

Kind code of ref document: T

REG Reference to a national code

Ref country code: CH

Ref legal event code: NV

Representative=s name: RITSCHER & SEIFERT PATENTANWAELTE VSP

Ref country code: CH

Ref legal event code: EP

REF Corresponds to:

Ref document number: 59500817

Country of ref document: DE

Date of ref document: 19971127

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19971124

ET Fr: translation filed
PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: BE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 19980228

PLBE No opposition filed within time limit

Free format text: ORIGINAL CODE: 0009261

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: NO OPPOSITION FILED WITHIN TIME LIMIT

BERE Be: lapsed

Owner name: SITEG SIEBTECHNIK G.M.B.H.

Effective date: 19980228

26N No opposition filed
REG Reference to a national code

Ref country code: CH

Ref legal event code: PFA

Free format text: SITEG SIEBTECHNIK GMBH TRANSFER- WUERTTEMBERGISCHE FILZTUCHFABRIK D. GESCHMAY GMBH

NLS Nl: assignments of ep-patents

Owner name: WUERTTEMBERGISCHE FILZTUCHFABRIK D. GESCHMAY GMBH

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: CH

Payment date: 20030203

Year of fee payment: 9

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: LI

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

Ref country code: CH

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20040229

REG Reference to a national code

Ref country code: CH

Ref legal event code: PL

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500817

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER, DE

REG Reference to a national code

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500817

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER, DE

Effective date: 20111109

Ref country code: DE

Ref legal event code: R082

Ref document number: 59500817

Country of ref document: DE

Representative=s name: VOSSIUS & PARTNER PATENTANWAELTE RECHTSANWAELT, DE

Effective date: 20111109

Ref country code: DE

Ref legal event code: R081

Ref document number: 59500817

Country of ref document: DE

Owner name: ALBANY INTERNATIONAL CORP., US

Free format text: FORMER OWNER: WUERTTEMBERGISCHE FILZTUCHFABRIK D. GESCHMAY GMBH, 73035 GOEPPINGEN, DE

Effective date: 20111109

Ref country code: DE

Ref legal event code: R081

Ref document number: 59500817

Country of ref document: DE

Owner name: ALBANY INTERNATIONAL CORP., ALBANY, US

Free format text: FORMER OWNER: WUERTTEMBERGISCHE FILZTUCHFABRIK D. GESCHMAY GMBH, 73035 GOEPPINGEN, DE

Effective date: 20111109

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: SE

Payment date: 20130227

Year of fee payment: 19

Ref country code: GB

Payment date: 20130227

Year of fee payment: 19

Ref country code: FR

Payment date: 20130311

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: NL

Payment date: 20130224

Year of fee payment: 19

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: DE

Payment date: 20140227

Year of fee payment: 20

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: AT

Payment date: 20140121

Year of fee payment: 20

REG Reference to a national code

Ref country code: NL

Ref legal event code: V1

Effective date: 20140901

REG Reference to a national code

Ref country code: SE

Ref legal event code: EUG

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20140203

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: NL

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140901

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20141031

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: SE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140204

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140228

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20140203

REG Reference to a national code

Ref country code: DE

Ref legal event code: R071

Ref document number: 59500817

Country of ref document: DE

REG Reference to a national code

Ref country code: AT

Ref legal event code: MK07

Ref document number: 159555

Country of ref document: AT

Kind code of ref document: T

Effective date: 20150203