EP0661447B1 - Dieselmotor mit direkter Kraftstoffeinspritzung - Google Patents

Dieselmotor mit direkter Kraftstoffeinspritzung Download PDF

Info

Publication number
EP0661447B1
EP0661447B1 EP94120612A EP94120612A EP0661447B1 EP 0661447 B1 EP0661447 B1 EP 0661447B1 EP 94120612 A EP94120612 A EP 94120612A EP 94120612 A EP94120612 A EP 94120612A EP 0661447 B1 EP0661447 B1 EP 0661447B1
Authority
EP
European Patent Office
Prior art keywords
injection
bores
small
nozzle
diesel engine
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
EP94120612A
Other languages
English (en)
French (fr)
Other versions
EP0661447A1 (de
Inventor
Ralph-Michael Dr.-Ing. Schmidt
Christoph Dr.-Ing. Teetz
Martin Dipl.-Ing. Rauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
MTU Motoren und Turbinen Union Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6505891&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0661447(B1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MTU Friedrichshafen GmbH, MTU Motoren und Turbinen Union Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP0661447A1 publication Critical patent/EP0661447A1/de
Application granted granted Critical
Publication of EP0661447B1 publication Critical patent/EP0661447B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1826Discharge orifices having different sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to a diesel engine with direct fuel injection with the in the preamble of claim 1 mentioned generic features.
  • the Bore spacing is chosen so that the individual injection jets even with strong Drift cannot overlap.
  • An injection nozzle of this type is known from EP 0 246 373 B1 and therein as an assembly described an entire fuel injector.
  • this known injection nozzle a total of three injection openings at equal distances from one another laterally on the circumference of the nozzle body.
  • the three injection openings are opened or closed and so regulates the amount of fuel to be injected.
  • the specified injection pressure is the maximum amount of fuel that can be injected through the entire fuel Cross-sectional area of the three injection openings of the same size are defined.
  • the above described overlap of the predetermined by the injection openings and from Combustion air vortices are blown by the angular distance of each Avoided 120 °.
  • This known injection nozzle is due to its structural and functional so far explained Properties with the disadvantages that differ from the few, each Diameter-equal opening areas of the injection openings a relatively small Total opening area and thus result in relatively long injection times. Furthermore, the Air utilization during the combustion process of this swirl process with the usual three to five Injection openings small.
  • Each of the three to five is there conventional nozzle holes replaced by at least two replacement holes, the Cross-sectional sum essentially the cross-section of the replaced conventional Corresponds to the nozzle bore.
  • These replacement holes are each arranged in pairs so that their resulting beam direction with the beam direction of the conventionally designed Injection hole matches, but the core zones of their jet cones do not overlap. This will improve fuel atomization and therefore better Air utilization achieved at lower speeds and low swirl, with increasing swirl However, the core zones of the injection jets also overlap, resulting in soot formation Has.
  • a two-stage multi-hole injection nozzle is known, as in swirl-free jet injection process is used.
  • the flow rate and shape are the Injection bores matched to one another in such a way that the best possible jet atomization is achieved for shorter ignition delay times. Even a small swirl would cause the injection jets blow into each other and so lead to disadvantageous soot formation.
  • the invention is based on the problem with an injection nozzle of the type mentioned Shorter injection times and / or improved air utilization with a simultaneous reduction To allow soot emissions.
  • the invention is based on a generic Injection nozzle given by the features of claim 1.
  • each pair of injection jets has a large combustion chamber sector up to that adjacent injection jet pair available, in which the fuel due to a strong Air swirls can be blown away.
  • the overall cross-sectional area thus increased enables a significantly larger area Fuel flow than with conventional injectors, so that with conventional Injection pressure ratios the intended amount of fuel in a much shorter Duration than previously can be injected into the combustion chamber.
  • This shorter injection period creates the advantage of a shorter burning time, which makes the effective specific Fuel consumption can be reduced.
  • Another significant advantage of the configuration of the injection openings according to the invention is that this achieved even distribution of the fuel into the air, resulting in a more homogeneous mixing and a much better result Air utilization in the cylinder leads.
  • the combination of small and large has an effect here Injection orifices are particularly advantageous because you can use constant injection pressure with small Injection openings generally achieve a finer atomization than with large openings.
  • the axes of the large and small Injection openings each lie on different concentric conical shells, the Opening angles are different.
  • injection ratios of an otherwise not shown are schematic Internal combustion engine shown. Opposite the piston, the injector 4 is coaxial with Piston center axis 5 arranged and not together with their nozzle holder in the drawing screwed into the cylinder head. Contrary to that shown here The coaxial arrangement of the injection nozzle is also any other placement of the nozzle in the cylinder possible without affecting the advantages achieved by the invention.
  • the piston 1 has a piston recess 2, which does not necessarily have to have the shape shown, but in any shape depending on the desired flow conditions can be.
  • the piston 1 is in its top dead center position (TDC), in which the Upper piston edge 14 is so far in the direction of the injector 4 that it at least partially protrudes into the piston recess 2.
  • the injection nozzle 4 which is designed here as a blind hole nozzle, is at a distance from Injection nozzle tip distributed over a circumferential line as injection bores 8, 9, 15, 16 trained injection openings.
  • the injection bores 8, 9, 15, 16, more precisely the mouth openings of these Injection bores 8, 9, 15, 16 lie on the common circumferential line, while the Center lines 10, 17 of the large injection bores 8, 15 lie on a conical surface 6 and the center lines 11, 18 of the small injection bores 9, 16 lie on a conical surface 7.
  • the opening angle ⁇ 1 of this conical outer surface 6 is chosen larger than that Opening angle ⁇ 2 of the surface of the cone 7.
  • the emerging injection jets are in Direction directed to the piston recess 2 when the piston is in its top dead center position located as shown in Figure 1.
  • FIGS. 2a and 2b each show an embodiment of the injection nozzle 4 according to the invention shown as a section along the section line II-II in Figure 1, with the holes simplified in are shown lying on one level.
  • These figures show the respective arrangement of the mouths of the injection bores 8, 9, 15, 16 on the common circumferential line of the injection nozzle 4.
  • the injection bores 8, 9, 15, 16 are each as fine bores in the injector tip manufactured.
  • the shape of the injection bores 8, 9, 15, 16 is, however, not mandatory on the Training as a bore is restricted, but other shapes and forms can be used be provided, which are suitable for generating desired inlet flow conditions.
  • the diameter of the large injection bores 8 and small injection bores 9 are dimensioned so that due to the intended Injection pressure through the individual injection bores 8, 9, 15, 16 forming fuel flow can each form an injection jet 22, 23, as shown in FIG. 4.
  • FIG. 3 shows an injection pattern as is the case with conventional injection nozzles each have the same size injection openings, here 6 pieces.
  • the inflowing Combustion air was previously rotated using a corresponding inflow channel offset that an air vortex forms in the combustion chamber. This by means of the so-called swirl channel Special inflow channel with a large swirl of air is usually centralized by introduced into the combustion chamber at the top. The inflowing air pulls the fuel with it and thereby blows the injection jets 21 and 22, 23 away from those in FIGS. 3 and 4 injection lobes shown.
  • the diameters of these injection bores are chosen so that the individual blows Injection jets 21 do not overlap each other. However, as can be clearly seen from FIG. 3, Areas are formed in the areas between two adjacent injection jets 21, in which no fuel is mixed with air. The air present in these areas is therefore also not used in the combustion. This is where the invention begins and provides that seen in the swirl direction, the small injection bore 9 or 16 adjacent to the large one Injection bore 8 and 15, and that the circumferential angular distance 12 and 19 of the small Injection bore 9 or 16 of the large injection bore 8 or 15 is smaller than or equal to half the circumferential angular distance 13 or 20 of the large injection bores 8 or 15 among themselves. As a result, as shown with the injection pattern of FIG.
  • the injection pattern shown in FIG. 4 is achieved, for example, with an injection nozzle, such as it is shown in Figure 2a.
  • an injection nozzle such as it is shown in Figure 2a.
  • Figure 2a For embodiments in which a particularly strong air swirl is provided in the combustion chamber, brings the embodiment shown in Figure 2b Injection nozzle according to the invention further improvement.
  • the large injection bores and the small injection bores in pairs evenly over the entire circumference of the injector 4 is arranged distributed. Due to the small angular distance 19 the center lines 17 and 18 of this pair of openings, the smaller
  • Injection jet deflected in the slipstream of the large injection jet without the lobe-shaped injection jets overlap.
  • this pair of injection jets has one compared to the larger combustion chamber sector shown in FIG. 4, in which the fuel can be blown away without interfering with the neighboring one Injection jet pair mixed.
  • the injection nozzle according to the invention thus enables the combustion air in the combustion chamber to be used much more extensively.
  • the injection nozzle according to the invention has a considerably enlarged total cross-sectional area of the injection openings, which means that the amount of fuel required in each case can be injected into the combustion chamber in a significantly shorter time t E.
  • This larger mass flow, or also flow rate v ⁇ , is depicted in FIG. 5 as a function of time over an overall injection process.
  • curve 26 represents the inflow rate of a conventional injection nozzle
  • curve 27 represents the injection rate, as is possible with the injection nozzle according to the invention.
  • the area enclosed under the respective curve 26, 27 and the time axis corresponds to the amount of fuel injected. If the injection nozzle is completely open after the PREMIX area, then the injection nozzle according to the invention enables the flow rate 27 to rise to a significantly higher maximum value than that of conventional nozzles. Furthermore, the injection process with the injection nozzle 4 according to the invention is completed significantly earlier t E than in the case of conventional injection nozzles t H due to its larger overall hole cross section. As a result of this comparison, the area center of gravity F E of the inflow rate of the nozzle according to the invention is clearly shifted forward by the distance s compared to the center of gravity F H of conventional nozzles.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Description

Die Erfindung betrifft einen Dieselmotor mit direkter Kraftstoffeinspritzung mit den im Oberbegriff des Anspruchs 1 genannten gattungsbildenden Merkmalen.
Es ist bekannt bei Dieselmotoren den Kraftstoff so in den Verbrennungsraum einzuspritzen, daß er sich vor und während der Verbrennung möglichst gleichmäßig auf die gesamte Verbrennungsluft verteilt. Hierbei dominiert die direkte kraftstoffeinspritzung nach dem Strahlzerstäubungsverfahren, bei dem der Kraftstoff aus einer Mehrlochdüse schräg nach unten in die Verbrennungsluft im Brennraum eingespritzt wird, wobei diese Luft beim Einströmen durch besondere Formgebung des Einlaßkanals in eine Drehbewegung um die Zylinderachse versetzt wurde. Durch die Rotation der Luft erfolgt die gewünschte Verteilung des Kraftstoffs auf den gesamten Brennraum, also auch auf Luft, die durch die Zerstäubung des Kraftstoffs beim Einspritzen durch Düsenbohrungen nicht unmittelbar getroffen wird.
Bedingt durch diese kreisende Luftströmung im Brennraum werden insbesondere bei Brennverfahren mit großem Drall die Einspritzstrahlen stark verweht. Überlappen sich die einzelnen verwehten Strahlen dabei, so bilden sich lokale Bereiche mit Kraftstoffüberschuß, die unter Sauerstoffmangel verbrennen. Die Folgen einer solchen unvollständigen Verbrennung sind hohe Rußemissionen. Damit die Einspritzstrahlen nicht in der beschriebenen Weise überlappend verweht werden, werden bei dieser Einspritzform
Einspritzdüsen mit einer begrenzten Anzahl von Einspritzbohrungen eingesetzt, deren Bohrungsabstand so gewählt ist, daß sich die einzelnen Einspritzstrahlen auch bei starker Verwehung nicht überlappen können.
Eine Einspritzdüse dieser Art ist durch die EP 0 246 373 B1 bekannt und darin als Baugruppe eines gesamten Kraftstoffeinspritzgeräts beschrieben. Bei dieser bekannten Einspritzdüse sind insgesamt drei Einspritzöffnungen in gleichmäßigen Abständen zueinander seitlich am Umfang des Düsenkörpers ausgebildet. Je nach Stellung eines als Hohlzylinder ausgebildeten Düsenverschlußelements, werden die drei Einspritzöffnungen geöffnet oder geschlossen und so die einzuspritzende Kraftstoffmenge reguliert. Bei vollkommen geöffneten Einspritzöffnungen und vorgegebenem Einspritzdruck ist die maximal einspritzbare Kraftstoffmenge durch die gesamte Querschnittsfläche der drei gleich groß ausgebildeten Einspritzöffnungen festgelegt. Das oben beschriebene Überlappen der durch die Einspritzöffnungen vorgegebenen und vom Verbrennungsluftwirbel verwehten Einspritzstrahlen wird hierbei durch den Winkelabstand von je 120° vermieden.
Diese bekannte Einspritzdüse ist aufgrund ihrer insoweit erläuterten baulichen und funktionellen Eigenschaften mit den Nachteilen behaftet, daß sich durch die wenigen, jeweils durchmessergleichen Öffnungsflächen der Einspritzöffnungen eine verhältnismäßig kleine Gesamtöffnungsfläche und dadurch relativ lange Einspritzdauern ergeben. Darüberhinaus ist die Luftausnutzung beim Verbrennungsvorgang dieses Drallverfahrens mit den üblichen drei bis fünf Einspritzöffnungen gering.
Eine verbesserte Luftausnutzung und eine Steigerung der Gemischbildungsgeschwindigkeit wird mit einer Mehrloch-Einspritzdüse für eine Diesel-Brennkraftmaschine erreicht, wie sie in der deutschen Gebrauchsmusterschrift G 85 21 912.6 offenbart ist. Dort ist jede der drei bis fünf herkömmlichen Düsenbohrungen durch mindestens zwei Ersatzbohrungen ersetzt, deren Querschnittssumme im wesentlichen dem Querschnitt der ersetzten herkömmlichen Düsenbohrung entspricht. Diese Ersatzbohrungen sind jeweils paarweise so angeordnet, daß ihre resultierende Strahlrichtung mit der Strahlrichtung der herkömmlich ausgebildeten Einspritzbohrung übereinstimmt, sich jedoch die Kernzonen ihrer Strahlkegel nicht überlappen. Damit wird zwar eine Verbesserung der Kraftstoffzerstäubung und damit eine bessere Luftausnutzung bei niedrigeren Drehzahlen und geringem Drall erreicht, mit zunehmendem Drall überschneiden sich jedoch auch die Kernzonen der Einspritzstrahlen, was Rußbildung zur Folge hat.
Ferner ist aus der FR 22 38 059 A eine Zwei-Stufen-Mehrlocheinspritzdüse bekannt, wie sie bei drallfreien Strahleinspritzverfahren zur Anwendung kommt. Dort sind große und kleine Einspritzbohrungen abwechselnd symmetrisch auf einer Düsenumfangslinie verteilt ausgebildet, von denen die großen eine erste Gruppe und die kleinen Einspritzbohrungen eine zweite Gruppe bilden und die Gruppe der kleinen Einspritzbohrungen zur Darstellung einer Piloteinspritzung dient. Bei jeder Gruppe von Einspritzbohrungen sind Durchflußrate und Gestalt der Einspritzbohrungen so aufeinander abgestimmt, daß eine möglichst optimale Strahlzerstäubung für kürzere Zündverzugszeiten erreicht wird. Selbst ein geringer Drall würde die Einspritzstrahlen ineinanderwehen und so zu nachteiliger Rußbildung führen.
Der Erfindung liegt das Problem zugrunde, bei einer Einspritzdüse der eingangs genannten Art kürzere Einspritzdauern und/oder eine verbesserte Luftausnutzung bei gleichzeitig verringertem Rußausstoß zu ermöglichen.
Zur Lösung dieser Aufgaben ist die Erfindung ausgehend von einer gattungsgemäßen Einspritzdüse durch die Merkmale des Patentanspruchs 1 gegeben.
Durch die paarweise gleichmäßig über den Gesamtumfang der Einspritzdüse verteilte Anordnung von großen und kleinen Einspritzöffnungen wird jeweils der kleine Einspritzstrahl im Windschatten des großen Einspritzstrahls abgelenkt, ohne daß sich die keulenförmigen Einspritzstrahlen überlappen. Andererseits hat jedes Einspritzstrahlpaar einen großen Brennraumsektor bis zu dem benachbarten Einspritzstrahlpaar zur Verfügung, in welchen der Kraftstoff infolge eines starken Luftdralls verweht werden kann.
Aus der abwechselnden Anordnung von großen und kleinen Einspritzöffnungen, wo jeweils zwischen zwei großen Einspritzöffnungen, wie sie bisher auch bei herkömmlichen Düsen dieser Art ausgebildet sind, erfindungsgemäß zusätzlich eine Einspritzöffnung mit kleinerem Öffnungsquerschnitt vorgesehen ist, resultiert der technische Vorteil, daß über die gesamte Einspritzdüse betrachtet eine weitaus größere Gesamtquerschnittsfläche aller Einspritzöffnungen an einer Düse erreicht wird als bei herkömmlichen Einspritzdüsen, ohne daß die dadurch festgelegten Einspritzstrahlen beim Einspritzen in den Luftwirbel auch nur teilweise ineinander geweht werden.
Die so vergrößerte Einspritz-Gesamtquerschnittsfäche ermöglicht einen bedeutend größeren Kraftstoffstrom, als bei herkömmliche Einspritzdüsen, so daß bei üblichen Einspritzdruckverhältnissen die vorgesehene Kraftstoffmenge in einer wesentlich kürzeren Zeitdauer als bisher in den Brennraum eingespritzt werden kann. Diese kürzere Einspritzdauer schafft den Vorteil einer kürzeren Brenndauer, wodurch der effektive spezifische Kraftstoffverbrauch gesenkt werden kann.
Ein weiterer wesentlicher Vorteil der erfindungsgemäßen Ausbildung der Einspritzöffnungen ist die dadurch erreichte gleichmäßige Verteilung des Kraftstoffs in die Luft, welche zu einer homogeneren Durchmischung und einer daraus resultierenden wesentlich besseren Luftausnutzung im Zylinder führt. Hierbei wirkt sich die Kombination von kleinen und großen Einspritzöffnungen besonders vorteilhaft aus, da man mit konstantem Einspritzdruck mit kleinen Einspritzöffnungen grundsätzlich eine feinere Zerstäubung erreicht als mit großen Öffnungen.
In einer Weiterbildung der Erfindung ist vorgesehen, daß die Achsen der großen und kleinen Einspritzöffnungen jeweils auf unterschiedlichen konzentrischen Kegelmänteln liegen, deren Öffnungswinkel verschieden sind. Als spezieller Vorteil dieser Ausführungsform erreicht man ein Einspritzmuster, welches ein überlappendes Verwehen der Einspritzstrahlen mit noch größerer Sicherheit ausschließt und gleichzeitig turbulente Strömungsverhältnisse für ein verbessertes Verwirbeln von Kraftstoff in der Verbrennungsluft im Brennraum unterstützt.
Die sich aus der homogenen Durchmischung und dem damit erreichten Verbrennungsablauf ergebende wesentlich verbesserte Luftausnutzung, wirkt sich in einer wesentlich geringeren Rußentwicklung bei ansonst gleichen Schadstoffemmissionen aus.
Ein Ausführungsbeispiel der Erfindung ist in der Zeichnungen dargestellt und wird im folgenden näher beschrieben. Es zeigen:
Fig. 1
schematisch die Anordnung von Einspritzdüse und Kolben in einer Querschnittsdarstellung;
Fig. 2a
eine Horizontalschnittdarstellung durch die Düse entlang des Schnittverlaufs II-II in Fig. 1 gemäß eines ersten Ausführungsbeispiels der Erfindung;
Fig. 2b
einen Horizontalschnittverlauf durch die Düse entlang des Schnittverlaufs II-II in Fig. 1 gemäß eines zweiten Ausführungsbeispiels der Erfindung;
Fig. 3
das Einspritzmuster einer herkömmlichen Mehrlochdüse in Draufsicht;
Fig. 4
das Einspritzmuster eines Ausführungsbeispiels der erfindungsgemäßen Einspritzdüse in Draufsicht;
Fig. 5
die Darstellung der Einspritzrate über der Zeit im Vergleich zu herkömmlichen Einspritzraten.
In Figur 1 sind schematisch Einspritzverhältnisse einer sonst nicht näher dargestellten Brennkraftmaschine gezeigt. Dem Kolben gegenüberliegend ist die Einspritzdüse 4 koaxial zur Kolbenmittelachse 5 angeordnet und zusammen mit ihrem Düsenhalter in der Zeichnung nicht näher dargestellter Weise in den Zylinderkopf eingeschraubt. Entgegen der hier dargestellten koaxialen Anordnung der Einspritzdüse ist auch jegliche andere Plazierung der Düse im Zylinder möglich, ohne daß die durch die Erfindung erzielten Vorteile beeinträchtigt werden.
Der Kolben 1 weist eine Kolbenmulde 2 auf, die nicht zwingend die dargestellte Form haben muß, sondern je nach den gewünschten Strömungsverhältnissen in jeder beliebigen Form ausgebildet sein kann. In Figur 1 befindet sich der Kolben 1 in seiner oberen Totpunktlage (OT), bei der die Kolbenoberkante 14 soweit in Richtung auf die Einspritzdüse 4 zu verschoben ist, daß diese zumindest teilweise in die Kolbenmulde 2 hineinragt.
Die Einspritzdüse 4, die hier als Sacklochdüse ausgebildet ist, weist im Abstand zur Einspritzdüsenspitze auf einer Umfangslinie verteilt mehrere als Einspritzbohrungen 8, 9, 15, 16 ausgebildete Einspritzöffnungen auf.
Die Einspritzbohrungen 8, 9, 15, 16, genauer gesagt die Mündungsöffnungen dieser Einspritzbohrungen 8, 9, 15, 16 liegen hierbei auf der gemeinsamen Umfangslinie, während die Mittellinien 10, 17 der großen Einspritzbohrungen 8, 15 auf einer Kegelmantelfläche 6 liegen und die Mittellinien 11, 18 der kleinen Einspritzbohrungen 9, 16 auf einer Kegelmantelfläche 7 liegen. Hierbei ist der Öffnungswinkel α1 dieser Kegelmantelfläche 6 größer gewählt, als der Öffnungswinkel α2 der Kegelmantelfläche 7. Dabei sind die austretenden Einspritzstrahlen in Richtung auf die Kolbenmulde 2 gerichtet, wenn sich der Kolben in seiner oberen Totpunktlage befindet, wie in Figur 1 dargestellt.
In den Figuren 2a und 2b ist jeweils eine Ausführungsform der erfindungsgemäßen Einspritzdüse 4 als Schnitt entlang des Schnittverlaufs II-II in Figur 1 dargestellt, wobei die Bohrungen vereinfacht in einer Ebene liegend dargestellt sind. Diese Figuren zeigen die jeweilige Anordnung der Mündungen der Einspritzbohrungen 8, 9, 15, 16 auf der gemeinsamen Umfangslinie der Einspritzdüse 4. Hierbei sind in der in Figur 2a dargestellten Ausführungsform insgesamt sechs Einspritzbohrungen 8 mit großem, herkömmlichem Durchmesser und sechs weitere Einspritzbohrungen 9 mit kleinerem Durchmesser in gleichmäßigem gegenseitigem Abstand über den Umfang der Einspritzdüse 4 verteilt angeordnet. Wie der Figur 2a zu entnehmen ist, ist hier jeweils eine kleine Einspritzbohrung 9 zwischen zwei großen Einspritzbohrungen 8 angeordnet, wobei der Umfangswinkelabstand 12, den die Mittellinien 10, 11 einer großen Einspritzbohrung 8 und einer kleinen Einspritzbohrung 9 zwischen sich einschließen, halb so groß ist, wie der Umfangswinkel 13, den die Mittellinien 10, 10 zweier benachbarter großer Einspritzbohrungen 8 miteinander bilden.
Die Einspritzbohrungen 8, 9, 15, 16 sind jeweils als Feinbohrungen in der Einspritzdüsenspitze hergestellt. Die Gestalt der Einspritzbohrungen 8, 9, 15, 16 ist jedoch nicht zwingend auf die Ausbildung als Bohrung eingeschränkt, sondern es können auch andere Formen und Gestalten vorgesehen sein, die geeignet sind, gewünschte Eintrittsströmungsverhältnisse zu erzeugen.
Erfindungswesentlich ist hierbei, daß die Durchmesser der großen Einspritzbohrungen 8 und der kleinen Einspritzbohrungen 9 so dimensioniert sind, daß der sich aufgrund des vorgesehenen Einspritzdruckes durch die einzelnen Einspritzbohrungen 8, 9, 15, 16 ausbildende Kraftstoffluß jeweils einen Einspritzstrahl 22, 23 bilden kann, wie er in Figur 4 dargestellt ist.
In Figur 3 ist ein Einspritzmuster dargestellt, wie es sich bei herkömmlichen Einspritzdüsen mit jeweils gleich großen Einspritzöffnungen, hier 6 Stück, ausbildet. Die einströmende Verbrennungsluft wurde zuvor mittels eines entsprechenden Einströmkanals so in Rotation versetzt, daß sich im Brennraum ein Luftwirbel bildet. Diese mittels des als Drallkanal bezeichneten speziellen Einströmungskanals mit einem großen Drall versetzte Luft wird üblicherweise zentral von oben in den Verbrennungsraum eingeleitet. Dabei reißt die einströmende Luft den Kraftstoff mit sich und verweht dadurch die Einspritzstrahlen 21 bzw. 22, 23 zu den in den Figuren 3 und 4 dargestellten Einspritzkeulen.
Die Durchmesser dieser Einspritzbohrungen sind so gewählt, daß sich die einzelnen verwehten Einspritzstrahlen 21 nicht gegenseitig überlappen. Wie jedoch aus der Figur 3 gut zu erkennen ist, bilden sich in den Gebieten zwischen zwei benachbarten Einspritzstrahlen 21 jeweils Bereiche aus, in denen kein Kraftstoff mit Luft gemischt wird. Die in diesen Bereichen vorhandene Luft wird daher auch nicht bei der Verbrennung mit ausgenutzt. Hier setzt nun die Erfindung ein und sieht vor, daß, in Drallrichtung gesehen, jeweils die kleine Einspritzbohrung 9 bzw. 16 benachbart vor der großen Einspritzbohrung 8 bzw. 15 liegt, und daß der Umfangswinkelabstand 12 bzw. 19 der kleinen Einspritzbohrung 9 bzw. 16 von der großen Einspritzbohrung 8 bzw. 15 kleiner oder gleich ist als der halbe Umfangswinkelabstand 13 bzw. 20 der großen Einspritzbohrungen 8 bzw. 15 untereinander. Folglich mündet, wie mit Einspritzmuster der Figur 4 gezeigt, in diese Lücken zwischen zwei benachbarten Einspritzstrahlen 22 jeweils ein kleinerer Einspritzstrahl 23, welcher sich beim Austritt des Kraftstoffs aus einer kleinen Einspritzbohrung 9, 16 bildet. Je nach Intensität des Luftwirbels sind die Durchmesser der Einspritzbohrungen 8, 9, 15, 16 so aufeinander abgestimmt, daß sich die großen und kleinen Einspritzstrahlen 22, 23 im verwehten Zustand zu einem flächenmäßig ergänzenden Einspritzmuster komplettieren, ohne daß sie sich dabei gegenseitig überlappen.
Das in Figur 4 dargestellte Einspritzmuster wird beispielsweise mit einer Einspritzdüse erreicht, wie sie in der Figur 2a dargestellt ist. Für Ausführungsformen, bei denen ein besonders starker Luftdrall im Verbrennungsraum vorgesehen ist, bringt die in der Figur 2b dargestellte Ausführungsform der erfindungsgemäßen Einspritzdüse weitere Verbesserung. Bei dieser Ausführungsform sind die großen Einspritzbohrungen und die kleinen Einspritzbohrungen jeweils paarweise gleichmäßig über den Gesamtumfang der Einspritzdüse 4 verteilt angeordnet. Durch den geringen Winkelabstand 19 der Mittellinien 17 und 18 dieses Öffnungspaares, wird jeweils der kleinere
Einspritzstrahl quasi im Windschatten des großen Einspritzstrahls abgelenkt, ohne daß sich die keulenförmigen Einspritzstrahlen überlappen. Andererseits hat dieses Einspritzstrahlpaar einen gegenüber dem in Figur 4 dargestellten Einspritzmuster größeren Brennraumsektor zur Verfügung, in welchem der Kraftstoff verweht werden kann, ohne daß er sich mit dem benachbarten Einspritzstrahlpaar durchmischt.
Wie aus einem Vergleich des Einspritzmusters nach Figur 3 und dem Muster nach Figur 4 hervorgeht, ermöglicht die erfindungsgemäße Einspritzdüse also eine wesentlich flächendeckendere Ausnutzung der Verbrennungsluft im Brennraum. Abgesehen von der flächendeckenden Einspritzform, steht bei der erfindungsgemäßen Einspritzdüse eine erheblich vergrößerte Gesamtquerschnittsfläche der Einspritzöffnungen zur Verfügung, wodurch die jeweils erforderliche Kraftstoffmenge in wesentlich kürzerer Zeit tE in den Brennraum eingespritzt werden kann. Dieser größere Massenstrom, oder auch Strömungsrate v ˙, ist in Figur 5 in Abhängigkeit der Zeit über einen Gesamteinspritzvorgang abgebildet. In diesem Diagramm stellt die Kurve 26 die Einströmrate einer herkömmlichen Einspritzdüse dar und der Kurvenverlauf 27 die Einspritzrate, wie sie mit der erfindungsgemäßen Einspritzdüse möglich ist. Die unter der jeweiligen Kurve 26, 27 und der Zeitachse eingeschlossene Fläche entspricht der Menge des eingespritzten Kraftstoffes. Ist die Einspritzdüse nach dem PREMIX-Bereich vollkommen geöffnet, dann ermöglicht die erfindungsgemäße Einspritzdüse gegenüber herkömmlichen Düsen einen wesentlich steileren Anstieg der Strömungsrate 27 auf einen deutlich höheren Maximalwert. Ferner ist der Einspritzvorgang mit der erfindungsgemäßen Einspritzdüse 4 aufgrund deren größeren Gesamtlochquerschnitts deutlich früher tE abgeschlossen als bei herkömmlichen Einspritzdüsen tH. Als Ergebnis dieses Vergleichs wird der Flächenschwerpunkt FE der Einströmrate der erfindungsgemäßen Düse gegenüber dem Schwerpunkt FH herkömmlicher Düsen um die Strecke s deutlich nach vorne verlagert.
Mit der erfindungsgemäßen Einspritzdüse 4 kann folglich eine größere Kraftstoffmenge innerhalb einer kürzerer Zeit in den Brennraum eingespritzt werden, ohne daß es in diesem zu lokalen Kraftstoffansammlungen und deshalb wegen unzureichender Luftausnutzung zu großen Ruß- und Schadstoffentwicklungen kommt.

Claims (5)

  1. Dieselmotor mit direkter Kraftstoffeinspritzung in eine mit Drall versetzte Verbrennungsluft im Brennraum (2), dem eine Einspritzdüse (4) zugeordnet ist, welche als Lochdüse ausgebildet ist und auf einer Düsenumfangslinie verteilt mehrere Mündungen von Einspritzöffnungen (8, 9; 15, 16) aufweist, wobei die Einspritzöffnungen (8, 9; 15, 16) jeweils paarweise gleichmäßig über die Düsenumfangslinie verteilt angeordnet sind, dadurch gekennzeichnet, daß eine abwechselnde Anordnung von großen und kleinen Einspritzöffnungen (8, 9; 15,16) vorgesehen ist, wobei die Durchmesser der Einspritzöffnungen (8, 9; 15, 16) so aufeinander abgestimmt sind, daß sich die Einspritzstrahlen aus den großen (8, 15) und kleinen (9, 16) Einspritzöffnungen im verwehten Zustand zu einem flächenmäßig ergänzenden Einspritzmuster komplettieren, ohne daß sie sich gegenseitig überlappen.
  2. Dieselmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Einspritzöffnungen als Einspritzbohrungen (8, 9, 15, 16) ausgebildet sind und die Mittellinien (10, 11; 17, 18) der großen Einspritzbohrungen (8; 15) und der kleinen Einspritzbohrungen (9; 16) auf einer gemeinsamen Kegelmantelfläche (6) liegen.
  3. Dieselmotor nach Anspruch 1, dadurch gekennzeichnet, daß die Einspritzöffnungen als Einspritzbohrungen (8, 9; 15, 16) ausgebildet sind und die Mittellinien (10; 17) der großen Einspritzbohrungen (8; 15) auf einer ersten Kegelmantelfläche (6) und die Mittellinien (11; 18) der kleinen Einspritzbohrungen (16) auf einer zweiten Kegelmantelfläche (7) liegen, wobei der Öffnungswinkel (α1) der ersten Kegelmantelfläche (6) größer ist als der Öffnungswinkel (α2) der zweiten Kegelmantelfläche (7).
  4. Dieselmotor nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß die Mittellinien der kleinen Einspritzbohrungen (9) jeweils im halben Umfangswinkelabstand (12) des Umfangswinkelabstandes (13) der Mittellinien der benachbarten großen Einspritzbohrungen (8) angeordnet sind.
  5. Dieselmotor nach einem der Ansprüche 2 oder 3, dadurch gekennzeichnet, daß der Umfangswinkelabstand (19) der Mittellinie der kleinen Einspritzbohrungen (16) von der Mittellinie der großen Einspritzbohrungen (15) kleiner ist, als der halbe Umfangswinkelabstand (20) der Mittellinien der benachbarten großen Einspritzbohrungen (15), und daß in Draufsicht in Drallrichtung gesehen jeweils die kleine Einspritzbohrung (16) benachbart vor der großen Einspritzbohrung (15) liegt, so daß jeweils der Einspritzstrahl (23) aus der kleinen Einspritzbohrung (16) im Windschatten des Einspritzstrahl (22) aus der großen Einspritzbohrung (16) abgelenkt wird, ohne daß sich die Einspritzstrahlen (22, 23) überlappen.
EP94120612A 1993-12-23 1994-12-23 Dieselmotor mit direkter Kraftstoffeinspritzung Expired - Lifetime EP0661447B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4344026 1993-12-23
DE4344026A DE4344026C2 (de) 1993-12-23 1993-12-23 Einspritzdüse

Publications (2)

Publication Number Publication Date
EP0661447A1 EP0661447A1 (de) 1995-07-05
EP0661447B1 true EP0661447B1 (de) 2000-10-18

Family

ID=6505891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94120612A Expired - Lifetime EP0661447B1 (de) 1993-12-23 1994-12-23 Dieselmotor mit direkter Kraftstoffeinspritzung

Country Status (4)

Country Link
US (1) US5667145A (de)
EP (1) EP0661447B1 (de)
JP (1) JPH07208303A (de)
DE (1) DE4344026C2 (de)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5608057A (en) * 1994-08-31 1997-03-04 Shin-Etsu Vinyl Acetate Co., Ltd. N-(alpha-acyloxyethyl) compound and method for the preparation thereof
TW325471B (en) * 1994-08-31 1998-01-21 Shinetsu Sakusan Vinyl Kk Method for the preparation of an n-vinyl compound
JP3473884B2 (ja) * 1996-07-29 2003-12-08 三菱電機株式会社 燃料噴射弁
JPH10288131A (ja) * 1997-04-11 1998-10-27 Yanmar Diesel Engine Co Ltd ディーゼル機関の噴射ノズル
FR2769342B1 (fr) * 1997-10-07 1999-11-26 Renault Injecteur pour moteur diesel a injection directe
US6533954B2 (en) * 2000-02-28 2003-03-18 Parker-Hannifin Corporation Integrated fluid injection air mixing system
US6799733B1 (en) * 2000-06-28 2004-10-05 Siemens Automotive Corporation Fuel injector having a modified seat for enhanced compressed natural gas jet mixing
DE10122350B4 (de) * 2001-05-09 2006-09-07 Robert Bosch Gmbh Brennstoffeinspritzsystem
JP2003214297A (ja) * 2002-01-24 2003-07-30 Yanmar Co Ltd ディーゼル機関の燃料噴射弁
DE102004008312A1 (de) * 2004-02-20 2005-11-17 Wankel Super Tec Gmbh Kreiskolbenbrennkraftmaschine, ausgelegt für Dieselkraftstoff
FR2876750B1 (fr) * 2004-10-19 2010-09-17 Renault Sas Buse d'injection possedant des trous de conicites differentes et moteur comportant une telle buse
FR2877056A1 (fr) * 2004-10-21 2006-04-28 Renault Sas Injecteur de carburant pour moteur a combustion interne comportant des trous d'injection de permeabilite differente
DE102005059265A1 (de) * 2005-12-12 2007-06-14 Siemens Ag Einspritzdüse
US8011600B2 (en) * 2006-12-19 2011-09-06 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Fuel injector nozzle
EP2112348B1 (de) 2008-04-23 2012-02-08 Honda Motor Co., Ltd. Direkteinspritzmotor
DE102008045167A1 (de) 2008-08-30 2009-05-07 Daimler Ag Kraftstoffinjektor mit länglich ausgebildeten Einspritzöffnungen, die von Erhebungen umgeben sind
DE102008051365B4 (de) 2008-10-15 2010-07-01 L'orange Gmbh Kraftstoff-Einspritzventil für Brennkraftmaschinen
KR20120058151A (ko) * 2010-11-29 2012-06-07 현대자동차주식회사 차량용 인젝터
US9546633B2 (en) * 2012-03-30 2017-01-17 Electro-Motive Diesel, Inc. Nozzle for skewed fuel injection
JP6154362B2 (ja) * 2014-10-20 2017-06-28 株式会社Soken 燃料噴射ノズル
JP2019065777A (ja) * 2017-10-02 2019-04-25 いすゞ自動車株式会社 内燃機関の燃料噴射ノズル及び内燃機関

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH489708A (de) * 1968-04-11 1970-04-30 Sulzer Ag Brennstoffdüse eines Brennstoffeinspritzventiles für eine Kolbenbrennkraftmaschine
JPS5037921A (de) * 1973-07-17 1975-04-09
CH665453A5 (de) * 1985-01-11 1988-05-13 Sulzer Ag Zylinderdeckel fuer eine kolbenbrennkraftmaschine.
ATA129885A (de) * 1985-05-02 1987-02-15 Steyr Daimler Puch Ag Luftverdichtende hubkolben-brennkraftmaschine
DE8521912U1 (de) * 1985-07-30 1987-01-22 Audi AG, 8070 Ingolstadt Mehrloch-Einspritzdüse für eine Diesel-Brennkraftmaschine
ATE73207T1 (de) * 1986-05-22 1992-03-15 Osamu Matsumura Einspritzvorrichtung fuer kraftstoff.
JPH0311152A (ja) * 1989-06-09 1991-01-18 Mitsubishi Heavy Ind Ltd 燃料弁
JP2705339B2 (ja) * 1991-02-26 1998-01-28 日産自動車株式会社 燃料噴射ノズル

Also Published As

Publication number Publication date
DE4344026C2 (de) 1997-09-18
JPH07208303A (ja) 1995-08-08
US5667145A (en) 1997-09-16
DE4344026A1 (de) 1995-06-29
EP0661447A1 (de) 1995-07-05

Similar Documents

Publication Publication Date Title
EP0661447B1 (de) Dieselmotor mit direkter Kraftstoffeinspritzung
DE3808396C2 (de) Kraftstoffeinspritzventil
DE10303859B4 (de) Düsenbaugruppe zur Einspritzung und Verwirbelung von Kraftstoff
DE68904835T2 (de) Kraftstoffeinspritzventil für Brennkraftmaschinen.
DE60115841T2 (de) Direkteingespritzte brennkraftmaschine
DE19827219A1 (de) Kraftstoffeinspritzventil für einen Verbrennungsmotor
DE3432663A1 (de) Intermittierendes drall-einspritzventil
DE69214605T2 (de) Brennkraftmaschine mit verdichtungszündung und direkter einspritzung
DE2815672A1 (de) Brennstoffeinspritzvorrichtung
DE2909419A1 (de) Brennkammer fuer brennkraftmaschinen mit direkter einspritzung
EP0807213B1 (de) Strömungsleitkörper für eine gasturbinen-brennkammer
DE2850879A1 (de) Mehrloch-einspritzduese fuer luftverdichtende brennkraftmaschinen
DE3718083A1 (de) Brennraum an einer kolben-brennkraftmaschine
DE10020148A1 (de) Kraftstoffeinspritzdüse
DE102007000731A1 (de) Kraftstoffeinspritzdüse
EP0207049B1 (de) Luftverdichtende Hubkolben-Brennkraftmaschine
DE3920315A1 (de) Kraftstoffeinspritzduese
DE3943816C2 (de) Otto-Brennkraftmaschine mit direkter Kraftstoffeinspritzung
DE972387C (de) Kraftstoffeinspritzduese mit Drallwirkung
DE10261181A1 (de) Brennkraftmaschine mit Selbstzündung
DE4205744C2 (de) Brennkraftmaschinen-Brennstoffeinspritzdüse
DE4136851A1 (de) Dieselmotor kleinerer leistung
DE1083084B (de) Luftverdichtende Brennkraftmaschine mit Selbstzuendung
DE2840367A1 (de) Luftverdichtende brennkraftmaschine mit indirekter einspritzung
DE2500097A1 (de) Zerstaeubungsduese fuer fluessigkeit, insbesondere fuer fluessige kraft- oder brennstoffe

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT

17Q First examination report despatched

Effective date: 19960221

RTI1 Title (correction)

Free format text: DIESEL ENGINE WITH DIRECT FUEL INJECTION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001115

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ROBERT BOSCH GMBH

Effective date: 20010703

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20041026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071217

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081223