EP0664383B1 - Kühlanlage für eine Brennkraftmaschine - Google Patents

Kühlanlage für eine Brennkraftmaschine Download PDF

Info

Publication number
EP0664383B1
EP0664383B1 EP95100448A EP95100448A EP0664383B1 EP 0664383 B1 EP0664383 B1 EP 0664383B1 EP 95100448 A EP95100448 A EP 95100448A EP 95100448 A EP95100448 A EP 95100448A EP 0664383 B1 EP0664383 B1 EP 0664383B1
Authority
EP
European Patent Office
Prior art keywords
temperature
combustion engine
internal combustion
coolant
cooling system
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP95100448A
Other languages
English (en)
French (fr)
Other versions
EP0664383A1 (de
Inventor
Gerhart Huemer
Heinz Lemberger
Peter Leu
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Behr Thermot Tronik GmbH
Original Assignee
Bayerische Motoren Werke AG
Behr Thomson Dehnstoffregler GmbH and Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6508338&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0664383(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Bayerische Motoren Werke AG, Behr Thomson Dehnstoffregler GmbH and Co filed Critical Bayerische Motoren Werke AG
Publication of EP0664383A1 publication Critical patent/EP0664383A1/de
Application granted granted Critical
Publication of EP0664383B1 publication Critical patent/EP0664383B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P7/00Controlling of coolant flow
    • F01P7/14Controlling of coolant flow the coolant being liquid
    • F01P7/16Controlling of coolant flow the coolant being liquid by thermostatic control
    • F01P7/167Controlling of coolant flow the coolant being liquid by thermostatic control by adjusting the pre-set temperature according to engine parameters, e.g. engine load, engine speed
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2025/00Measuring
    • F01P2025/08Temperature
    • F01P2025/36Heat exchanger mixed fluid temperature
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01PCOOLING OF MACHINES OR ENGINES IN GENERAL; COOLING OF INTERNAL-COMBUSTION ENGINES
    • F01P2070/00Details
    • F01P2070/04Details using electrical heating elements

Definitions

  • the invention relates to a cooling system for an internal combustion engine of a motor vehicle with a radiator and a thermostatic valve that controls the temperature of the coolant in a warm-up mode, a mixed mode and a cooler operation is controllable, the thermostatic valve contains an expansion element to reduce the coolant temperature is electrically heated.
  • the thermostatic valve regulates the flow of the coolant between the internal combustion engine and the radiator such that during the warm-up operation that of the internal combustion engine coming coolants essentially bypassing the cooler through a short circuit to Internal combustion engine flows back that during mixed operation the coolant coming from the internal combustion engine partly through the cooler and partly through flows back through the short circuit to the internal combustion engine and that during the cooler operation that of the internal combustion engine coming coolant essentially through flows back through the radiator to the internal combustion engine.
  • the electrical heating of the expansion element is used for Enlarging the opening cross section towards the radiator one by the temperature of the coolant in the area opening of the thermostatic valve.
  • a cooling system for example from DE 30 18 682 A1.
  • the cooling system is in an expansion element an electric heating resistor of a thermostatic valve arranged, the electrical energy through a stationary held working piston can be fed through.
  • the feed the electrical energy takes place via a control device, the coolant temperature regulated by the thermostatic valve better than a normal thermostatic valve to be able to keep constant.
  • the Actual coolant temperature measured and with a predetermined upper and with a predetermined lower temperature value compared. If the upper temperature value is reached, so the heating resistor with electrical energy supplied so that the thermostatic valve opens further, by an increased cooling capacity and thus a lowering of the Actual coolant temperature can be reached.
  • German patent application P 43 24 178 is also a cooling system for one Internal combustion engine of a motor vehicle mentioned above Type described in which the expansion element such is designed so that the coolant temperature without heating of the expansion element in warm-up mode and / or in mixed operation to an upper limit temperature settles.
  • the expansion element such is designed so that the coolant temperature without heating of the expansion element in warm-up mode and / or in mixed operation to an upper limit temperature settles.
  • There is a control unit in this cooling system provided, depending on the detected operating and / or Environmental variables of the combustion engine heating the Expansion element releases if necessary to the mode of operation the cooling system from warm-up mode or from mixed mode the upper working limit temperature towards mixed operation or cooling operation against the upper working limit temperature lower coolant temperature relocate.
  • the expansion element in this cooling system of the thermostatic valve depending on the detected operating and / or environmental variables of the internal combustion engine is used to control the heating of the expansion element an electronic control unit is required in of the detected operating and / or environmental variables of the internal combustion engine processed in a suitable manner and Control of the heating of the expansion element used will.
  • the invention has for its object a cooling system of the type mentioned at the outset, as simple as possible, that the operation of the internal combustion engine with respect optimized fuel consumption and emissions can be without in the event of an increased power requirement the performance of the internal combustion engine is reduced is.
  • the upper working limit temperature is preferably the same the most economical operating temperature of the internal combustion engine and is slightly smaller than the maximum permissible operating temperature of the internal combustion engine. Preferably is the upper working limit temperature 100 ° C, especially at approx. 105 ° C.
  • the maximum allowable Operating temperature is the highest possible temperature, with that the internal combustion engine in normal operation for longer Time can be operated without problems. This will even if the electrical heating of the expansion element fails damage to the internal combustion engine prevented.
  • the maximum permissible operating temperature is usually between 105 ° C and 120 ° C.
  • the cooling system in normal operation, d. H. not with increased performance requirements, such as e.g. B. in full load operation of the internal combustion engine or at Ascent of the engine driven by the internal combustion engine Motor vehicle, the highest possible operating temperature of the internal combustion engine reached.
  • the power consumption of the Internal combustion engine lower, which increases fuel consumption lower and improve the exhaust gas composition leaves.
  • a temperature switch which depends on the on or near the radiator outlet detected coolant temperature electrical energy feeds the heatable expansion element in the sense that increased cooling capacity by opening the Thermostatic valve is obtained and thus a reduced Coolant temperature is reached quickly. Too high Coolant or internal combustion engine temperatures at elevated Performance requirement would be reduced Degree of filling and thus a reduced performance of the Lead internal combustion engine.
  • the expansion element can be heated, for example time-controlled after a certain predetermined time be switched off again.
  • a two-point switch is provided as a temperature switch, whose upper switching point is in the range of 55 ° C to 75 ° C, preferably at 65 ° C and its lower Switching point minimum 5 ° C and maximum 50 ° C below the upper switching point.
  • the Invention is the heating of the expansion element again turned off when on or near the radiator outlet detected coolant temperature the lower switching point of the two-point switch.
  • the cooling system shown in Fig. 1 for an internal combustion engine 1 comprises a radiator 2. Between the internal combustion engine 1 and the cooler 2 is a coolant pump 3 arranged having a flow of the coolant in the Arrows shown direction generated. From the coolant outlet 4 of the internal combustion engine 1 leads a flow line 5 to the coolant inlet 6 of the radiator 2. From the coolant outlet or output 7 of the cooler 2 leads to Coolant inlet 8 of the internal combustion engine 1 has a return line 9. In the return line 9 is a thermostatic valve 10 with an expansion element, not shown here arranged. It is also in the return line 9 a temperature switch in the form of a two-point switch 11 provided.
  • the two-point switch 11 controls the heating of the expansion element of the thermostatic valve 10 depending on the at or near the radiator outlet 7 detected coolant temperature by a electrical heating voltage U to a heating element of the expansion element of the thermostatic valve 10 is applied.
  • the thermostatic valve 10 is also via a short-circuit line 12 connected to the flow line 5.
  • the cooling system essentially works in three operating modes.
  • a first mode of operation the so-called warm-up mode, especially after the cold start of the internal combustion engine 1, the thermostatic valve 10 is set so that the coolant coming from the internal combustion engine 1 Flow over the short-circuit line 12 essentially is completely returned to the internal combustion engine 1.
  • the cooling system works in the Mixed operation, d. H. that coming from the internal combustion engine 1 Coolant runs partly through the cooler 2 and partly via the short-circuit line 12 back to the internal combustion engine 1.
  • Cooling system in cooler mode d. H. that of the internal combustion engine 10 coming coolant will be essentially complete through the radiator 2 to the internal combustion engine 1 returned.
  • the cooling system can be operated by heating the Expansion element of the thermostatic valve 10 by control via an electrical line 13 through which the Thermostatic valve 10 with the two-point switch 11 electrically connected, adjusted in the direction of cooler operation or switched completely to cooler operation will. This reduces the temperature level of the Coolant compared to that with an operation without Heating of the expansion element reached the temperature level. Then the heating of the expansion element of the thermostatic valve 10 by activation by the Two-point switch 11 via the electrical line 13 again interrupted, so the cooler coolant cools the expansion element of the thermostatic valve 10 until it assumes a regulated end position in mixed operation, so that the coolant temperature returns to a final temperature is raised.
  • the regulated final temperature in Mixed operation is at the upper working limit temperature fixed.
  • the supply of the thermostatic valve 10 with electrical Energy is generated by the two-point temperature switch 11 via the electrical line 13 depending on the at or in the vicinity of the cooler outlet 7 detected coolant temperature controlled. Because the coolant temperature at or near the radiator outlet 7 in a very good approximation Shows the load state of the internal combustion engine 1, this coolant temperature is suitable at or near the cooler outlet 7 is very good for controlling the heating of the expansion element of the thermostatic valve 10. This is the basis for the control of the heating of the Expansion element of the thermostatic valve in constructive very simple and therefore very inexpensive way a simple temperature switch, preferably one Two-point temperature switch can be done. It is with it not required, different company and / or environmental sizes of the internal combustion engine 1 to detect and in an expensive electronic control unit for control heating of the expansion element of the thermostatic valve 10 to process.
  • Fig. 2 is the coolant temperature in a diagram T over time t at full load of the internal combustion engine 1 (Fig. 1) shown as it is by means of the invention Cooling system can be reached.
  • the expansion element the thermostatic valve 10 (Fig. 1) is for example due to the composition of the expansion material designed upper working limit temperature, for example here a cooling temperature of approx. 105 ° C in the regulated Mixed operation corresponds.
  • This coolant temperature of approx. 105 ° C is only possible in partial load operation of the internal combustion engine, where it is appropriate is, by reducing friction, fuel consumption to reduce and at the same time the exhaust gas composition to improve.
  • the coolant temperature to optimize consumption always as hot as possible but with performance requirements in the full load range as cool as possible to improve cylinder filling be.
  • the expansion element of the thermostatic valve 10 is designed so that the possible adjustment path of the thermostatic valve or the maximum possible opening cross section is not yet set at about 105 ° C.
  • the expansion element of the thermostatic valve 10 (FIG. 1) can be heated in such a way that a maximum opening cross-section to the cooler is set in order to reduce the coolant temperature as quickly as possible, thereby completely switching to cooler operation.
  • the full load operation is detected in the cooling system according to the invention by the temperature switch in the form of the two-point switch 11 (FIG. 1). If, due to a heavy load on the internal combustion engine, the coolant temperature at or in the vicinity of the radiator outlet 7 (FIG. 1), as shown in FIG.
  • the cooling system according to the invention is based on the knowledge that that the coolant temperature at or near the Output 7 of the cooler 2 in a very good approximation represents for the load of the internal combustion engine 1. This finding is in the cooling system according to the invention used in that on or in the immediate vicinity the output 7 of the cooler 2, a temperature switch in Form of a two-point switch 11 is provided, which load-dependent heating of the expansion element of the Thermostat valves 10 in full load operation of the internal combustion engine 1 controls. With this simple type of control heating of the expansion element of the thermostatic valve 10 can rely on the cost-intensive recording of the operating and environmental variables of the internal combustion engine 1 and also dispenses with an expensive electronic control unit will.
  • the cooling system according to the invention is suitable therefore especially for motor vehicles of the lower Price segment.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Combined Controls Of Internal Combustion Engines (AREA)
  • Devices That Are Associated With Refrigeration Equipment (AREA)

Description

Die Erfindung betrifft eine Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Kühler und einem Thermostatventil, mit dem die Temperatur des Kühlmittels in einem Warmlaufbetrieb, einem Mischbetrieb und einem Kühlerbetrieb regelbar ist, wobei das Thermostatventil ein Dehnstoffelement enthält, das zum Reduzieren der Kühlmitteltemperatur elektrisch beheizbar ist.
Dabei regelt das Thermostatventil die Strömung des Kühlmittels zwischen dem Verbrennungsmotor und dem Kühler derart, daß während des Warmlaufbetriebs das vom Verbrennungsmotor kommende Kühlmittel im wesentlichen unter Umgehen des Kühlers durch einen Kurzschluß hindurch zum Verbrennungsmotor zurückströmt, daß während des Mischbetriebs das vom Verbrennungsmotor kommende Kühlmittel teilweise durch den Kühler hindurch und teilweise durch den Kurzschluß hindurch zum Verbrennungsmotor zurückströmt und daß während des Kühlerbetriebs das vom Verbrennungsmotor kommende Kühlmittel im wesentlichen durch den Kühler hindurch zum Verbrennungsmotor zurückströmt.
Die elektrische Beheizung des Dehnstoffelements dient zum Vergrößern des öffnungsquerschnittes zum Kühler hin gegenüber einem durch die Temperatur des Kühlmittels im Bereich des Thermostatventils bedingten öffnunqsquerschnitt.
Eine Kühlanlage nach dem Oberbegriff des Patentanspruchs ist beispielsweise aus der DE 30 18 682 Al bekannt. Bei dieser bekannten Kühlanlage ist in einem Dehnstoffelement eines Thermostatventils ein elektrischer Heizwiderstand angeordnet, dem elektrische Energie durch einen stationär gehaltenen Arbeitskolben hindurch zuführbar ist. Die Zufuhr der elektrischen Energie erfolgt über eine Regeleinrichtung, um die vom Thermostatventil eingeregelte Kühlmitteltemperatur besser als bei einem normalen Thermostatventil konstant halten zu können. Hierzu wird die Ist-Kühlmitteltemperatur gemessen und mit einem vorgegebenen oberen und mit einem vorgegebenen unteren Temperaturwert verglichen. Wird der obere Temperaturwert erreicht, so wird der Heizwiderstand mit elektrischer Energie versorgt, so daß das Thermostatventil weiter öffnet, um eine erhöhte Kühlleistung umd damit eine Absenkung der Ist-Kühlmitteltemperatur zu erreichen. Sinkt die Ist-Kühlmitteltemperatur danach unter den unteren Temperaturwert, so wird die Zufuhr von elektrischer Energie zu dem Heizwiderstand unterbrochen, so daß das Dehnstoffelement vom kälteren Kühlmittel abgekühlt wird. Dadurch wird der Ventilquerschnitt wieder verringert, so daß die Ist-Kühlmitteltemperatur wieder ansteigt. Diese Regelspiele werden ständig wiederholt, um eine Kühlmitteltemperatur im Bereich von beispielsweise 95°C möglichst konstant einzuhalten.
Aus der DE 37 05 232 Al ist eine Temperaturregeleinrichtung bekannt, bei der anstelle eines üblichen Thermostatventils mit einem Dehnstoffelement ein mittels eines Stellmotors regelbares Ventil vorgesehen ist. Bei dieser bekannten Temperaturregeleinrichtung wird der Stellmotor zur Verstellung des Ventils in Abhängigkeit von einem Sensor gesteuert, der die Kühlmitteltemperatur in einer mit dem Verbrennungsmotor verbundenen Leitung mißt. Der Sensor ist darüber hinaus mit einer Heizeinrichtung versehen. Die Heizeinrichtung ist in Abhängigkeit von Kennfeldgrößen des Verbrennungsmotors ein- und ausschaltbar. Bei dieser bekannten Temperaturregeleinrichtung kann demnach durch Beheizen des Sensors eine höhere als die reale Kühlmitteltemperatur vorgetäuscht werden, um eine verstärkte Kühlung des Kühlmittels zu erreichen. Eine derartige Temperaturregeleinrichtung ist konstruktiv besonders aufwendig und damit kostenintensiv.
In der noch nicht veröffentlichten deutschen Patentanmeldung P 43 24 178 ist ferner eine Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges eingangs genannter Art beschrieben, bei der das Dehnstoffelement derart ausgelegt ist, daß sich die Kühlmitteltemperatur ohne Beheizung des Dehnstoffelementes im Warmlaufbetrieb und/oder im Mischbetrieb auf eine obere Grenztemperatur einregelt. Bei dieser Kühlanlage ist eine Steuereinheit vorgesehen, die abhängig von erfaßten Betriebs- und/oder Umweltgrößen des Verbrennungsmotors die Beheizung des Dehnstoffelementes bei Bedarf freigibt, um die Betriebsweise der Kühlanlage vom Warmlaufbetrieb oder vom Mischbetrieb der oberen Arbeitsgrenztemperatur hin zum Mischbetrieb oder Kühlbetrieb einer gegenüber der oberen Arbeitsgrenztemperatur niedrigeren Kühlmitteltemperatur zu verlagern. Da bei dieser Kühlanlage das Dehnstoffelement des Thermostatventils in Abhängigkeit von erfaßten Betriebs- und/oder Umweltgrößen des Verbrennungsmotors erfolgt, ist zur Steuerung der Beheizung des Dehnstoffelementes eine elektronische Steuereinheit erforderlich, in der die erfaßten Betriebs- und/oder Umweltgrößen des Verbrennungsmotors in geeigneter Weise verarbeitet und zur Steuerung der Beheizung des Dehnstoffelementes herangezogen werden.
Der Erfindung liegt die Aufgabe zugrunde, eine Kühlanlage der eingangs genannten Art möglichst einfach so weiterzubilden, daß damit der Betrieb des Verbrennungsmotors bezüglich des Kraftstoffverbrauchs und der Abgaswerte optimiert werden kann, ohne daß im Falle eines erhöhten Leistungsbedarfs die Leistung des Verbrennungsmotors verringert ist.
Diese Aufgabe wird nach dem Kennzeichenteil des Anspruchs 1 gelöst.
Die obere Arbeitsgrenztemperatur ist vorzugsweise gleich der verbrauchsgünstigsten Betriebstemperatur des Verbrennungsmotors und ist geringfügig kleiner als die maximal zulässige Betriebstemperatur des Verbrennungsmotors. Vorzugsweise liegt die obere Arbeitsgrenztemperatur über 100°C, insbesondere bei ca. 105°C. Die maximal zulässige Betriebstemperatur ist die höchstmögliche Temperatur, mit der der Verbrennungsmotor im Normalbetrieb über längere Zeit störungsfrei betrieben werden kann. Dadurch wird auch bei Ausfall der elektrischen Beheizung des Dehnstoffelementes eine Beschädigung des Verbrennungsmotors verhindert. Üblicherweise liegt die maximal zulässige Betriebstemperatur zwischen 105°C und 120°C.
Wird das Dehnstoffelement nicht elektrisch beheizt, stellt sich ein Öffnungsquerschnitt zum Kühler hin ausschließlich in Abhängigkeit von der Kühlmitteltemperatur des Verbrennungsmotors ein. Dieser öffnungsquerschnitt bewirkt ein Einregeln der Kühlmitteltemperatur auf die definierte obere Arbeitsgrenztemperatur. Dabei wird das Dehnstoffelement, z. B. durch Auswahl eines entsprechenden temperaturabhängigigen Materials und einer geeigneten konstruktiven Ausgestaltung, so ausgelegt, daß bei der definierten oberen Arbeitsgrenztemperatur der öffnungsquerschnitt des Kühlers noch nicht maximal ist, d. h. kein reiner Kühlerbetrieb erreicht wird. So ist durch zusätzliches Beheizen des Dehnstoffelements eine weitere Vergrößerung des öffnungsquerschnittes und damit eine Verlagerung in Richtung zum Kühlerbetrieb hin möglich.
Ergänzend sei darauf hingewiesen, daß der öffnungsquerschnitt zum Kühler hin und der öffnungsquerschnitt zu dem den Kühler umgehenden Kurzschluß hin gegensinnig verändert werden.
Durch die erfindungsgemäße Kühlanlage wird im Normalbetrieb, d. h. nicht bei erhöhter Leistungsanforderung, wie z. B. im Vollastbetrieb der Brennkraftmaschine oder bei Bergfahrt des von der Brennkraftmaschine angetriebenen Kraftfahrzeuges, eine möglichst hohe Betriebstemperatur des Verbrennungsmotors erreicht. Dabei ist beispielsweise aufgrund von geringerer Reibung die Leistungsaufnahme des Verbrennungsmotors geringer, wodurch sich der Kraftstoffverbrauch senken und die Abgaszusammensetzung verbessern läßt. Um jedoch dann, wenn der Betriebszustand des Verbrennungsmotors durch erhöhte Leistungsanforderung ein niedrigeres Kühlmitteltemperaturniveau erfordert, schnell auf dieses Kühlmitteltemperaturniveau umschalten zu können, ist erfindungsgemäß ein Temperaturschalter vorgesehen, der abhängig von der am oder in Nähe des Kühlerausgangs erfaßten Kühlmitteltemperatur elektrische Energie dem beheizbaren Dehnstoffelement in dem Sinne zuführt, daß eine erhöhte Kühlleistung durch weiteres öffnen des Thermostatventils erhalten wird und damit eine verringerte Kühlmitteltemperatur schnell erreicht wird. Zu hohe Kühlmittel bzw. Brennkraftmaschinen-Temperaturen bei erhöhter Leistungsanforderung würden zu einem verringerten Füllungsgrad und damit zu einer verringerten Leistung der Brennkraftmaschine führen.
Der Vorteil der erfindungsgemäßen Kühlanlage gegenüber der in der noch nicht veröffentlichten deutschen Patentanmeldung P 43 24 178 beschriebenen Kühlanlage besteht darin, daß in Abhängigkeit von unterschiedlichen Leistungsanforderungen an die Brennkraftmaschine verschiedene Kühlmitteltemperaturniveaus mit Hilfe eines einfachen Temperaturschalters unter Verzicht auf ein technisch aufwendiges und kostspieliges elektronisches Steuergerät erreicht werden können. Damit bietet sich die erfindungsgemäße Kühlanlage insbesondere für einen Verbrennungsmotor für Kraftfahrzeuge des unteren Preissegmentes an. Ein weiterer Vorteil der erfindungsgemäßen Kühlanlage besteht darin, daß auf die aufwendige und kostenintensive Erfassung von Betriebs- und Umweltgrößen des Verbrennungsmotors verzichtet werden kann.
Die Beheizung des Dehnstoffelementes kann beispielsweise zeitgesteuert nach einer bestimmten vorgegebenen Zeit wieder abgeschaltet werden.
Bei der Erfindung ist ein Zweipunktschalter als Temperaturschalter vorgesehen, dessen oberer Schaltpunkt im Bereich von 55°C bis 75°C, vorzugsweise bei 65°C liegt und dessen unterer Schaltpunkt minimal 5°C und maximal 50°C unterhalb des oberen Schaltpunktes liegt. Bei dieser Ausgestaltung der Erfindung wird die Beheizung des Dehnstoffelementes wieder abgeschaltet, wenn die am oder in Nähe des Kühlerausgangs erfaßte Kühlmitteltemperatur den unteren Schaltpunkt des Zweipunktschalters unterschreitet.
Im folgenden wird die Erfindung anhand eines Ausführungsbeispieles näher erläutert.
Es zeigen
Fig. 1
eine erfindungsgemäße Kühlanlage für eine Brennkraftmaschine in schematischer Darstellung und
Fig. 2 oben
einen mit der erfindungsgemäßen Kühlanlage gewonnenen Verlauf der Kühlmitteltemperatur am Ausgang des Kühlers der Brennkraftmaschine sowie
unten
den dazugehörigen Heizspannungsverlauf für die Beheizung des Dehnstoffelementes des Thermostatventiles der erfindungsgemäßen Kühlanlage.
Die in Fig. 1 dargestellte Kühlanlage für einen Verbrennungsmotor 1 umfaßt einen Kühler 2. Zwischen dem Verbrennungsmotor 1 und dem Kühler 2 ist eine Kühlmittelpumpe 3 angeordnet, die eine Strömung des Kühlmittels in die mit Pfeilen dargestellte Richtung erzeugt. Vom Kühlmittelaustritt 4 des Verbrennungsmotors 1 führt eine Vorlaufleitung 5 zum Kühlmitteleingang 6 des Kühlers 2. Vom Kühlmittelaustritt oder -ausgang 7 des Kühlers 2 führt zum Kühlmitteleintritt 8 des Verbrennungsmotors 1 eine Rücklaufleitung 9. In der Rücklaufleitung 9 ist ein Thermostatventil 10 mit einem hier nicht dargestellten Dehnstoffelement angeordnet. Ferner ist in der Rücklaufleitung 9 ein Temperaturschalter in Form eines Zweipunktschalters 11 vorgesehen. Der Zweipunktschalter 11 steuert die Beheizung des Dehnstoffelementes des Thermostatventils 10 in Abhängigkeit von der am oder in Nähe des Kühlerausgangs 7 erfaßten Kühlmitteltemperatur indem eine elektrische Heizspannung U an ein Heizelement des Dehnstoffelementes des Thermostatventils 10 angelegt wird. Das Thermostatventil 10 ist ferner über eine Kurzschlußleitung 12 mit der Vorlaufleitung 5 verbunden.
Die Kühlanlage arbeitet im wesentlichen in drei Betriebsweisen. In einer ersten Betriebsweise, dem sog. Warmlaufbetrieb, insbesondere nach dem Kaltstart des Verbrennungsmotors 1, ist das Thermostatventil 10 so eingestellt, daß die vom Verbrennungsmotor 1 kommende Kühlmittel strömung über die Kurzschlußleitung 12 im wesentlichen vollständig zum Verbrennungsmotor 1 zurückgeführt wird. In einer zweiten Betriebsweise arbeitet die Kühlanlage im Mischbetrieb, d. h. das vom Verbrennungsmotor 1 kommende Kühlmittel läuft teilweise durch den Kühler 2 und teilweise über die Kurzschlußleitung 12 zurück zum Verbrennungsmotor 1. In einer dritten Betriebsweise arbeitet die Kühlanlage im Kühlerbetrieb, d. h. das vom Verbrennungsmotor 10 kommende Kühlmittel wird im wesentlichen vollständig durch den Kühler 2 hindurch zum Verbrennungsmotor 1 zurückgeführt.
Die Betriebsweise der Kühlanlage kann durch Beheizung des Dehnstoffelementes des Thermostatventils 10 durch Ansteuerung über eine elektrische Leitung 13, durch die das Thermostatventil 10 mit dem Zweipunktschalter 11 elektrisch verbunden ist, in Richtung des Kühlerbetriebs verstellt oder vollständig auf Kühlerbetrieb umgeschaltet werden. Damit verringert sich das Temperaturniveau des Kühlmittels gegenüber dem mit einer Betriebsweise ohne Beheizung des Dehnstoffelementes erreichten Temperaturniveau. Wird danach die Beheizung des Dehnstoffelementes des Thermostatventiles 10 durch Ansteuerung durch den Zweipunktschalter 11 über die elektrische Leitung 13 wieder unterbrochen, so kühlt das jetzt kühlere Kühlmittel das Dehnstoffelement des Thermostatventils 10 ab bis es eine eingeregelte Endstellung im Mischbetrieb einnimmt, so daß die Kühlmitteltemperatur wieder auf eine Endtemperatur angehoben wird. Die eingeregelte Endtemperatur im Mischbetrieb wird auf die obere Arbeitsgrenztemperatur festgelegt.
Die Versorgung des Thermostatventils 10 mit elektrischer Energie wird durch den Zweipunkttemperaturschalter 11 über die elektrische Leitung 13 in Abhängigkeit von der am oder in Nähe des Kühlerausgangs 7 erfaßten Kühlmitteltemperatur gesteuert. Da die Kühlmitteltemperatur am oder in Nähe des Kühlerausgangs 7 in sehr guter Näherung den Belastungszustand der Brennkraftmaschine 1 wiedergibt, eignet sich diese Kühlmitteltemperatur am oder in Nähe des Kühlerausgangs 7 sehr gut zur Steuerung der Beheizung des Dehnstoffelementes des Thermostatventils 10. Dies ist die Grundlage dafür, daß die Steuerung der Beheizung des Dehnstoffelementes des Thermostatventils in konstruktiv sehr einfacher und damit sehr kostengünstiger Weise durch einen einfachen Temperaturschalter, vorzugsweise einen Zweipunkttemperaturschalter erfolgen kann. Es ist damit nicht erforderlich, verschiedene Betriebs- und/oder Umweltgrößen des Verbrennungsmotors 1 zu erfassen und in einem teueren elektronischen Steuergerät zur Steuerung der Beheizung des Dehnstoffelementes des Thermostatventils 10 zu verarbeiten.
In Fig. 2 oben ist in einem Diagramm die Kühlmitteltemperatur T über der Zeit t bei Vollast des Verbrennungsmotors 1 (Fig. 1) dargestellt, wie er sich mittels der erfindungsgemäßen Kühlanlage erreichen läßt. Das Dehnstoffelement des Thermostatventils 10 (Fig. 1) wird beispielsweise durch die Zusammensetzung des Dehnstoffes auf eine obere Arbeitsgrenztemperatur ausgelegt, die hier beispielsweise einer Kühltemperatur von ca. 105°C im eingeregelten Mischbetrieb entspricht. Diese Kühlmitteltemperatur von ca. 105°C wird jedoch nur im Teillastbetrieb des Verbrennungsmotors erreicht, bei dem es zweckmäßig ist, durch Verminderung von Reibung den Kraftstoffverbrauch zu reduzieren und gleichzeitig die Abgaszusammensetzung zu verbessern. Grundsätzlich soll die Kühlmitteltemperatur zur Verbrauchsoptimierung immer so heiß wie möglich aber bei Leistungsanforderungen im Vollastbereich zur Verbesserung der Zylinderfüllung so kühl wie möglich sein.
Das Dehnstoffelement des Thermostatventiles 10 ist so ausgelegt, daß bei hier ca. 105°C der mögliche Verstellweg des Thermostatventils bzw. der maximal mögliche Öffnungsquerschnitt noch nicht eingestellt ist. So kann bei Vollast des Verbrennungsmotors das Dehnstoffelement des Thermostatventils 10 (Fig. 1) derart beheizt werden, daß zur möglichst schnellen Verringerung der Kühlmitteltemperatur ein maximaler Öffnungsquerschnitt zum Kühler hin eingestellt wird und dadurch vollständig in den Kühlerbetrieb übergegangen wird. Der Vollastbetrieb wird bei der erfindungsgemäßen Kühlanlage durch den Temperaturschalter in Form des Zweipunktschalters 11 (Fig. 1) erfaßt. Wenn aufgrund einer starken Beanspruchung des Verbrennungsmotors die Kühlmitteltemperatur am oder in Nähe des Kühlerausgangs 7 (Fig. 1), wie in Fig. 2 oben beim Punkt A gezeigt, die kritische obere Temperaturschwelle von 65°C und damit den oberen Schaltpunkt überschreitet, wird wie in Fig. 2 unten dargestellt, zum Zeitpunkt t1 die Heizspannung U zum Beheizen des Dehnstoffelementes des Thermostatventiles 10 an das Heizelement des Dehnstoffelementes so lange angelegt, bis die Temperatur des Kühlmittels am oder in Nähe des Kühlerausgangs 7 (Fig. 1) die in Fig. 2 oben dargestellte untere Temperaturschwelle von 60°C und damit den unteren Schaltpunkt des Temperaturschalters 11 erreicht. Dann wird, wie in Fig. 2 unten dargestellt, zum Zeitpunkt t2, d. h. nach einer zeitspanne Δ t die Beheizung des Dehnstoffelementes des Thermostatventils 10 (Fig. 1) wieder unterbrochen. Dies hat die Folge, daß die Kühlmitteltemperatur am oder in Nähe des Kühlerausgangs 7 (Fig. 1) wieder so lange langsam ansteigt, bis die obere Temperaturschwelle von 65°C wieder erreicht ist, und der Zeitpunktschalter 11 (Fig. 1) mit Erreichen seines oberen Schaltpunktes die Spannung U wieder an das Heizelement zur Beheizung des Dehnstoffelementes des Thermostatventiles 10 (Fig. 1) erneut anlegt.
Der erfindungsgemäßen Kühlanlage liegt die Erkenntnis zugrunde, daß die Kühlmitteltemperatur am oder in Nähe des Ausgangs 7 des Kühlers 2 in sehr guter Annäherung ein Maß für die Belastung des Verbrennungsmotors 1 darstellt. Diese Erkenntnis wird bei der erfindungsgemäßen Kühlanlage dadurch genutzt, daß am oder in unmittelbarer Nähe des Ausgangs 7 des Kühlers 2 ein Temperaturschalter in Form eines Zweipunktschalters 11 vorgesehen ist, der die belastungsabhängige Beheizung des Dehnstoffelementes des Thermostatventiles 10 im Vollastbetrieb des Verbrennungsmotors 1 steuert. Bei dieser einfachen Art der Steuerung der Beheizung des Dehnstoffelementes des Thermostatventiles 10 kann auf die kostenintensive Erfassung der Betriebs- und Umweltgrößen des Verbrennungsmotors 1 sowie ferner auf ein teueres elektronisches Steuergerät verzichtet werden. Die erfindungsgemäße Kühlanlage eignet sich daher insbesondere für Kraftfahrzeuge des unteren Preissegmentes.

Claims (1)

  1. Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Kühler und einem Thermostatventil, mit dem die Temperatur des Kühlmittels in einem Warmlaufbetrieb, einem Mischbetrieb und einem Kühlerbetrieb regelbar ist, wobei das Thermostatventil ein Dehnstoffelement enthält, das zum Reduzieren der Kühlmitteltemperatur elektrisch beheizbar ist,
    dadurch gekennzeichnet, daß sich durch Auslegung des Dehnstoffelementes die Kühlmitteltemperatur ohne Beheizung des Dehnstoffelementes im Mischbetrieb auf eine obere Arbeitsgrenztemperatur einregelt und daß ein Temperaturschalter (11) vorgesehen ist, der abhängig von der am oder in Nähe des Kühlerausgangs (7) erfaßten Kühlmittelltemperatur (T) die Beheizung des Dehnstoffelementes bei Bedarf freigibt, um die Betriebsweise der Kühlanlage zum Kühlerbetrieb hin zu verlagern, wobei
    der Temperaturschalter (11) ein Zweipunktschalter ist, dessen oberer Schaltpunkt im Bereich von 55°C bis 75°C, vorzugsweise bei 65°C liegt und dessen unterer Schaltpunkt minimal 5°C und maximal 50°C unterhalb des oberen Schaltpunktes liegt.
EP95100448A 1994-01-20 1995-01-13 Kühlanlage für eine Brennkraftmaschine Expired - Lifetime EP0664383B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4401620 1994-01-20
DE4401620A DE4401620A1 (de) 1994-01-20 1994-01-20 Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil, das ein elektrisch beheizbares Dehnstoffelement enthält

Publications (2)

Publication Number Publication Date
EP0664383A1 EP0664383A1 (de) 1995-07-26
EP0664383B1 true EP0664383B1 (de) 1998-09-09

Family

ID=6508338

Family Applications (1)

Application Number Title Priority Date Filing Date
EP95100448A Expired - Lifetime EP0664383B1 (de) 1994-01-20 1995-01-13 Kühlanlage für eine Brennkraftmaschine

Country Status (4)

Country Link
US (1) US5555854A (de)
EP (1) EP0664383B1 (de)
DE (2) DE4401620A1 (de)
ES (1) ES2127949T3 (de)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737143B (zh) * 2009-11-30 2012-05-09 中国广东核电集团有限公司 一种控制电机冷却系统启动的系统

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE19504893B4 (de) * 1995-02-14 2004-12-30 Bayerische Motoren Werke Ag Kühlmitteltemperatur-Regelsystem für die Kühlanlage eines Verbrennungsmotors
US5657722A (en) * 1996-01-30 1997-08-19 Thomas J. Hollis System for maintaining engine oil at a desired temperature
US5582138A (en) * 1995-03-17 1996-12-10 Standard-Thomson Corporation Electronically controlled engine cooling apparatus
DE19606202B4 (de) * 1996-02-21 2010-07-01 Behr Thermot-Tronik Gmbh Kühlsystem für einen Verbrennungsmotor
IT1291190B1 (it) * 1997-03-13 1998-12-29 Gate Spa Sistema di raffreddamento per un motore a combustione interna, particolarmente per autoveicoli
DE19725222A1 (de) * 1997-06-15 1998-12-17 Behr Thermot Tronik Gmbh & Co Thermostatventil
JPH11294163A (ja) * 1998-04-07 1999-10-26 Nippon Thermostat Kk 内燃機関の冷却制御装置
DE10016405A1 (de) * 2000-04-01 2001-10-11 Bosch Gmbh Robert Kühlkreislauf
US6595165B2 (en) 2000-11-06 2003-07-22 Joseph Fishman Electronically controlled thermostat
CA2325168A1 (en) 2000-11-06 2002-05-06 Joseph Fishman Electronically controlled thermostat
KR100589140B1 (ko) * 2003-09-20 2006-06-12 현대자동차주식회사 차량의 냉각시스템 제어방법
US7171955B2 (en) * 2003-10-20 2007-02-06 Perkins Michael T Flowing fluid conditioner
US8215381B2 (en) * 2009-04-10 2012-07-10 Ford Global Technologies, Llc Method for controlling heat exchanger fluid flow
JP2017078346A (ja) * 2015-10-20 2017-04-27 いすゞ自動車株式会社 ディーゼルエンジン
FR3088960B1 (fr) * 2018-11-23 2023-12-29 Psa Automobiles Sa Procede de limitation d’une temperature de fluide de refroidissement d’un moteur thermique

Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640753A1 (de) * 1993-07-19 1995-03-01 Bayerische Motoren Werke Aktiengesellschaft Kühlanlage für einen Brennkraftmaschine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2816711A (en) * 1955-07-07 1957-12-17 James A Woods Temperature control of coolant circulation
FR2456838A1 (fr) * 1979-05-18 1980-12-12 Sev Marchal Vanne a action thermostatique destinee a un circuit de refroidissement de moteur a combustion interne
DE3315308A1 (de) * 1983-04-27 1984-10-31 Gustav Wahler Gmbh U. Co, 7300 Esslingen Kuehlwasserregler fuer brennkraftmaschinen
DE3347002C1 (de) * 1983-12-24 1985-05-15 Bayerische Motoren Werke AG, 8000 München Temperaturregler-Einsatz fuer den Kuehlkreis fluessigkeitsgekuehlter Brennkraftmaschinen
JPS63124821A (ja) * 1986-11-14 1988-05-28 Mazda Motor Corp エンジンの冷却装置
DE3705232C2 (de) * 1987-02-19 1996-01-18 Wahler Gmbh & Co Gustav Verfahren und Einrichtung zur Temperaturregelung des Kühlmittels von Brennkraftmaschinen
EP0557113B1 (de) * 1992-02-19 1999-05-26 Honda Giken Kogyo Kabushiki Kaisha Maschinenkühlanlage

Patent Citations (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0640753A1 (de) * 1993-07-19 1995-03-01 Bayerische Motoren Werke Aktiengesellschaft Kühlanlage für einen Brennkraftmaschine

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101737143B (zh) * 2009-11-30 2012-05-09 中国广东核电集团有限公司 一种控制电机冷却系统启动的系统

Also Published As

Publication number Publication date
DE4401620A1 (de) 1995-07-27
DE59503471D1 (de) 1998-10-15
ES2127949T3 (es) 1999-05-01
EP0664383A1 (de) 1995-07-26
US5555854A (en) 1996-09-17

Similar Documents

Publication Publication Date Title
EP0640753B1 (de) Kühlanlage für eine Brennkraftmaschine
EP0664383B1 (de) Kühlanlage für eine Brennkraftmaschine
DE19606202B4 (de) Kühlsystem für einen Verbrennungsmotor
DE3810174C2 (de) Einrichtung zur Regelung der Kühlmitteltemperatur einer Brennkraftmaschine, insbesondere in Kraftfahrzeugen
DE3440504C2 (de)
DE3601532C2 (de)
DE4033261C2 (de) Temperaturgesteuerter Kühlkreis einer Verbrennungskraftmaschine
DE3018682C2 (de)
EP0744539B1 (de) Kühlanlage mit einem elektrisch regelbarem Stellglied
EP0512298B1 (de) Heizanlage für Fahrzeuge
DE10224063A1 (de) Verfahren zur Wärmeregulierung einer Brennkraftmaschine für Fahrzeuge
DE19728814A1 (de) Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges
WO2006066713A1 (de) System und verfahren zum temperieren eines motoröls einer brennkraftmaschine eines kraftfahrzeugs
DE10253469A1 (de) Thermostatventil für ein Kühlsystem einer Brennkraftmaschine
EP0128365B2 (de) Vorichtung zum Kühlen eines Verbrennungsmotors
EP1524418A1 (de) Verfahren zum Ansteuern eines Lüfters mit mehreren Kennlinien und Steuerungsprogramm für die Leistungssteuerung des Lüfters
DE19500648B4 (de) Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeuges mit einem Thermostatventil
DE4131357C1 (en) IC engine cooling installation with engine-driven pump - has electrically driven second pump with external line contg. two thermostatic valves
WO1998015726A1 (de) Verfahren und steuerung zur regelung des kühlkreislaufes eines fahrzeuges mittels einer thermisch geregelten wasserpumpe
EP1528232A1 (de) Kühlanlage für einen Verbrennungsmotor eines Kraftfahrzeugs
DE4321636B4 (de) Hydraulischer Lüfterantrieb für eine Kühlanlage einer Brennkraftmaschine
DE4123678C2 (de) Verfahren zur Regelung einer Heizung für Kraftfahrzeuge
EP1523612B1 (de) VERFAHREN UND VORRICHTUNG ZUR REGELUNG DER TEMPERATUR EINES KüHLMITTELS EINER BRENNKRAFTMASCHINE
EP1029722B1 (de) Heizungskreislauf für Kraftfahrzeuge
EP0688942B1 (de) Kühlvorrichtung für einen flüssigkeitsgekühlten Verbrennungsmotor eines Kraftfahrzeuges

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): DE ES FR GB IT

17P Request for examination filed

Effective date: 19950614

17Q First examination report despatched

Effective date: 19961128

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): DE ES FR GB IT

GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 19980910

REF Corresponds to:

Ref document number: 59503471

Country of ref document: DE

Date of ref document: 19981015

ET Fr: translation filed
REG Reference to a national code

Ref country code: FR

Ref legal event code: CD

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BEHR THERMOT-TRONIK GMBH & CO.

Owner name: BAYERISCHE MOTOREN WERKE AKTIENGESELLSCHAFT

REG Reference to a national code

Ref country code: ES

Ref legal event code: FG2A

Ref document number: 2127949

Country of ref document: ES

Kind code of ref document: T3

PLBQ Unpublished change to opponent data

Free format text: ORIGINAL CODE: EPIDOS OPPO

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

26 Opposition filed

Opponent name: GUSTAV WAHLER GMBH U. CO

Effective date: 19990527

RAP2 Party data changed (patent owner data changed or rights of a patent transferred)

Owner name: BEHR THERMOT-TRONIK GMBH & CO.

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: 732E

REG Reference to a national code

Ref country code: FR

Ref legal event code: TP

PLBO Opposition rejected

Free format text: ORIGINAL CODE: EPIDOS REJO

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20001117

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: ES

Payment date: 20080125

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20080124

Year of fee payment: 14

Ref country code: GB

Payment date: 20080123

Year of fee payment: 14

Ref country code: DE

Payment date: 20080123

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20080118

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20090113

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: DE

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090801

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20091030

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090113

REG Reference to a national code

Ref country code: ES

Ref legal event code: FD2A

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090202

Ref country code: ES

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090114

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20090113