EP0661447A1 - Einspritzdüse - Google Patents

Einspritzdüse Download PDF

Info

Publication number
EP0661447A1
EP0661447A1 EP94120612A EP94120612A EP0661447A1 EP 0661447 A1 EP0661447 A1 EP 0661447A1 EP 94120612 A EP94120612 A EP 94120612A EP 94120612 A EP94120612 A EP 94120612A EP 0661447 A1 EP0661447 A1 EP 0661447A1
Authority
EP
European Patent Office
Prior art keywords
injection
nozzle
openings
air
injection openings
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
EP94120612A
Other languages
English (en)
French (fr)
Other versions
EP0661447B1 (de
Inventor
Ralph-Michael Dr.-Ing. Schmidt
Christoph Dr.-Ing. Teetz
Martin Dipl.-Ing. Rauscher
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Rolls Royce Solutions GmbH
Original Assignee
MTU Friedrichshafen GmbH
MTU Motoren und Turbinen Union Friedrichshafen GmbH
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=6505891&utm_source=google_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP0661447(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by MTU Friedrichshafen GmbH, MTU Motoren und Turbinen Union Friedrichshafen GmbH filed Critical MTU Friedrichshafen GmbH
Publication of EP0661447A1 publication Critical patent/EP0661447A1/de
Application granted granted Critical
Publication of EP0661447B1 publication Critical patent/EP0661447B1/de
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • F02M61/1826Discharge orifices having different sizes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02MSUPPLYING COMBUSTION ENGINES IN GENERAL WITH COMBUSTIBLE MIXTURES OR CONSTITUENTS THEREOF
    • F02M61/00Fuel-injectors not provided for in groups F02M39/00 - F02M57/00 or F02M67/00
    • F02M61/16Details not provided for in, or of interest apart from, the apparatus of groups F02M61/02 - F02M61/14
    • F02M61/18Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for
    • F02M61/1806Injection nozzles, e.g. having valve seats; Details of valve member seated ends, not otherwise provided for characterised by the arrangement of discharge orifices, e.g. orientation or size
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F02COMBUSTION ENGINES; HOT-GAS OR COMBUSTION-PRODUCT ENGINE PLANTS
    • F02BINTERNAL-COMBUSTION PISTON ENGINES; COMBUSTION ENGINES IN GENERAL
    • F02B3/00Engines characterised by air compression and subsequent fuel addition
    • F02B3/06Engines characterised by air compression and subsequent fuel addition with compression ignition

Definitions

  • the invention relates to an injection nozzle for diesel engines with the generic features mentioned in the preamble of claim 1.
  • the injection jets Due to this circulating air flow in the combustion chamber, the injection jets are blown away, especially in combustion processes with a large swirl. If the individual blown beams overlap, local areas with excess fuel are formed, which burn with a lack of oxygen. The consequences of such an incomplete combustion are high soot emissions. So that the injection jets are not blown overlapping in the manner described, in this injection form Injection nozzles with a limited number of injection bores are used, the bore spacing of which is selected in such a way that the individual injection jets cannot overlap even when there is a strong wind.
  • An injection nozzle of this type is known from EP-PS 0 246 373 B1 and is described therein as an assembly of an entire fuel injection device.
  • a total of three injection openings are formed at equal distances from one another laterally on the circumference of the nozzle body.
  • the three injection openings are opened or closed and the amount of fuel to be injected is thus measured.
  • the maximum amount of fuel that can be injected is determined by the entire cross-sectional area of the three injection openings of the same size.
  • the above-described overlapping of the injection jets predetermined by the injection openings and blown by the combustion air vortex is avoided here by the angular spacing of 120 ° each.
  • This known injection nozzle is disadvantageous due to its structural and functional properties explained so far that the relatively small total opening area of the injection openings results from the few, each with the same diameter, opening areas and therefore relatively long injection times.
  • the air utilization during the combustion process of this swirl process with the usual three to five injection openings is low.
  • the object of the invention is therefore to provide an injection nozzle of the type mentioned at the outset which, while avoiding the disadvantages described above, enables shorter injection durations and / or improved air utilization.
  • the invention is based on a generic injection nozzle by the characterizing features of claim 1.
  • This alternating arrangement of large and small injection orifices where an injection orifice with a smaller bore diameter is additionally provided according to the invention between two large bores, as previously also formed with conventional nozzles of this type, has the technical advantage that thus viewed over the entire injection nozzle, a much larger total cross-sectional area of all injection openings at one nozzle is achieved than with conventional injection nozzles, without the injection jets defined thereby being only partially blown into one another when injected into the air vortex.
  • the overall cross-sectional area of injection which has been enlarged in this way enables a significantly larger fuel flow than in the case of conventional injection nozzles, so that the intended quantity of fuel can be injected into the combustion chamber in a considerably shorter time than hitherto under conventional injection pressure conditions.
  • This shorter injection duration has the advantage of a shorter burning time, which means that the effective specific fuel consumption can be reduced.
  • Another important advantage of the configuration of the injection opening according to the invention is the uniform distribution of the fuel into the air which results in a more homogeneous mixing and a resultant substantially better air utilization in the cylinder.
  • the combination of small and large injection openings has a particularly advantageous effect here, since with constant injection pressure, small injection openings generally achieve finer atomization than with large openings.
  • the axes of the large and small injection openings each lie on different concentric conical shells, the opening angles of which are different.
  • an injection pattern is achieved which excludes an overlapping blow of the injection jets with even greater certainty and at the same time supports turbulent flow conditions for an improved swirling of fuel in the combustion air in the combustion chamber.
  • the piston 1 has a piston recess 2, which does not necessarily have to have the shape shown, but can be designed in any shape depending on the desired flow conditions.
  • the piston 1 is in its top dead center position (TDC), in which the upper piston edge 14 is displaced towards the injection nozzle 4 to such an extent that it at least partially protrudes into the piston recess 2.
  • the injection nozzle 4 which is designed here as a blind hole nozzle, has a plurality of injection openings 8, 9 distributed over a circumferential line at a distance from the tip of the injection nozzle.
  • the injection openings 8, 9 more precisely the mouth openings of these injection openings 8, 9, 15, 16 lie here on the common circumferential line, while the axes 10, 17 of the large injection openings 8, 15 designed as bores lie on a conical lateral surface 6, while the axes 11 , 18 of the small bores 9, 16 lie on a conical surface 7.
  • the opening angle ⁇ 1 of the conical surface 6 is chosen larger than the opening angle ⁇ 2 of the conical surface 6.
  • the emerging injection jets are directed towards the piston recess 2 when the piston is in its top dead center position, as shown in Figure 1.
  • FIGS. 2a and 2b each show an embodiment of the injection nozzle 4 according to the invention as a section along the section line II-II in FIG. 1. These figures show the respective arrangement of the injection bores 8, 9, 15, 16 on the common circumferential line of the injection nozzle 4.
  • FIG. 2a a total of six injection openings 8 with a large, conventional diameter and six further injection bores 9 with a smaller diameter are shown in FIG arranged evenly spaced apart over the circumference of the injector 4. As can be seen in FIG.
  • a small injection opening 9 is arranged between two large injection bores 8, the circumferential angular distance 12, which the axes 10, 11 of a large injection opening 8 and a small injection opening 9 enclose between them, being half as large how the circumferential angle 13, which the axes 10, 10 of two adjacent large injection bores 8 form with one another.
  • the injection bores 8, 9, 15, 16 are each made as fine bores in the injector tip.
  • the shape of the injection openings 8, 9, 15, 16 is not necessarily limited to the configuration as a bore, but other shapes and configurations can also be provided which are suitable for generating desired inlet flow conditions.
  • the diameters of the large injection openings 8 and the small injection openings 9 are dimensioned such that the fuel flow which forms due to the intended injection pressure through the individual injection openings 8, 9, 15, 16 can each form an injection jet 22, 23, such as he is shown in Figure 4.
  • FIG. 4 shows a typical injection jet pattern as it develops when a plurality of injection jets 6, 7, which are shaped in the illustrated embodiments, are injected into the combustion chamber, the piston recess 3.
  • the inflowing combustion air was previously set in rotation by means of a corresponding inflow channel in such a way that an air vortex forms in the combustion chamber.
  • This air which is given a large swirl by means of the special inflow channel referred to as swirl channel, is usually introduced centrally into the combustion chamber from above.
  • the inflowing air pulls the fuel with it and thereby blows away the injection jets to the injection lobes 21, 23 shown in FIGS. 3 and 4.
  • FIG. 3 shows an injection pattern as it is formed in conventional injection nozzles, each with injection openings of the same size, here 6 pieces.
  • the diameters of these injection bores are selected so that the individual blown injection jets 21 do not overlap one another.
  • areas are formed in the areas between two adjacent injection jets in which no fuel is mixed with air. The air in these areas is therefore also not used in the combustion. This is where the invention comes in, because, as shown in FIG. 4, a smaller injection jet 23, which forms when a fuel emerges from a small injection opening 9, 16, opens into these gaps between two adjacent injection jets 22.
  • the diameters of the injection openings are coordinated with one another in such a way that the large and small injection jets 22, 23 in the blown state complete an areally complementary injection pattern without overlapping one another.
  • the injection pattern shown in FIG. 4 is achieved, for example, with an injection nozzle as shown in FIG. 2a.
  • the embodiment of the injection nozzle according to the invention shown in FIG. 2b brings further improvement.
  • the large injection openings and the small injection openings are each arranged in pairs evenly distributed over the entire circumference of the injection nozzle 4. Due to the small angular distance 19 of the injection opening axes 17 and 18 of this opening pair, the smaller one Injection jet deflected in the slipstream of the large injection jet without the lobe-shaped injection jets overlapping.
  • each pair of injection jets has a combustion chamber sector which is larger than the injection pattern shown in FIG. 4 and in which the fuel can be blown without mixing with the adjacent pair of injection jets.
  • the injection nozzle according to the invention thus enables the combustion air in the combustion chamber to be used much more extensively.
  • a considerably larger total cross-sectional area of the injection openings is available in the injection nozzle according to the invention, as a result of which the amount of fuel required in each case can be injected into the combustion chamber in a significantly shorter time.
  • This larger mass flow, or also flow rate v ⁇ is shown in FIG. 5 as a function of time over an overall injection process.
  • curve 26 represents the inflow rate of a conventional injection nozzle
  • curve 27 represents the injection rate, as is possible with the injection nozzle according to the invention.
  • the area enclosed under the respective curve 26, 27 and the time axis corresponds to the amount of fuel injected. If the injection nozzle is completely open after the PREMIX area, then the injection nozzle according to the invention enables a significantly steeper increase in the flow rate to a significantly higher maximum value than conventional nozzles. Furthermore, the injection process with the injection nozzle 4 according to the invention is completed significantly earlier t E than in the case of conventional injection nozzles t H due to its larger overall hole cross section. As a result of this comparison, the area center of gravity F E of the inflow rate of the nozzle according to the invention is clearly shifted forward by the distance s compared to the center of gravity F H of conventional nozzles.
  • injection nozzle 4 With the injection nozzle 4 according to the invention, a larger amount of fuel can consequently be injected into the combustion chamber in a shorter time without local fuel accumulations and therefore excessive soot and pollutant developments due to insufficient air utilization.

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Combustion & Propulsion (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Fuel-Injection Apparatus (AREA)
  • Combustion Methods Of Internal-Combustion Engines (AREA)

Abstract

Die vorliegende Erfindung betrifft eine Einspritzdüse (4) für Dieselmotoren mit direkter Kraftstoffeinspritzung in eine mit Drall versetzte Verbrennungsluft im Brennraum. Die Düse ist als Lochdüse mit mehreren in gleichmäßigen Abständen über den Düsenumfang verteilt angeordneten Einspritzöffnungen (8, 9) ausgebildet. Um eine derartige Einspritzdüse (4) in einer Weise weiterzubilden, die kürzere Einspritzdauern und eine verbesserte Luftausnutzung ermöglicht, ist jeweils zwischen zwei benachbarten Einspritzöffnungen (8) eine zusätzliche Einspritzöffnung (9) mit kleinerem Durchmesser ausgebildet, wodurch die Gesamtquerschnittsfläche aller Einspritzöffnungen (8, 9) größer wird, ohne daß die dadurch geformten Kraftstoffstrahlen ineinander geweht werden. <IMAGE>

Description

  • Die Erfindung betrifft eine Einspritzdüse für Dieselmotoren mit den im Oberbegriff des Patentanspruchs 1 genannten gattungsbildenden Merkmalen.
  • Es ist bekannt, bei Dieselmotoren den Kraftstoff so in den Verbrennungsraum einzuspritzen, daß er sich vor und während der Verbrennung möglichst gleichmäßig auf die gesamte Verbrennungsluft verteilt. Hierbei dominiert die direkte Kraftstoffeinspritzung nach dem Strahlzerstäubungsverfahren, bei dem der Kraftstoff aus einer Mehrlochdüse schräg nach unten in die Verbrennungsluft im Brennraum eingespritzt wird, wobei diese Luft beim Einströmen durch besondere Formgebung des Einlaßkanals in eine Drehbewegung um die Zylinderachse versetzt wurde. Durch die Rotation der Luft erfolgt die gewünschte Verteilung des Kraftstoffs auf den gesamten Brennraum, also auch auf Luft, die durch die Zerstäubung des Kraftstoffs beim Einspritzen durch Düsenbohrungen nicht unmittelbar getroffen wird.
  • Bedingt durch diese kreisende Luftströmung im Brennraum werden insbesondere bei Brennverfahren mit großem Drall die Einspritzerstrahlen stark verweht. Überlappen sich die einzelnen verwehten Strahlen dabei, so bilden sich lokale Bereiche mit Kraftstoffüberschuß, die unter Sauerstoffmangel verbrennen. Die Folgen einer solchen unvollständigen Verbrennung sind hohe Rußemissionen. Damit die Einspritzstrahlen nicht in der beschriebenen Weise überlappend verweht werden, werden bei dieser Einspritzform Einspritzdüsen mit einer begrenzten Anzahl von Einspritzbohrungen eingesetzt, deren Bohrungsabstand so gewählt ist, daß sich die einzelnen Einspritzstrahlen auch bei starker Verwehung nicht überlappen können.
  • Eine Einspritzdüse dieser Art ist aus der EP-PS 0 246 373 B1 bekannt und darin als Baugruppe eines gesamten Kraftstoffeinspritzgeräts beschrieben. Bei dieser bekannten Einspritzdüse sind insgesamt drei Einspritzöffnungen in gleichmäßigen Abständen zueinander seitlich am Umfang des Düsenkörpers ausgebildet. Je nach Stellung eines als Hohlzylinder ausgebildeten Düsenverschlußelements, werden die drei Einspritzöffnungen geöffnet oder geschlossen und so die einzuspritzende Kraftstoffmenge bemessen. bei vollkommen geöffneten Einspritzöffnungen und vorgegebenem Einspritzdruck ist die maximal einspritzbare Kraftstoffmenge durch die gesamte Querschnittsfläche der drei gleich groß ausgebildeten Einspritzöffnungen festgelegt. Das oben beschriebene Überlappen der durch die Einspritzöffnungen vorgegebenen und vom Verbrennungsluftwirbel verwehten Einspritzstrahlen wird hierbei durch den Winkelabstand von je 120° vermieden.
  • Diese bekannte Einspritzdüse ist aufgrund ihrer insoweit erläuterten baulichen und funktionellen Eigenschaften mit den Nachteilen behaftet, daß sich durch die wenigen, jeweils durchmessergleichen Öffnungsflächen der Einspritzöffnungen eine verhältnismäßig kleine Gesamtöffnungsfläche und dadurch relativ lange Einspritzdauern ergeben. Darüber hinaus ist die Luftausnutzung beim Verbrennungsvorgang dieses Drallverfahrens mit den üblichen drei bis fünf Einspritzöffnungen gering.
  • Aufgabe der Erfindung ist es daher, eine Einspritzdüse der Eingangs genannten Art anzugeben, die unter Vermeidung der oben beschriebenen Nachteile kürzere Einspritzdauern und/oder eine verbesserte Luftausnutzung ermöglicht.
  • Zur Lösung dieser Aufgaben ist die Erfindung ausgehend von einer gattungsgemäßen Einspritzdüse durch die kennzeichnenden Merkmale des Patentanspruchs 1 gegeben.
  • Aus dieser abwechselnden Anordnung von großen und kleinen Einspritzöffnungen, wo jeweils zwischen zwei großen Bohrungen, wie sie bisher auch bei herkömmlichen Düsen dieser Art ausgebildet sind, erfindungsgemäß zusätzlich eine Einspritzöffnung mit kleinerem Bohrungsdurchmesser vorgesehen ist, resultiert der technische Vorteil, daß damit über die gesamte Einspritzdüse betrachtet eine weitaus größere Gesamtquerschnittsfläche aller Einspritzöffnungen an einer Düse erreicht wird, als bei herkömmlichen Einspritzdüsen, ohne daß die dadurch festgelegten Einspritzstrahlen beim Einspritzen in den Luftwirbel auch nur teilweise ineinander verweht werden.
  • Die so vergrößerte Einspritz-Gesamtquerschnittsfläche ermöglicht einen bedeutend größeren Kraftstoffstrom, als bei herkömmlichen Einspritzdüsen, so daß bei üblichen Einspritzdruckverhältnissen die vorgesehene Kraftstoffmenge in wesentlich kürzerer Zeit als bisher in den Brennraum eingespritzt werden kann. Diese kürzere Einspritzdauer schafft den Vorteil einer kürzeren Brenndauer, wodurch der effektive spezifische Kraftstoffverbrauch gesenkt werden kann.
  • Ein weiterer wesentlicher Vorteil der erfindungsgemäßen Ausbildung der Einspritzöffnung ist die dadurch erreichte gleichmäßige Verteilung des Kraftstoffs in die Luft, welche zu einer homogeneren Durchmischung und einer daraus resultierenden wesentlich besseren Luftausnutzung im Zylinder führt. Hierbei wirkt sich die Kombination von kleinen und großen Einspritzöffnungen besonders vorteilhaft aus, da man mit konstantem Einspritzdruck mit kleinen Einspritzöffnungen grundsätzlich eine feinere Zerstäubung erreicht als mit großen Öffnungen.
  • In einer Weiterbildung der Erfindung ist vorgesehen, daß die Achsen der großen und kleinen Einspritzöffnungen jeweils auf unterschiedlichen konzentrischen Kegelmänteln liegen, deren Öffnungswinkel verschieden sind. Als spezieller Vorteil dieser Ausführungsform erreicht man ein Einspritzmuster, welches ein überlappendes Verwehen der Einspritzstrahlen mit noch größerer Sicherheit ausschließt und gleichzeitig turbulente Strömungsverhältnisse für ein verbessertes Verwirbeln von Kraftstoff in der Verbrennungsluft im Brennraum unterstützt.
  • Die sich aus der homogenen Durchmischung und dem damit erreichten Verbrennungsablauf ergebende wesentlich verbesserte Luftausnutzung, wirkt sich in einer geringeren Rußentwicklung bei ansonst gleichen Schadstoffemissionen aus.
  • Weitere Einzelheiten und Merkmale der Erfindung ergeben sich aus der nachfolgenden Beschreibung spezieller Ausführungsbeispiele der Erfindung anhand der Zeichnung. Es zeigt:
  • Fig. 1
    Schematisch die Anordnung von Einspritzdüse und Kolben in einer Querschnittsdarstellung;
    Fig. 2
    Eine Horizontalschnittdarstellung durch die Düse entlang des Schnitttverlaufs II-II in Fig. 1 gemäß eines ersten Ausführungsbeispiels der Erfindung;
    Fig. 2b
    Einen Horizontalschnittverlauf durch die Düse entlang des Schnittverlaufs II-II in Fig. 1 gemäß eines zweiten Ausführungsbeispiels der Erfindung;
    Fig. 3
    Das Einspritzmuster einer herkömmlichen Mehrlochdüse in Draufsicht;
    Fig. 4
    Das Einspritzmuster des ersten Ausführungsbeispiels der erfindungsgemäßen Einspritzdüse in Draufsicht;
    Fig. 5
    Die Darstellung der Einspritzrate über der Zeit im Vergleich zu herkömmlichen Einspritzraten.
  • In Figur 1 sind schematisch die Einspritzverhältnisse einer sonst nicht näher dargestellten Brennkraftmaschine gezeigt. Dem Kolben 1 gegenüberliegend ist die Einspritzdüse 4 koaxial zur Kolbenmittelachse 5 angeordnet und zusammen mit ihrem Düsenhalter in in der Zeichnung nicht näher dargestellter Weise in den Zylinderkopf eingeschraubt. Entgegen der hier dargestellten koaxialen Anordnung der Einspritzdüse ist auch jegliche andere Plazierung der Düse im Zylinder möglich, ohne daß die durch die Erfindung erzielten Vorteile beeinträchtigt werden.
  • Der Kolben 1 weist eine Kolbenmulde 2 auf, die nicht zwingend die dargestellte Form haben muß, sondern je nach den gewünschten Strömungsverhältnissen in jeder beliebigen Form ausgebildet sein kann. In Figur 1 befindet sich der Kolben 1 in seiner oberen Todpunktlage (OT), bei der die Kolbenoberkante 14 soweit in Richtung auf die Einspritzdüse 4 zu verschoben ist, daß diese zumindest teilweise in die Kolbenmulde 2 hineinragt.
  • Die Einspritzdüse 4, die hier als Sacklochdüse ausgebildet ist, weist im Abstand zur Einspritzdüsenspitze auf einer Umfangslinie verteilt mehrere Einspritzöffnungen 8,9 auf.
  • Die Einspritzöffnungen 8,9 genauer gesagt die Mündungsöffnungen dieser Einspritzöffnungen 8, 9, 15, 16 liegen hierbei auf der gemeinsamen Umfangslinie, während die Achsen 10, 17 der als Bohrungen ausgebildeten großen Einspritzöffnungen 8, 15 auf einer Kegelmantelfläche 6 liegen, während die Achsen 11, 18 der kleinen Bohrungen 9, 16 auf einer Kegelmantelfläche 7 liegen. Hierbei ist der Öffnungswinkel α₁ der Kegelmantelfäche 6 größer gewählt, als der Öffnungswinkel α₂ der Kegelmantelfläche 6. Dabei sind die austretenden Einspritzstrahlen in Richtung auf die Kolbenmulde 2 gerichtet sind, wenn sich der Kolben in seiner oberen Todpunktlage befindet, wie in Figur 1 dargestellt.
  • In den Figuren 2a und 2b ist jeweils eine Ausführungsform der erfindungsgemäßen Einspritzdüse 4 als Schnitt entlang des Schnittverlaufs II-II in Figur 1 dargestellt. Diese Figuren zeigen die jeweilige Anordnung der Einspritzbohrungen 8, 9, 15, 16 auf der gemeinsamen Umfangslinie der Einspritzdüse 4. Hierbei sind in der in Figur 2a dargestellten Ausführungsform insgesamt sechs Einspritzöffnungen 8 mit großem, herkömmlichem Durchmesser und sechs weitere Einspritzbohrungen 9 mit kleinerem Durchmesser in gleichmäßigem gegenseitigen Abstand über den Umfang der Einspritzdüse 4 verteilt angeordnet. Wie der Figur 2a zu entnehmen ist, ist hier jeweils eine kleine Einspritzöffnung 9 zwischen zwei großen Einspritzbohrungen 8 angeordnet, wobei der Umfangswinkelabstand 12, den die Achsen 10, 11 einer großen Einspritzöffnung 8 und einer kleinen Einspritzöffnung 9 zwischen sich einschließen, halb so groß ist, wie der Umfangswinkel 13, den die Achsen 10, 10 zweier benachbarter großer Einspritzbohrungen 8 miteinander bilden.
  • Die Einspritzbohrungen 8, 9, 15, 16 sind jeweils als Feinbohrungen in der Einspritzdüsenspitze hergestellt. Die Gestalt der Einspritzöffnungen 8, 9, 15, 16 ist jedoch nicht zwingend auf die Ausbildung als Bohrung eingeschränkt, sondern es können auch andere Formen und Gestalten vorgesehen sein, die geeignet sind, gewünschte Eintrittsströmungsverhältnisse zu erzeugen.
  • Erfindungswesentlich ist hierbei, daß die Durchmesser der großen Einspritzöffnungen 8 und der kleinen Einspritzöffnungen 9 so dimensioniert sind, daß der sich aufgrund des vorgesehenen Einspritzdruckes durch die einzelnen Einspritzöffnungen 8, 9, 15, 16 ausbildende Kraftstoffluß jeweils einen Einspritzstrahl 22, 23 bilden kann, wie er in Figur 4 dargestellt ist.
  • In Figur 4 ist ein typisches Einspritzstrahlmuster gezeigt, wie es sich ausbildet, wenn mehrere, in den dargestellten Ausführungsformen geformte Einspritzstrahlen 6, 7 in den Brennraum, die Kolbenmulde 3, eingespritzt werden. Die einströmende Verbrennungsluft wurde zuvor mittels eines entsprechenden Einströmkanals so in Rotation versetzt, daß sich im Brennraum ein Luftwirbel bildet. Diese mittels des als Drallkanals bezeichneten speziellen Einströmungskanals mit einem großen Drall versetzte Luft wird üblicherweise zentral von oben in den Verbrennungsraum eingeleitet. Dabei reißt die einströmende Luft den Kraftstoff mit sich und verweht dadurch die Einspritzstrahlen zu den in den Figuren 3 und 4 dargestellten Einspritzkeulen 21, 23.
  • In Figur 3 ist ein Einspritzmuster dargestellt, wie es sich bei herkömmlichen Einspritzdüsen mit jeweils gleich großen Einspritzöffnungen, hier 6 Stück, ausbildet. Die Durchmesser dieser Einspritzbohrungen sind so gewählt, daß sich die einzelnen verwehten Einspritzstrahlen 21 nicht gegenseitig überlappen. Wie jedoch aus der Figur 3 gut zu erkennen ist, bilden sich in den Gebieten zwischen zwei benachbarten Einspritzstrahlen jeweils Bereiche aus, in denen kein Kraftstoff mit Luft gemischt wird. Die in diesen Bereichen vorhandene Luft wird daher auch nicht bei der Verbrennung mit ausgenutzt. Hier setzt nun die Erfindung ein, denn wie in Figur 4 dargestellt, mündet in diese Lücken zwischen zwei benachbarte Einspritzstrahlen 22 jeweils ein kleinerer Einspritzstrahl 23, welcher sich beim Austritt des Kraftstoffs aus einer kleinen Einspritzöffnung 9, 16 bildet.
  • Je nach Intensität des Luftwirbels sind die Durchmesser der Einspritzöffnungen so aufeinander abgestimmt, daß sich die großen und kleinen Einspritzstrahlen 22, 23 im verwehten Zustand zu einem flächenmäßig ergänzenden Einspritzmuster komplettieren, ohne daß sie sich dabei gegenseitig überlappen.
  • Das in Figur 4 dargestellte Einspritzmuster wird beispielsweise mit einer Einspritzdüse erreicht, wie sie in der Figur 2a dargestellt ist. Für Ausführungsformen, bei denen ein besonders starker Luftdrall im Verbrennungsraum vorgesehen ist, bringt die in der Figur 2b dargestellte Ausführungsform der erfindungsgemäßen Einspritzdüse weitere Verbesserung. Bei dieser Ausführungsform sind die großen Einspritzöffnungen und die kleinen Einspritzöffnungen jeweils paarweise gleichmäßig über den Gesamtumfang der Einspritzdüse 4 verteilt angeordnet. Durch den geringen Winkelabstand 19 der Einspritzöffnungsachsen 17 und 18 dieses Öffnungspaares, wird jeweils der kleinere Einspritzstrahl quasi im Windschatten des großen Einspritzstrahls abgelenkt, ohne daß sich die keulenförmigen Einspritzstrahlen überlappen. Andererseits hat jedes Einspritzstrahlpaar einen gegenüber dem in Figur 4 dargestellten Einspritzmuster größeren Brennraumsektor zur Verfügung, in welchem der Kraftstoff verweht werden kann, ohne daß er sich mit dem benachbarten Einspritzstrahlpaar durchmischt.
  • Wie aus einem Vergleich des Einspritzmusters nach Figur 3 und dem Muster nach Figur 4 hervorgeht, ermöglicht die erfindungsgemäße Einspritzdüse also eine wesentlich flächendeckendere Ausnutzung der Verbrennungsluft im Brennraum. Abgesehen von der flächendeckenden Einspritzform, steht bei der erfindungsgemäßen Einspritzdüse eine erheblich größere Gesamtquerschnittsfläche der Einspritzöffnungen zur Verfügung, wodurch die jeweils erforderliche Kraftstoffmenge in wesentlich kürzerer Zeit in den Brennraum eingespritzt werden kann. Dieser größere Massenstrom, oder auch Strömungsrate v̇, ist in Figur 5 in Abhängigkeit der Zeit über einen Gesamteinspritzvorgang abgebildet. In diesem Diagramm stellt die Kurve 26 die Einströmrate einer herkömmlichen Einspritzdüse dar und der Kurvenverlauf 27 die Einspritzrate, wie sie mit der erfindungsgemäßen Einspritzdüse möglich ist. Die unter der jeweiligen Kurve 26,27 und der Zeitachse eingeschlossene Fläche entspricht der Menge des eingespritzten Kraftstoffes. Ist die Einspritzdüse nach dem PREMIX-Bereich vollkommen geöffnet, dann ermöglicht die erfindungsgemäße Einspritzdüse gegenüber herkömmlichen Düsen einen wesentlich steileren Anstieg der Strömungsrate auf einen deutlich höheren Maximalwert. Ferner ist der Einspritzvorgang mit der erfindungsgemäßen Einspritzdüse 4 aufgrund deren größeren Gesamtlochquerschnitts deutlich früher tE abgeschlossen als bei herkömmlichen Einspritzdüsen tH. Als Ergebnis dieses Vergleichs wird der Flächenschwerpunkt FE der Einströmrate der erfindungsgemäßen Düse gegenüber dem Schwerpunkt FH herkömmlicher Düsen um die Strecke s deutlich nach vorne verlagert.
  • Mit der erfindungsgemäßen Einspritzdüse 4 kann folglich eine größere Kraftstoffmenge innerhalb einer kürzeren Zeit in den Brennraum eingespritzt werden, ohne daß es in diesem zu lokalen Kraftstoffansammlungen und deshalb wegen unzureichender Luftausnutzung zu großen Ruß- und Schadstoffentwicklungen kommt.

Claims (5)

  1. Einspritzdüse für Dieselmotoren mit direkter Einspritzung in eine mit Drall versetzte Verbrennungsluft im Brennraum, welche als Lochdüse mit mehreren in gleichmäßigen Abständen und über eine Düsenumfangslinie verteilt angeordneten Einspritzöffnungen ausgeführt ist, dadurch gekennzeichnet, daß zwischen mindestens zwei benachbarten Einspritzöffnungen (8; 15) eine weitere kleinere Einspritzöffnung (9; 16) ausgebildet ist, wobei die Mündungen aller Einspritzbohrungen (8, 9; 15, 16) auf einer gemeinsamen Umfangslinie liegen.
  2. Einspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß die Achsen (10, 11; 17, 18) der Einspritzöffnungen (8, 9; 15, 16) auf einer gemeinsamen Kegelmantelfläche (6) liegen.
  3. Einspritzdüse nach Anspruch 1, dadurch gekennzeichnet, daß die Achsen (10; 17) der Einspritzöffnungen (8; 15) auf einer ersten Kegelmantelfläche (6) und die Achsen (11, 18) der Einspritzöffnungen mit kleineren Durchmesser (9; 16) auf einer zweiten Kegelmantelfläche (7) liegen, wobei der Öffnungswinkel (α₁) der ersten Kegelmantelfläche (6) größer ist als derjenige (α₂) der zweiten Kegelmantelfläche (7).
  4. Einspritzdüse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß die Einspritzöffnungen mit kleinerem Durchmesser (9, 16) jeweils im halben Umfangswinkelabstand (12) des Umfangswinkelabstandes (13) der Einspritzöffnungen (8, 15) angeordnet sind.
  5. Einspritzdüse nach einem der Ansprüche 1 bis 4, dadurch gekennzeichnet, daß in Drallrichtung gesehen die kleinere Einspritzbohrung (16) benachbart hinter der größeren Einspritzbohrung (15) liegt, und daß der Umfangswinkelabstand (19) der kleineren Einspritzbohrung kleiner ist, als der halbe Umfangswinkelabstand (20) der größeren Einspritzbohrung (15).
EP94120612A 1993-12-23 1994-12-23 Dieselmotor mit direkter Kraftstoffeinspritzung Expired - Lifetime EP0661447B1 (de)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
DE4344026 1993-12-23
DE4344026A DE4344026C2 (de) 1993-12-23 1993-12-23 Einspritzdüse

Publications (2)

Publication Number Publication Date
EP0661447A1 true EP0661447A1 (de) 1995-07-05
EP0661447B1 EP0661447B1 (de) 2000-10-18

Family

ID=6505891

Family Applications (1)

Application Number Title Priority Date Filing Date
EP94120612A Expired - Lifetime EP0661447B1 (de) 1993-12-23 1994-12-23 Dieselmotor mit direkter Kraftstoffeinspritzung

Country Status (4)

Country Link
US (1) US5667145A (de)
EP (1) EP0661447B1 (de)
JP (1) JPH07208303A (de)
DE (1) DE4344026C2 (de)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877056A1 (fr) * 2004-10-21 2006-04-28 Renault Sas Injecteur de carburant pour moteur a combustion interne comportant des trous d'injection de permeabilite differente
EP2112348A2 (de) 2008-04-23 2009-10-28 Honda Motor Co., Ltd. Direkteinspritzmotor

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TW325471B (en) * 1994-08-31 1998-01-21 Shinetsu Sakusan Vinyl Kk Method for the preparation of an n-vinyl compound
US5608057A (en) * 1994-08-31 1997-03-04 Shin-Etsu Vinyl Acetate Co., Ltd. N-(alpha-acyloxyethyl) compound and method for the preparation thereof
JP3473884B2 (ja) * 1996-07-29 2003-12-08 三菱電機株式会社 燃料噴射弁
JPH10288131A (ja) * 1997-04-11 1998-10-27 Yanmar Diesel Engine Co Ltd ディーゼル機関の噴射ノズル
FR2769342B1 (fr) * 1997-10-07 1999-11-26 Renault Injecteur pour moteur diesel a injection directe
US6533954B2 (en) * 2000-02-28 2003-03-18 Parker-Hannifin Corporation Integrated fluid injection air mixing system
US6799733B1 (en) * 2000-06-28 2004-10-05 Siemens Automotive Corporation Fuel injector having a modified seat for enhanced compressed natural gas jet mixing
DE10122350B4 (de) * 2001-05-09 2006-09-07 Robert Bosch Gmbh Brennstoffeinspritzsystem
JP2003214297A (ja) * 2002-01-24 2003-07-30 Yanmar Co Ltd ディーゼル機関の燃料噴射弁
DE102004008312A1 (de) * 2004-02-20 2005-11-17 Wankel Super Tec Gmbh Kreiskolbenbrennkraftmaschine, ausgelegt für Dieselkraftstoff
FR2876750B1 (fr) * 2004-10-19 2010-09-17 Renault Sas Buse d'injection possedant des trous de conicites differentes et moteur comportant une telle buse
DE102005059265A1 (de) * 2005-12-12 2007-06-14 Siemens Ag Einspritzdüse
US8011600B2 (en) * 2006-12-19 2011-09-06 The United States Of America As Represented By The Administrator Of The U.S. Environmental Protection Agency Fuel injector nozzle
DE102008045167A1 (de) 2008-08-30 2009-05-07 Daimler Ag Kraftstoffinjektor mit länglich ausgebildeten Einspritzöffnungen, die von Erhebungen umgeben sind
DE102008051365B4 (de) 2008-10-15 2010-07-01 L'orange Gmbh Kraftstoff-Einspritzventil für Brennkraftmaschinen
KR20120058151A (ko) * 2010-11-29 2012-06-07 현대자동차주식회사 차량용 인젝터
US9546633B2 (en) * 2012-03-30 2017-01-17 Electro-Motive Diesel, Inc. Nozzle for skewed fuel injection
JP6154362B2 (ja) * 2014-10-20 2017-06-28 株式会社Soken 燃料噴射ノズル
JP2019065777A (ja) * 2017-10-02 2019-04-25 いすゞ自動車株式会社 内燃機関の燃料噴射ノズル及び内燃機関

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2238059A1 (de) * 1973-07-17 1975-02-14 Cav Ltd
DE8521912U1 (de) * 1985-07-30 1987-01-22 Audi AG, 8070 Ingolstadt Mehrloch-Einspritzdüse für eine Diesel-Brennkraftmaschine
JPH0311152A (ja) * 1989-06-09 1991-01-18 Mitsubishi Heavy Ind Ltd 燃料弁
DE4205744A1 (de) * 1991-02-26 1992-08-27 Nissan Motor Brennkraftmaschinen-brennstoffeinspritzduese

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CH489708A (de) * 1968-04-11 1970-04-30 Sulzer Ag Brennstoffdüse eines Brennstoffeinspritzventiles für eine Kolbenbrennkraftmaschine
CH665453A5 (de) * 1985-01-11 1988-05-13 Sulzer Ag Zylinderdeckel fuer eine kolbenbrennkraftmaschine.
ATA129885A (de) * 1985-05-02 1987-02-15 Steyr Daimler Puch Ag Luftverdichtende hubkolben-brennkraftmaschine
DE3684143D1 (de) * 1986-05-22 1992-04-09 Osamu Matsumura Einspritzvorrichtung fuer kraftstoff.

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2238059A1 (de) * 1973-07-17 1975-02-14 Cav Ltd
DE8521912U1 (de) * 1985-07-30 1987-01-22 Audi AG, 8070 Ingolstadt Mehrloch-Einspritzdüse für eine Diesel-Brennkraftmaschine
JPH0311152A (ja) * 1989-06-09 1991-01-18 Mitsubishi Heavy Ind Ltd 燃料弁
DE4205744A1 (de) * 1991-02-26 1992-08-27 Nissan Motor Brennkraftmaschinen-brennstoffeinspritzduese

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
PATENT ABSTRACTS OF JAPAN vol. 15, no. 120 (M - 1096) 25 March 1991 (1991-03-25) *

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2877056A1 (fr) * 2004-10-21 2006-04-28 Renault Sas Injecteur de carburant pour moteur a combustion interne comportant des trous d'injection de permeabilite differente
EP2112348A2 (de) 2008-04-23 2009-10-28 Honda Motor Co., Ltd. Direkteinspritzmotor

Also Published As

Publication number Publication date
US5667145A (en) 1997-09-16
DE4344026A1 (de) 1995-06-29
EP0661447B1 (de) 2000-10-18
DE4344026C2 (de) 1997-09-18
JPH07208303A (ja) 1995-08-08

Similar Documents

Publication Publication Date Title
DE4344026C2 (de) Einspritzdüse
DE2951796C2 (de) Brenner für gasförmige oder flüssige Brennstoffe für minimale NO&amp;darr;x&amp;darr;-Emission
DE19827219A1 (de) Kraftstoffeinspritzventil für einen Verbrennungsmotor
DE10303859A1 (de) Düsenbaugruppe zur Einspritzung und Verwirbelung von Kraftstoff
DE2624189A1 (de) Luftverdichtende einspritzbrennkraftmaschine mit nebenkammer
DE2909419A1 (de) Brennkammer fuer brennkraftmaschinen mit direkter einspritzung
EP0807213B1 (de) Strömungsleitkörper für eine gasturbinen-brennkammer
DE3519835A1 (de) Verbrennungsmotor
DE2850879A1 (de) Mehrloch-einspritzduese fuer luftverdichtende brennkraftmaschinen
EP0692625A1 (de) Düsenkopf für eine Brennstoffeinspritzdüse und Verfahren zum Einspritzen von Brennstoff in einen Verbrennungsmotor
EP0207049B1 (de) Luftverdichtende Hubkolben-Brennkraftmaschine
EP0083001B1 (de) Kraftstoffeinspritzsystem für Kraftstoffdirekteinspritzung bei Brennkraftmaschinen
DE3920315A1 (de) Kraftstoffeinspritzduese
DE10246693A1 (de) Einspritzvorrichtung zum Einspritzen von Kraftstoff
WO2019030049A1 (de) Injektor für gasförmige kraftstoffe
DE972387C (de) Kraftstoffeinspritzduese mit Drallwirkung
EP1573192A1 (de) Brennkraftmaschine mit selbstz ndung
DE4136851A1 (de) Dieselmotor kleinerer leistung
DE4205744C2 (de) Brennkraftmaschinen-Brennstoffeinspritzdüse
DE2500097A1 (de) Zerstaeubungsduese fuer fluessigkeit, insbesondere fuer fluessige kraft- oder brennstoffe
DE1526308C3 (de) Luftverdichtende Einspritz-Brennkraft-Kolbenmaschine
DE1083084B (de) Luftverdichtende Brennkraftmaschine mit Selbstzuendung
DE2932378A1 (de) Brennkammer fuer gasturbinentriebwerke
DE102018207828A1 (de) Selbstzündende Brennkraftmaschine
DE942950C (de) Selbstzuendende, luftverdichtende Brennkraftmaschine

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 19941223

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): FR GB IT

17Q First examination report despatched

Effective date: 19960221

RTI1 Title (correction)

Free format text: DIESEL ENGINE WITH DIRECT FUEL INJECTION

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAG Despatch of communication of intention to grant

Free format text: ORIGINAL CODE: EPIDOS AGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAH Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOS IGRA

GRAA (expected) grant

Free format text: ORIGINAL CODE: 0009210

AK Designated contracting states

Kind code of ref document: B1

Designated state(s): FR GB IT

ITF It: translation for a ep patent filed

Owner name: JACOBACCI & PERANI S.P.A.

ET Fr: translation filed
GBT Gb: translation of ep patent filed (gb section 77(6)(a)/1977)

Effective date: 20001115

PLBI Opposition filed

Free format text: ORIGINAL CODE: 0009260

26 Opposition filed

Opponent name: ROBERT BOSCH GMBH

Effective date: 20010703

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

REG Reference to a national code

Ref country code: GB

Ref legal event code: IF02

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBF Reply of patent proprietor to notice(s) of opposition

Free format text: ORIGINAL CODE: EPIDOS OBSO

PLBC Reply to examination report in opposition received

Free format text: ORIGINAL CODE: EPIDOSNORE3

PLCK Communication despatched that opposition was rejected

Free format text: ORIGINAL CODE: EPIDOSNREJ1

PLBN Opposition rejected

Free format text: ORIGINAL CODE: 0009273

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: OPPOSITION REJECTED

27O Opposition rejected

Effective date: 20041026

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: IT

Payment date: 20071222

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: GB

Payment date: 20071218

Year of fee payment: 14

PGFP Annual fee paid to national office [announced via postgrant information from national office to epo]

Ref country code: FR

Payment date: 20071217

Year of fee payment: 14

GBPC Gb: european patent ceased through non-payment of renewal fee

Effective date: 20081223

REG Reference to a national code

Ref country code: FR

Ref legal event code: ST

Effective date: 20090831

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: GB

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081223

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: FR

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081231

PG25 Lapsed in a contracting state [announced via postgrant information from national office to epo]

Ref country code: IT

Free format text: LAPSE BECAUSE OF NON-PAYMENT OF DUE FEES

Effective date: 20081223